Problem session November 29, SF2736, fall 10.

1. How many distinct necklaces with 10 beads can you form by using just black and white beads.
2. In how many ways can a cube be colored in three distinct colors, if the six squared sides shall be colored, the eight corners, or the 12 edges of the cube, respectively.
3. The matrix

$$
\mathbf{H}=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

is the parity check matrix of a 1-error correcting code C. Find all elements of C. Correct the word 011111. How many words cannot be corrected.
4. Find a linear 1-error correcting code C of length 9 , size $|C|=32$ and containing the words 111100000 and 110000110.
5. Find a linear 1-error correcting code C of size $|C|=128$.
6. Find the maximum size of a 2 -error correcting code of length 8 .
7. Show that

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}=2^{n-1} n
$$

8. Solve the recursion

$$
u_{0}=2, \quad u_{1}=-6, \quad u_{n+2}+8 u_{n+1}-9 u_{n}=8 \cdot 3^{n+1}, \quad n \geq 1
$$

9. Prove that the number of partitions of n in which each part is 1 or 2 is equal to the number of partitions of $n+3$ which have exactly two distinct parts.
10. Find the number of partitions of 16 in which each part is an odd prime.
