Problem session November 22, SF2736, fall 10.

1. Find an element x in the group \mathcal{S}_{4} of permutations on the set $\{1,2,3,4\}$ such that

$$
(1243) x(2134)=(14)(23) .
$$

2. Show that there is no element φ in the group \mathcal{S}_{5} of permutations on the set $\{1,2,3,4,5\}$ such that

$$
\varphi^{2}=(123)(2345) .
$$

3. Show that the following multiplication table is not the multiplication table of a group:

\circ	e	a	b	c	d
e	e	a	b	c	d
a	a	b	d	e	c
b	b	e	c	d	a
c	c	d	a	b	e
d	d	c	e	a	b

4. Can the following table be completed to the multiplication table of a group.

\circ	e	a	b	c	d
e	e				
a		e			
b					
c					
d					

5. (a) Find the smallest subgroup of $\left(Z_{18},+\right)$ that contains the elements 3 and 7.
(b) Find the smallest coset of some subgroup of $\left(Z_{18},+\right)$ that contains the elements 3 and 7.
6. (a) For any two subgroups H and K of a group G show that $H \cap K$ is a subgroup of G.
(b) Find a group G with two distinct non trivial subgroups H and K of G such that $H \cup K$ is a subgroup of G or show that this is not possible.
(c) The sizes of the subgroups H and K of G are 52 and 151, respectively, find the size of $H \cap K$.
7. Find a non abelian group of size 66.
8. Is the group $\left(Z_{19} \backslash\{0\}, \cdot\right)$ a cyclic group.
9. Let \mathcal{S}_{4} denote the group consisting of all permutations on the set $\{1,2,3,4\}$. Find the smallest subgroup of \mathcal{S}_{4} that contains the permutations (123) and (3 4).
10. Show that if $g^{n}=e$ for some element g in a group G, then the order of the element g divides n.
11. Show that every subgroup of a cyclic group is cyclic.
12. Show that every group with 55 elements contains at least one element of order 5 and at least one element of order 11.
