Problem session November 22, SF2736, fall 10.

- 1. Find an element x in the group S_4 of permutations on the set $\{1, 2, 3, 4\}$ such that $(1\ 2\ 4\ 3)x(2\ 1\ 3\ 4) = (1\ 4)(2\ 3)$.
- 2. Show that there is no element φ in the group S_5 of permutations on the set $\{1, 2, 3, 4, 5\}$ such that

$$\varphi^2 = (1\ 2\ 3)(2\ 3\ 4\ 5)$$

3. Show that the following multiplication table is not the multiplication table of a group:

0	e	a	b	c	d
e	e	a	b	c	d
a	a	b	d	e	c
b	b	e	c	d	a
c	c	d	a	b	e
d	d	$egin{array}{c} a \\ b \\ e \\ d \\ c \end{array}$	e	a	b

4. Can the following table be completed to the multiplication table of a group.

- 5. (a) Find the smallest subgroup of $(Z_{18}, +)$ that contains the elements 3 and 7.
 - (b) Find the smallest coset of some subgroup of $(Z_{18}, +)$ that contains the elements 3 and 7.
- 6. (a) For any two subgroups H and K of a group G show that $H \cap K$ is a subgroup of G.
 - (b) Find a group G with two distinct non trivial subgroups H and K of G such that $H \cup K$ is a subgroup of G or show that this is not possible.
 - (c) The sizes of the subgroups H and K of G are 52 and 151, respectively, find the size of $H \cap K$.
- 7. Find a non abelian group of size 66.
- 8. Is the group $(Z_{19} \setminus \{0\}, \cdot)$ a cyclic group.
- 9. Let S_4 denote the group consisting of all permutations on the set $\{1, 2, 3, 4\}$. Find the smallest subgroup of S_4 that contains the permutations $(1 \ 2 \ 3)$ and $(3 \ 4)$.
- 10. Show that if $g^n = e$ for some element g in a group G, then the order of the element g divides n.
- 11. Show that every subgroup of a cyclic group is cyclic.
- 12. Show that every group with 55 elements contains at least one element of order 5 and at least one element of order 11.