Problem session November 1, SF2736, fall 10.

1. Solve
(a) $13 x+18=13$ in the ring Z_{64}.
(b)

$$
\left\{\begin{array}{c}
7 x+2 y=5 \\
10 x+7 y=3
\end{array}\right.
$$

in the ring Z_{13}.
2. Find all elements b of Z_{17} such that the equation

$$
x^{2}+3 x+b=0
$$

has a solution.
3. Find

$$
545^{112}(\bmod 23) \quad \text { and } \quad 545^{112}(\bmod 24)
$$

4. Show that if p is a prime number then

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

5. Find all integers n and m such that $314 n+218 m=12$ with $0 \leq n \leq 20$.
6. (a) When is it true that

$$
\operatorname{lcm}(a, b, c)=\frac{a \cdot b \cdot c}{\operatorname{gcd}(a, b, c)}
$$

(b) Find a formula for $\operatorname{lcm}(a, b, c)$.
7. Find the number of solutions of the equation $x^{2}=1$ in the ring Z_{990}.
8. Solve the equation $(x-5)(x+3)=0$ in the ring Z_{56}.
9. (a) Assume that m, n and k are integers with $n \geq 2$ and $m \geq 2$, and assume that $n^{2}=k \cdot m^{2}$. Prove that k is a square of an integer.
(b) Assume that $\operatorname{gcd}(x, y)=1$. Prove that if $x y=z^{2}$ for some integer z, then $x=n^{2}$ and $y=m^{2}$ for some integers n and m.
10. Show that if $2^{n}-1$ is a prime number then n must be a prime number. Will the same statement be true if we substitute 2 by any integer $a \geq 2$.

