Färel nr 19. Diagonalisering al symmetriska ( $n \times n$ )-matriser via en $O N$-marris $P$
For eft antal velcherer $\vec{f}_{U} \vec{f}_{2} \cdots \vec{f}_{n}$ Skall vara en ON-bas $i \mathbb{R}^{n}$ Krāvs
(1) Vektorerna ou lika manga som rummets dimension. Har dima $\left(\mathbb{R}^{r}\right)=\eta$
(2) Velftovesina à parvis vinkelraita ooh har ailla langde dvs

$$
\overrightarrow{f_{k}} \cdot \vec{f}_{j}=\left\{\left.\begin{array}{ll}
0, & j \neq k \\
1, & j=k \Leftrightarrow\left|f_{j}\right|
\end{array} \right\rvert\,=1, \dot{f} \cdots n\right.
$$

EH süt alt sammon fatta dersa villkor or att bilda matrisen

$$
\begin{aligned}
P & =\left(\begin{array}{llll}
1 & 1 & & \overrightarrow{2} \\
\overrightarrow{f_{1}} & \vec{f}_{2} & \cdots & . . \\
i_{n} \\
i . & 1 & & n
\end{array}\right)_{n \times n} \\
\text { Krava. } & \Leftrightarrow p^{p t} \\
p^{t} & =p^{t} p=I \Leftrightarrow
\end{aligned}
$$

So säges alt matrisen $P$ in $O N$-matris $\xrightarrow[\rightarrow]{\text { Bra. Fx }} \operatorname{lot}_{\substack{\text { at }}}^{\vec{f}_{1}}=\frac{1}{3}(2,1,2)^{t}, \vec{f}_{2}=\frac{1}{3}(-2,2,1)^{t}$

$$
\overrightarrow{f_{3}}=\frac{1}{3}(1,2,-y)^{t}
$$

Visa alt $\left\{\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \overrightarrow{f_{3}}\right\}$ ai $\circ N$-hasi $\mathbb{R}^{3}$ $\underbrace{\text { Lilda matrisen }}_{\text {Läshing }} P=\left(\begin{array}{ll}\overrightarrow{f_{1}} & \overrightarrow{f_{2}} \\ f_{3}\end{array}\right)$

$$
\begin{aligned}
& =\frac{1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right) \\
& P D^{t}=\frac{1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right)^{\frac{1}{3}}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right)^{t} \\
& \begin{array}{l}
\approx \frac{1}{g}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{array}\right)=\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right) \\
\Rightarrow P \text { onmatris }
\end{array}
\end{aligned}
$$

Problem När vet man alt en (nxn) - matris A Kan diagonaliseras med en $O N$-matris $P$
SVar om $A=A^{+} \quad$ (symmerrisk)
Saं bildu eqenvektorerna $\left.\vec{f}_{1}\right) \cdots, \vec{f}_{n}$ tillx en Ortogonal bas.

$$
\begin{aligned}
& \overrightarrow{f_{j}} \cdot \overrightarrow{f_{k}}=\left\{\begin{array}{cc}
0, & j \neq k \\
\left.\overrightarrow{f_{j}}\right)^{2}, & j=k
\end{array}\right. \\
& \frac{\text { Motivering }}{\text { Om } A=A^{+}} \Rightarrow\left(A \overrightarrow{f_{k}}\right) \cdot \int_{\vec{j}}^{\vec{j}}=\overrightarrow{f_{k}} \cdot(A \vec{f}, \vec{j}) \\
& \text { TV.m } \vec{f}_{k} \cdot \vec{f}_{j}=[\text { marris form }]=\vec{f}_{k}^{t} \vec{f}_{j} \\
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\binom{\frac{4}{2}}{6}=\underbrace{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)}_{\text {matres mistiplication }}\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=1.4+7.5+3.6 \\
& \left(A \overrightarrow{f_{k}}\right) \cdot \overrightarrow{f_{j}}=\frac{\left.\left(A \hat{f}_{k}\right)^{t}\right)^{t} \vec{f}_{k}^{t} \vec{f}_{j}}{\left(\vec{f}_{j}\right.}=\vec{f}_{k}^{*} A \vec{A}_{A^{t}}^{\vec{i}} f_{j} \\
& =\vec{f}_{k} \cdot A \vec{f}_{j} \\
& \text { bill undersoka cm } f_{k}^{\prime} \cdot f_{j}=0, j \neq k
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \lambda_{k} \vec{f}_{x} \cdot f_{j}=\lambda_{j} \cdot \vec{f}_{k} \cdot \overrightarrow{f_{j}} \\
& \Leftrightarrow \underbrace{\left(\hat{F}_{k}-\lambda_{j}\right)}_{\neq 0} \Rightarrow f_{k} \cdot \vec{f}_{k}=0 \\
& \text { V.S.V }
\end{aligned}
$$

SPEKTRALSATSEN
(Diagonaliseringssatsen) (Sats 8.7 ) Till varje $(n \times n)$ symmetriste matris $A$ Kan man finna en $O N$-matris $P$ o ch en diagonal matris D $S_{a}^{\circ}$ att $A=\left.P D\right|^{\text {t }}$ och $P^{t} A P=D$ Vad satsen säger
lir $A=A^{t}$ (ordning n)
Da galler
(3) Alla eqenvarden till A à
Reella dvs
$\operatorname{det}(A-\lambda I)=P(\lambda)$ har exakt
$n$ sty reella nollstiellen
(2) A havelakt $n$ sty eqeaveltider $\vec{f}_{1}, \ldots \vec{f}_{n}$ sombilda en ON-bas $i \mathbb{R}^{n}$

$$
\begin{aligned}
& P=\left(\begin{array}{ccc}
\frac{1}{f_{1}} & \vec{f}_{2} & -\cdots \\
P f_{n}
\end{array}\right) \Rightarrow P p^{t}=I \\
& a \operatorname{on} \text { onatris }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& A=P D P^{t} \Leftrightarrow D=I^{P t} A P \\
& A=\left(\begin{array}{cc}
d_{1} & \ddots \\
0 & \ddots \\
\operatorname{lo}_{\alpha,}
\end{array}\right)
\end{aligned}
$$

vilutog laza
Villua (Villen) av fötjande matriser Kai diagonaliseras med en $O N$, matris.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
a & b & c \\
1 & 2 & 3
\end{array}\right), ~ B=\left(\begin{array}{lll}
a & b & c \\
b & 1 & 3 \\
c & 3 & 2
\end{array}\right) \\
& C=\left(\begin{array}{ll}
1 & 4 \\
a & 5 \\
a & c \\
4 & 8 \\
10
\end{array}\right) \text { Motwera dift suar med } \\
& \text { ord } 1
\end{aligned}
$$

$$
\frac{\text { Bra Ex }}{\text { Diagonalisera }} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

Lssning
(1) Vr ser att $A=A^{t}$ à symmetrisk $\because$ Enlist spextralsatsen Varje symmerrisk Kan diagonaliseras med en o Numatris P bestáende ar egevvectuterer tell $A$
(2) Finn Enenvärden tell A

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda-\lambda \\
-1 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left((1-\lambda)^{2}-1\right)=P(\lambda) \\
& P(\lambda=0 \quad \text { om } 1-\lambda=0 \text { elh } \\
& \underbrace{(1-\lambda}_{(1-\lambda)^{2}-1}=0
\end{aligned}
$$

Del $l_{\text {SU }}$ av $\lambda_{1}=0 \lambda_{j} \lambda_{2}=1, r_{3}=2$
(3) Finn motsvavande eqenvectorer


$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & 1
\end{array}\right)\binom{y}{y}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Leftrightarrow \begin{aligned}
& x=0 \\
& y-z=0 \\
& -b+z=1
\end{aligned}
$$

$x=0$ och $y=z=t$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\vec{u}_{1}, \quad \overrightarrow{f_{1}}=\frac{\vec{u}_{1}}{\left|\vec{u}_{1}\right|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Fall $\lambda_{2}=1$
Viloser $(A-1 I)\left(\begin{array}{l}y \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Leftrightarrow$
(2) $\operatorname{och}(3) \Rightarrow y=0, z=0$

$$
\begin{aligned}
& (2) \operatorname{sch}(3) \Rightarrow y=0, z=0 \\
& (1) \Rightarrow x=y \cdot d f(\neq 0) \text { tar } x=1
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\vec{f}_{2} \\
& \text { obs: } \overrightarrow{f_{1}} \cdot \overrightarrow{f_{2}}=0 \\
& \text { Fall } \lambda=2, V_{i} i_{0 \text { ser }}(A-2 I)\left(\begin{array}{l}
y \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
1-2 & 0 & 0 \\
0 & 1-2 & -1 \\
0 & -1 & 1-2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Leftrightarrow \\
& \left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
y \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
-x=0(1) \\
-y-z=0(2) \\
-y-z=0
\end{array}\right. \\
& \text { un( } 1 \text { ) och(2) fas } x=0, y=-z=-t \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t \underbrace{\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)}_{u_{3}}, ~ \vec{f}_{3}=\frac{\vec{u}_{3}}{\left|\vec{u}_{3}\right|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

Delsuar

$$
\left(\begin{array}{l}
\text { Delsvar } \\
\overrightarrow{f_{1}}=\left(\begin{array}{c}
0 \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right), \overrightarrow{f_{2}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \overrightarrow{f_{3}}=\left(\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right) \\
\text { Bilda overgangen matrisen }
\end{array}\right.
$$

$$
\left(\begin{array}{ccc}
P=\left(\overrightarrow{f_{1}}\right. & \overrightarrow{f_{2}} & \overrightarrow{f_{3}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right)
$$

$$
\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3} \text { bildar en ON-bas }
$$

(4) Diagonalisera A medP


