Förel. 17

1) Basbyle matrisen P (overgaing marris)
givna TVa basor
den gamla $e=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ (ON-bas $i \mathbb{R}^{3}$) $\vec{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{e}_{r}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \vec{e}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ standead ${ }^{2}$ och dan nyabasen $f=\left\{\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}\right\}$

$$
f=\left(f_{1}, f_{2}, f_{3}\right)=\underbrace{\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}}_{e}]
$$

$$
f=e P
$$

P säges vara basbyte malrisen Frain basen e till dem nya f
EXA $\left\{\begin{array}{l}\vec{y}_{1}=\vec{e}_{1}+\vec{e}_{r} \\ \overrightarrow{e_{1}}\end{array}\left(\vec{f}_{f_{1}}\right)_{e}\right.$

$$
\vec{X}_{e}=x \vec{e}_{1}+y \vec{e}_{2}+z \vec{e}_{3} \quad \vec{x}_{1}=u \vec{f}_{1}+v \hat{f}_{\underline{p}}+w \overrightarrow{p_{s}}
$$

$$
\vec{x}_{e}=P \vec{X}_{f} \Leftrightarrow \vec{x}_{k}=p-1 \vec{X}_{e}
$$

Resume

$$
\begin{aligned}
& \left.P=\left(\left(\overrightarrow{f_{1}}\right)_{c}\right)\left(\overrightarrow{f_{2}}\right)_{e}\left(\overrightarrow{f_{3}}\right)_{e}\right) \\
& \operatorname{det}(P) \neq 0 \Leftrightarrow P^{-1} \text { fims }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{X}_{f} i{ }^{p-1} \vec{X}_{e}\left(\begin{array}{l}
\text { hy a kund }(u, v, w) \text { bestariun. } \\
i \text { de ganla koodd }(x, y, z)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& P=\left(\binom{\vec{f}_{1}}{1}_{e}\binom{\overrightarrow{f_{2}}}{1} e\binom{\overrightarrow{f_{3}}}{E_{3}}_{e}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

TALBC

$$
\begin{aligned}
& f_{1}=\left\{\vec{e}_{1}+2 \vec{e}_{2}, 2 \vec{e}_{1}+\vec{e}_{2}\right\} \Leftrightarrow F_{1}=e P_{1}(1) \\
& \vec{f}_{2}=\left\{\vec{e}_{1}+\vec{e}_{2}, 3 \vec{e}_{1}+3 \vec{e}_{2}\right\} \neq f_{2}=e P_{2}(2)
\end{aligned}
$$

Visoken matrien $P: f_{2}=f_{1} P$
m(V)och (z) for Vi

$$
f_{2}=f_{1} P \Leftrightarrow e P_{2}=e P_{1} P
$$

$$
\Rightarrow P_{2}=p_{1} p(\approx) p_{2}=p_{1}^{-1} p
$$

Vad vill viha med egenvaidena och egenveklioverna tell en ($n \times n$)-matris A?
svar Vi Vill finna en overgäng matrris P som diagonalisera A Dus Vi Vill finna en nybas som beskriver A som en diag onal matris the gorman? i4 stes!
sters Bestam egenvaidena $\lambda_{1}, \lambda_{11} \lambda_{3}$ TillA genom att lösa $\operatorname{det}(A-\lambda I)=P(\lambda)=0$ Stegr Bestäm motsvarande egenvektorer dvs los homogen a exv. System

$$
\left(A \sim \lambda_{k} J\right) f_{k}^{\vec{~}}=0, r=1,2,3
$$

stef 3 Bilda òvergángmatrisen (Bashyte matvisen mellon gamla beh nya basernal

$$
P=\left(\begin{array}{ccc}
\vdots & \vdots & i \\
\left(\overrightarrow{f_{1}}\right)_{e} & \left(\overrightarrow{f_{2}}\right)_{e} & \left(\overrightarrow{f_{3}}\right)_{e}
\end{array}\right)
$$

$\operatorname{dan} \vec{f}_{1}, \vec{F}_{2}$ och \vec{F}_{3} fran stes 2
Stes 4 Väkna wt
den $\lambda_{1}, \lambda_{3} \lambda_{3} a_{0}$ fran stes 1

1) $A_{e} \vec{x}_{e}=\vec{y}_{e}, A_{f} \vec{x}_{f}=\vec{y}_{f}$
2) $\vec{x}_{e}=P \vec{x}_{f} \quad \Leftrightarrow \vec{x}_{f}=p^{-1} \vec{x}_{e}$
3) $A_{e}=P A_{D_{f}}^{A_{f}} P^{-1} \Leftrightarrow \underbrace{}_{D}=P^{-1} A_{e} P$

Motivering for 3)

$$
\begin{aligned}
& A_{e} \vec{x}_{e}=\vec{\eta}_{c}, A_{f} \vec{X}_{f}=\vec{y}_{f} \\
& A_{f} \vec{x}_{L}=\vec{y}_{f} \Leftrightarrow\left[\begin{array}{lll}
(2) & \vec{x}_{f}=p^{-1} & \vec{x}_{e}
\end{array}\right] \\
& A_{f} P^{-1} \vec{X}_{e}=\vec{y}_{f}=[n(\tau)]=p^{-1} \vec{y}_{e} \Leftrightarrow \\
& \begin{array}{l}
A_{f} P^{-1} \vec{x}_{e}=P^{-1} \overrightarrow{y_{e}} \Leftrightarrow P \underbrace{P A_{e} P}_{A_{e}} \vec{x}_{e}-\vec{y} \\
P_{e} \cdot 9 A_{e} \vec{x}_{e}=\vec{y}_{e}
\end{array}
\end{aligned}
$$

Bra Ex för att diagonalisera A máster
egenvektorer till A bilda en bas dus arn A à $(n \times n)$-matris S_{a}^{o} maiste A ha exakt n st linj, ober eypnuektoner

$$
\operatorname{det}(P)=\operatorname{det}\left(\left(\tilde{f}_{1}\right)_{e} \cdots\left(\overrightarrow{f_{n}}\right)_{e}\right) \neq 0
$$

$\begin{aligned} & \text { Undersök om matrisen } \\ & \text { Kan diagondiseras. }\end{aligned} \quad A=\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right)$
Losning A Kan diagonaliseras om A hav exakt TVGa sty linj. obercende egenvoktorer. Den matrisen I som $\begin{array}{lll}\text { diagonatisena } A & \text { ges dai } \\ \text { dia } & f_{1} \text { och } & \vec{f}_{2} \\ e & \overrightarrow{2} & \text { till } A\end{array} \quad\left(\begin{array}{ll}\overrightarrow{-i} & f_{2} \\ f_{1} & \end{array}\right)$ eqenvektorer till A
stes1 $\operatorname{det}(A-\lambda I)=$

$$
\begin{aligned}
& A-\lambda I=\left(\begin{array}{ccc}
2-\lambda & 0 \\
1 & 2-\lambda
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 0 \\
1 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}=0 \\
& \Rightarrow \lambda_{1}=\lambda_{2}=2
\end{aligned}
$$

stege Finn motsuavarde eqeuveltorer

$$
\left(\begin{array}{c}
A-\lambda J \\
\text { soots in in } \lambda=2
\end{array}\binom{y}{y}=\binom{0}{0} \Rightarrow\left(\begin{array}{cc}
2-\lambda & 0 \\
1 & 2
\end{array}\right)\binom{x}{y}=\binom{0}{0}\right.
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2-2 & 0 \\
1 & 2-2
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Leftrightarrow 1 \cdot x+0 y=0 \Rightarrow x=0
\end{aligned}
$$

Podt t \& $y=t$

A her on ende eqenventor $\overrightarrow{\xi_{1}}=\binom{0}{1}$
$\Rightarrow A$ Kan E_{j} diayonilseras

$$
P=\left(\begin{array}{ll}
0 & ? \\
1 & ?
\end{array}\right)=?
$$

Bratx

$$
\begin{aligned}
& A_{e}=P A_{f} P^{-1} \\
& A_{f}=P^{-1} A_{e} P \\
& \operatorname{det}\left(A_{e}\right)=\operatorname{det}\left(A_{f}\right) \\
& T_{y} \operatorname{det}\left(A_{e}\right)=\operatorname{det}\left(P A_{f} P^{-1}\right) \\
& =\operatorname{det}(P) \operatorname{del}\left(A_{s}\right) \operatorname{def}\left(P^{\prime}\right) \\
& =\operatorname{det}\left(A_{f}\right) \operatorname{det}(P) \operatorname{det}(P-1) \\
& \frac{\text { Pra Ex }}{A_{\varepsilon}}=D=\left(\begin{array}{lll}
\lambda_{1} & & \\
0 & \ddots & 0 \\
0 & a_{n}
\end{array}\right)^{-1} \\
& A=A_{e}: \quad A=P D P^{-1} \\
& D=p^{-1} A P \\
& \operatorname{det}(A)=\operatorname{det}(D)=\lambda_{1} d_{2} \ldots \lambda_{n} \\
& \operatorname{det}\left(A^{\prime}\right)=\frac{\left(A_{c}\right)}{\operatorname{det} A)}=\frac{1}{\lambda_{1} \ldots d_{n}}
\end{aligned}
$$

Avgör on $A=\left(\begin{array}{ccc}3 & -1 & -1 \\ 1 & 1 & -1 \\ 2 & -2 & 0\end{array}\right)$ Kan
diagonaliseras!
Löning A Kan diagoniliseras on A har exabtet 3 linjät oberoende eyenvektorer $\overrightarrow{f_{1}}, f_{2}$ och $\overrightarrow{f_{3}}$ dvs $P=\left(\begin{array}{lll}\overrightarrow{1} & \overrightarrow{f_{1}} & \overrightarrow{f_{2}} \\ 1\end{array}\right)$ 80 m diagonaliser A maste ha en en invers $p^{-1}(\leftrightharpoons \operatorname{det}(P) \neq 0$ steye finn eserväden $\lambda_{1}, \lambda_{2}, \lambda_{3}$ till A $\operatorname{det}(A-\lambda T)=0$

$$
A-\lambda I=\left(\begin{array}{ccc}
3-\lambda & -1 & -1 \\
1 & 1-\lambda & -1 \\
2 & -2 & 0-\lambda
\end{array}\right)
$$

$\left.A \sim \lambda I\right|_{=}=\left|\begin{array}{ccc}3-\lambda & -1 & -1 \\ 1 & 1-\lambda & -1 \\ 5 & -5 & -\lambda\end{array}\right|=(3-\lambda)\left|\begin{array}{cc}1-\lambda & -1 \\ -5 & -\lambda\end{array}\right|-$

$$
-(-1)\left|\begin{array}{cc}
1 & -1 \\
5 & -\lambda
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1-\lambda \\
2 & -2
\end{array}\right|
$$

$\approx(2-\lambda)(-\lambda(L-\lambda)-2)+(-\lambda+2)-(-2-(2)(1-\lambda))$

$$
=\cdots \cdots=-\lambda(\lambda-2)^{2}
$$

belsvar $\lambda_{1}=0, \lambda_{2}=\lambda_{3}=2$
sigg2 Bestaim egenvektoren \vec{F}_{1}, \vec{F}_{2} och \vec{f}_{3}^{\prime}
Som suarar mat $\lambda_{1}=0, \lambda_{2}=2$ och $\lambda_{3}=2$
$f_{a} \| \lambda=0(A-\lambda, T)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
3-0 & -1 & -1 \\
1 & 1-0 & -1 \\
2 & -2 & 0-0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \\
& \left(\begin{array}{ccc|c}
3 & -1 & -1 & 0 \\
1 & 1 & -1 & 0 \\
2 & -2 & 0 & 0
\end{array}\right)_{6} 3 \sigma_{2}^{2}\left(\begin{array}{ccc|c}
0 & -4 & 2 & 0 \\
1 & 1 & -1 & 0 \\
0 & -4 & 2 & 0
\end{array}\right) \sim \\
& \left(\begin{array}{ccc|c}
0 & -4 & 2 & 0 \\
1 & 1 & -1 & 0
\end{array}\right) \Leftrightarrow\left(\begin{array}{l}
-4 y+x z=0(1) \\
x+y-z=0(2)
\end{array}\right.
\end{aligned}
$$

Tväplan som skär varardra. lañs en rat linje somvi skall finna.
ur (1) $z=2 y$ (sart ter $y=x$ $y=t$ och $z=2 t$ som sättsin i($)$

$$
(1) \Delta x=z-y=2 t-t=t
$$

SVar $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=t\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ alla egenvektor
tilld $=0$ qdr
genom oriso
vajf $\overrightarrow{f_{1}}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\left(\begin{array}{c}\text { iktung velutor till } \\ \text { rikurnikgs linjen }\end{array}\right.$ fal| $\lambda_{2}=\lambda_{3}=2:(A-2 I)\left(\begin{array}{l}y \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
& \Leftrightarrow\left(\begin{array}{ccc}
3-2 & -1 & -1 \\
1 & 1-2 & -1 \\
2 & -2 & 0-2
\end{array}\right)\left(\begin{array}{l}
y \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & -1 & -1 \\
1 & -1 & -1 \\
\psi & -i & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \Leftrightarrow \underbrace{x-y-z=0}_{\substack{\text { eft plan } \\
\text { somq icis gerom } \\
\text { oriso }}}
\end{aligned}
$$

Ett plan har alltid en bas av zvektorer, For alt finn dessa sia stall bi parametrisera planer med IV"o parameter socht. Th ekv

$$
x-y-z=0 \Leftrightarrow x=y+z
$$

Sett tiel $y=t$ och $z=S$

$$
\Rightarrow x=t+s
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
t+s \\
t \\
s
\end{array}\right)=t\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

$|V a|_{j} \rightarrow 11$ basveletoren

$$
\vec{f}_{2}^{\vec{a}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \overrightarrow{f_{3}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { till planed }
$$

Delsvar tiell $\lambda_{1}=0$ suavar $f_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$

$$
\begin{array}{llll}
\lambda_{2}=2 & \text { suara, } & f_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\lambda_{3}=2 & \text { suava, } & f_{3} & =\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
\end{array}
$$

stern 3 ovovgaing motrisen

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
\overrightarrow{f_{1}} & \overrightarrow{f_{2}} & \overrightarrow{f_{3}}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) \\
& \operatorname{det}(P)=-1 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
\frac{\text { Stes } 4}{P^{-1} A P}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
3 & -1 & -1 \\
1 & 1 & -1 \\
2 & -2 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 6 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Alt första basbyte - byte an kardinalevna

$$
\vec{x}=\vec{x}_{e}=a \vec{e}_{1}+b \vec{e}_{2}=u_{1} \vec{f}_{1}+v_{1} \vec{f}_{2}
$$

BraEx $i \mathbb{R}^{2}$ Väljs ett rytt Koordinal:
systen med bas vektorerna

$$
\begin{aligned}
& f_{1}=3 \vec{e}_{1}+4 \vec{e}_{2}=\binom{3}{4}_{2} \\
& \vec{f}_{2}=2 \vec{e}_{1}+3 \vec{e}_{2}=\binom{2}{3}_{e}
\end{aligned}
$$

(I) om $\vec{x}=3 \vec{e}_{1}+\overrightarrow{e_{2}}$. Finn koordinar ter till velktorn \vec{X} i dennyabasen

$$
\left\{\vec{f}_{2}, \vec{f}_{2}\right\}
$$

(2) En rätlinje har eker $2 x-y=8$ i den gamabasen. Vad blir denna eKuation i den ny a basen?

VEy $\vec{X}_{e}=P \vec{X}_{f} \Leftrightarrow \vec{X}_{f}=p^{-1} \vec{X}_{e}$

$$
P=\left(\begin{array}{ll}
\overrightarrow{f_{1}} & \overrightarrow{f_{2}}
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)^{+}
$$

salt $\vec{X}_{e}=\binom{x}{y}, \vec{X}_{f}=\binom{u}{v}$ $\left.\vec{X}_{e}=P \vec{X}_{f} \Leftrightarrow \underset{\substack{\text { Mamla } \\ \text { Koad, }}}{\binom{x}{y}}=\left(\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right) \underset{Y}{u} \begin{array}{l}u \\ v\end{array}\right)(b)$

$$
(1) \Leftrightarrow\left\{\begin{array}{l}
x=3 u+2 v \\
y=4 u+3 v
\end{array}\right.
$$

$$
\begin{aligned}
& \text { an } A=\left(\begin{array}{ll}
u & b \\
c & d
\end{array}\right) \Leftrightarrow A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d-b \\
-c & d
\end{array}\right) \\
& P=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \Leftrightarrow P^{-1}=\underbrace{\frac{1}{9-8}}_{=1}\left(\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right) \\
& P=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \Leftrightarrow p^{-1}=\left(\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right) \\
& \operatorname{mn}\binom{x}{y}=P\binom{u}{v} \Leftrightarrow\binom{u}{v}=p^{-1}\binom{x}{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fvgiga? } \\
& \left(\begin{array}{l}
\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right)=\binom{3}{7}
\end{array} \Rightarrow\binom{u}{v}=p^{-1}\binom{3}{7} \Leftrightarrow\right. \\
& \binom{u}{v}=\left(\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right)\binom{3}{7}=\binom{-5}{9} \\
& \vec{x}=\underbrace{3 \vec{e}_{1}+\overrightarrow{e_{2}}}_{\substack{\text { gamex } \\
\text { basen }}}=-\underbrace{5 \overrightarrow{f_{1}}+9 \overrightarrow{f_{2}}}_{\substack{\text { nya basen } \\
\text { ba }}}
\end{aligned}
$$

(2) Vällinje $2 x-y=3$ i gamla Koudinater (x, y) skall uttrycka) i den nya Koerdinater (u,v)

$$
\begin{aligned}
& \min (2):\binom{x}{y}=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)\binom{u}{v} \Leftrightarrow\left\{\begin{array}{l}
x=3 u+2 v \\
y=4 u+3 v
\end{array}\right. \\
& 2 x-y=3=\left[\begin{array}{l}
\text { satt in } x=3 u+2 n \\
6 \operatorname{ch} y=4 u+3 v
\end{array}\right]= \\
& \underbrace{2(3 u+2 v)-(4 u+3 v)}_{2 u+v}=3 \\
& \left.\begin{array}{rl}
2 u+v \\
\text { srar } \\
2 x-y=3
\end{array} \quad \text { (} x y\right) \text { blir } 2 u+v=3 i(y)
\end{aligned}
$$

$$
\xrightarrow{\operatorname{BraEx}}\left\{\begin{array}{l}
\vec{f}_{1}=\vec{e}_{1} \Leftrightarrow(1,0,0)^{t} \\
\vec{f}_{2}=\vec{e}_{1}+\vec{e}_{2}(1,1,0)^{t} \\
\vec{f}_{3}=\vec{e}_{1}+\vec{e}_{2}+e_{3}(\models)(1,1,1)^{t}
\end{array}\right.
$$

Hen seent planet $3 x+7 y-5 z=6$ i den nya basen.
Zosining duvergang matrisen

$$
\begin{aligned}
& p=\left(\vec{f}_{1} f_{2} f_{3}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \operatorname{det}(p)=1.1 .1=\left.1 \quad \Longrightarrow\right|^{p-1} f_{m s}
\end{aligned}
$$

Som skall sättas in i ekuationen for det givna planet $3 x+7 y-5 z=6$ $\begin{aligned} \underbrace{3(u+v+w)+7(v+w)-5 w} & =6 \\ 3 u+10 v+5 w & =6\end{aligned}$
SVär $\underbrace{3 x+7 y-5 z=6}_{\text {gamla }} \Leftrightarrow \underbrace{3 u+10 v+5 w}_{\text {nya koad. }}=6$ Koend
Ha $\vec{h}=\left(\begin{array}{c}3 \\ 7 \\ -5\end{array}\right)$

Hà

$$
\begin{aligned}
& \text { Han } \bar{n} \\
& \vec{n}=\left(\begin{array}{l}
3 \\
10 \\
5
\end{array}\right)
\end{aligned}
$$

