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PART | - GROUPS

(1) (a) Show directly from the axioms that there is a uniquaugrwith three elements up
to isomorphism. (2)
(b) Show that the groufyl,(F2) of invertible2 x 2-matrices over the fielf, = {0, 1}
is isomorphic to the symmetric groufy by giving an explicitisomorphism. (2)

(c) Compute the center of the general linear grélp(C), i.e., the group of invertible
complexn x n-matrices. (2)

SOLUTION

a). Denote the three elements bya andb, wheree is the unit element. We then have
thate xe = e,axe =exa =aandexb=bx*e=b. Thus the group table is given by

Suppose that+a = a. Since we have an inversedpsaya !, we get by multiplication
to the left that

atx(axa)=atxa=c¢e

but by the associativity, we get~! x (a x a) = (a7 * a) x a = e * a = a, which is a

contradiction since ande are supposed to be distinct elements. In the same way, we get

thatb = b # b.
If axb=a,weget

e=a!

xa=a'*(axb)=(a"'xa)xb=exb=>b
and ifa x b = b, we get
e=bxb = (axb)xb ' =ax(b*xb')=axe=a.

Thus we conclude thatx b = e and by symmetry in the argument, we alsolget. = e.
If a xa = e, we get that

b=exb=(a*xa)*xb=ax(axb) =axe=a,
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contradictingz # b. By symmety, we gelh « b # e.

We have already seen that a # a and thus we must havexa = b. By the symmetry
we also geb x b = a.

We have concluded that the group table has to be

b). There are six invertible matrices @l,(F,), since the first row can be chosen as any
of the three non-zero rows and the second as anything buwthetltiples of the first.
Thus we have the six matrices

10 10 0 1
I‘(o 1)’A—11’B—11’
0 1 11 11
C:(1 0)’D:10’E_01’

We have thafl is the unity andA, C' and £ are their own inverses, sinc# = C? =
E? = I. The remaining element8 and D have order three sind8* = D, D? = B and
B3 = B(B?) = BD =1 = D?D = D3,
We can find an explicit isomorphism t8; by sending the generator$ and C to
s1 = (12) ands, = (2 3), respectively. Thus we get
(1) = Id, ®(A) = (12), ®(C) = (23),
®(B) =P(AC) = (12)(23) = (123),
d(D)=d(CBC)=(23)(123)(23)=(132)
O(FE) =P(CAC) =(23)(12)(23) = (13).

We can check that the group tables are the same:

HOQW e~ -
HTO QW ~~
QAT &~
o~ QoW
TE~»TQQ
QAT > ~EYT
~ QT =E

c). An element in the center commutes with every element in tbegand in particular,

we have that it commutes with all the elementary matri€gs corresponding to inter-

schanging row and row;, when multiplying to the left. However, when multiplying to
the right it corresponds to interchanging columiasd;.

(2) (a) Define what it means for a group to act on a set and shatathy group acts on
itself by conjugation, i.e., by.b = aba~!, fora,b € G. (2)
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(b) Use 2a to prove thelass equation for a finite groupG, i.e.,

~ |G
Gl =12(G)| +
; [Calas)]

whereCg(a) = {b € Glab = ba} anday,as, ..., a, are representatives of all the

non-trivial conjugacy classes . (2)
(c) Use the class equation to show that any non-abelian grboger2p, wherep is an

odd prime, hap elements of orde?2 andp — 1 elements of ordep. (2)

SOLUTION

a). The conjugation definines a function
GxG—G
sending(a, b) to aba~'. We have to check that it satisfies the conditions of a grotiprac
le.,
@) ex=uzforalzedG.

(b) (ab).x = a.(b.x), foralla,b € G and for allz € G.
We have 2a sincere™! = z for all z € G and we have 2b since

(ab).z = (ab)z(ab)™! = abzb™'a™' = a(bzb™")a ™ = a.(b.7)
foralla,b € Gandallz € G.

b). The conjugacy classes are the orbitg:afinder the action by conjugation. Thus they
partitionG into disjoint subsets. The stabilizor of an elemeninder this action is given
by

G,={beGlbab™' = a} = {b € Glba = ab} = C(a).
Hence we get that the size of the orbitcos given by
Gl _ 16l
Ga|  [Co(a)l
The orbit is trivial, i.e., contains only, if and only if C(a) = G, which is equivalent to
thata commutes with all elements @&. Thus we can collect all trivial conjugacy classes

and the union of them will be the center@f Thus the class equation is the consequence
of the partition ofG into the center and the the non-trivial conjugacy classes.

(Ga| =

c). If G has orderRp wherep is an odd prime, the only possibilities for the order of a
subgroup ard, 2, p and2p by Lagrange’s theorem. Thus we have that the non-trivial
conjugacy classes haer p elements, since not all elements are in the same conjugacy
class.

In the class equation, we ha2g on the left hand side and hence there cannot be two
terms of sizep in the sum, since the center contains at least one elemdherk is no
term of sizep, we have that the center must be of sizer 2p since all other terms are
even. In the latter cas@ would be abelian, which it is supposed not to be. Thus we
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conclude thatZ(G)| = 2, but since the center is in all the centralizéts(a), these have
to have ordee as well, which would give terms of sizein the sum.

Hence there must be exactly one term of gsirethe sum. The center would then either
have ordeil or p. Again, the center is contained in all the centralizers chitontradicts
that one of the centralizers has ordef the center has order. Hence the center must be
trivial and there is one conjugacy class of sizand(p — 1)/2 conjugacy classes of size
2.

The centralizer(¢(a) contains the subgroup generateddoyHence the elements in
the conjugacy classes of si2gienerates a subgroup of a group of orglewhich means
that they have to have ordgr In the same way, the elements in the conjugacy class of
sizep generates subgroups of a group of orglewhich shows that they have ordenWe
have concluded that there are exagtlglements of orde?2 andp — 1 elements of order

yor

(3) (a) Anautomorphism of a groupG is an isomorphism frond- to itself. Show that the

setAut(G) of automorphisms ofr forms a group under composition. (2)

(b) Show that the sétin(G) of inner automorphisms, i.e.,a — bab™!, for someb in G,

forms a subgroup akut(G). (2)

c) Determine the automorphism group of the non-cyclic grougprder4. (2)
SOLUTION

a). Composition of functionsY — X satisfies associativity since there is a well define

notion of composition of three maps 2 x Y% x 33X

The identity map is a unity for composition and bijective mape invertible with a
bijective inverse. This shows that the set of bijective n@pa setX forms a group under
composition. We now look at the subset of bijective homorhanms of a groug-. If
and¥ are homomorphisms, we have that

W o B(ab) = U(P(ab)) = U(P(a)B(b)) = U(B(a))U(B(D))

foranya,b € G. Thus® o ® is also a homomorphism.
Furthermore, ifb is bijective, it has an inverseé~! and we get that

oM (ab) = & (@D ()2B (1)) = (D@ ()1 (1) = 6~ (@) (B)

which shows tha® ! is also a homomorphism. Thus the set of bijective homomerphi
form a subgroup of the symmetric group 6n

b). Leta be any element of a group. Then the mag, definied by
®,(b) = abbb™!
defines a homomorphism 6f since
®,(bc) = abca™' = abataca™t = ®,(b)P,(c)



SF2729 - Final Exam 2010-05-26 5

and it is bijective since
B, 0 By-1 (b) = afa 'b(a™) )a! = (aa " )b(aa"t) = b

for any element € G.
The composition of two inner automorphisnds, and®, is given by®,, since

®, 0 Dy(c) = a(b(cb™Ha = (ab)c(ab) ™ = g

for all elements: € GG. Furthermore, as we saw before, the inverse of en inner aipgm
hism®, is ®,-1, which is also an inner arutomorphism. Heriae(G) is a subgroup of
Aut(G).

c). The non-cyclic groups of order four has three elements of orderAs we saw
in part a) the automorphism group is a subgroup of the syniengtoup onG. Since
an automorphism has to send the unit element to the unit eleme have that the
automorphism group is a subgroup of the stabilizer of theelament, which means that
it is isomorphic to a subgroup ¢f;.

Now, write the grougg> asG = {e, a, b, ¢}, wherea, b, c are the elements of order two.

The groupG can be presented by the generatoesmdb with the relationsi? = 1? = e
andab = ba. An automorphism is determined by the images of the genesaidnich in
turn have to be a generating set of the group and have toystitestame relations.

There are six possiblilities of finding an ordered pairs afegyators:

{a,b},{a,c},{b,a},{b,c},{c,a} and{c, b}.
Each of these generator pairs satifsy the same relationts si
a’ =b* = = eandab = ba, be = cb, ac = ca.

Thus we have six different automorphism and hence the autahsm group is isomorp-
hic to Ss.
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PART Il - RINGS
(1) Consider the ring? = Zs X Zy X Z3 X Zs.

(a) Compurte its characteristidhar(R). (2)

(b) Show thatR = Zg, x Zs as rings. (2)

(c) Let R be a commutative ring with unity and lIétand.J be two ideals inR satisfying

I+J=RandINnJ=(0).Showthat?R = R/I x R/J. (2)
SOLUTION

a). Forall(ny, ny,ng,ny) € Zs x 2y X Z3 x Z3 and an integek it is k(ny, ny, n3, ng) = 0
onlyif 3/k,4/k,5/k, whichimplies that the minimum suéhmust be thé.c.m(3,5,4) =
60.

b). The ring homomorphism:

gb 1 — Z5 X Ly X Zg,n — ([TL]5, [TL]4, [TL]5)
is an a surjective ring homomorphism wikter(¢) = 60Z (becausa, 4, 5 are relatively
prime). The fundamental isomorphism theorem for rings ihgplies that

Z/60Z = Z5 X Ly X Zg.
It follows that
(¢,Zd) :ZGO X Z3 HZ5 X Z4 X Z3 X Z3

is also a ring isomorphism.
c). Consider the projection maps; : R — R/I, ¢, : R — R/J. Becausep,, ¢, are
ring homomorphisms the product map:

¢:R— R/Ix R/J ¢(r) = (d1(r), ¢2(r))

is a ring homomorphism, where the rifity I x R/J has the coordinate-wise operations.
The kernel is

Ker(¢) ={r,relandre J} =1nJ=(0).

Moreover becaus&® = [ + J for every(a + 1,0+ J) € R/I x R/J we have that
a = ai; + az wherea; € I,a; € Janda + I = ay + I. Similarly b = b; + b, where
by € I,by € Jandb+j = by +j. Which means that(as +b1) = (a+1,b+ J). showing
that/m(¢) = R/I x R/J. By the fundamental isomorphism theorem we have that

R/Ker(¢) = R=Im(¢) = R/I X R/J.

(2) Consider the polynomial(z) = z* + 222 — 5z — 3 as a polynomial in the polynomial
ringsQ[z] andZs;[z|, and letR = Q[z]/(p(x)) andS = Zs|x]/(p(x)).
(&) Show thatR is a vector space ové) and thatS is a vector space ovét;. What are
the dimensions of these vector spaces? (2)
(b) Determine whetheR and/orS are integral domains or even fields? (2)



SF2729 - Final Exam 2010-05-26 7

(c) Show thatR/ P is a field wheneveR is a PID andP is a prime ideal inR. (2)

SOLUTION

a). R andS are both abelian groups, therefore we have to show that tévey & scalar
multiplication satisfying the necessary properties. Wetds for R, the prove forS' is
similar.

Define the scalar product as:

Q x Qlz]/(p(x)) — Qlz]/(p()) (a, f(z) + (p(2))) — af (z) + (p(x))-
It satisfies the properties:

e (ab)(f(z) + (p(x))) = (ab) f(z) + (p(x)) = (a)(bf (z) + (p(x))).

e (a+b)(f(z)+(p(z))) = (a+b) f(x)+(p(x)) = (a) f(x)+(p(x)))+a) f(x)+(p(z)))-

e a(f(z) +g(z) + (p(z))) = af(z) + ag(z) + (p(z)).

o 1(f(2) + (p(x))) = f(z) + (plx). N |

Notice that every elemertin R (resp. inS) can be divided by and can be written as
f =mp+rwherem € Q andr € R (resp. inS) is the class of a polynomial of degree
at most2. This shows thalS = span([1], [x], [z?]). Moreover|[1], [z], [z?] are linearly
independent ove and thus

b). Anideal in R and S is maximal if and only if prime. Moreover an ideal is prime if
and only if its generator (recall that andS are PID) is irreducible.

One sees immediately thatr) = 2 + 222 — 5z — 3 has the root in Z; and thusS
is neither a field nor an integral domain.

The polynomialp(z) = 2% + 22* — 5z — 3 is going to be irreducible ovep if we
prove thatitis irreducible ove. If p is reducinble it would have at least one simple root
« which should be an integer dividing3. The only possibilities are-3. — 1, 1, 3 which
are not roots. It follows thak is a field.

c). Let I = (a) be a prime ideal and assumie_ J C R. LetJ = (b), thena = bc for
some element € R. Becausd is prime then it i$ € I which implies/ = Jorc € I,
i.e.c = ad and thus (becausk is a domainpc = 1 implying thatJ = R.

(3) Recall that a field extensiah of a field I is called a splitting field off (x) over F' if the
following holds:
(1) f(z) splits as a product of linear factors Inz|.
(z2) If L’ C L is another extension such thatz) splits as a product of linear factors in
L'[z], thenL’ = L.

(@) Show thafQ(7) is a splitting field ofz? — 2z + 2 overQ. (2)
(b) Let F be afield and lef (x) € F[x] be an irreducible polynomial of degreeShow
that F'[x]/(f(x)) is a splitting field off (x) over F' of degree. 2)

(c) Give an example of a field and an irreducible polynomial(z) € F[x] of degree
3 such that’[z]/(p(z)) is not a splitting field forf(x) overF. (2)
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SOLUTION

a). Becauser? — 2z + 2 = (x — 1 +i)(x — 1 — 1) the extensiorQ(i) contains both
roots. Any other algebraic extensiah, containing the two roots would have to contain
the rational numbers and the complex numbgiving Q(:) C L.

b). Leta =2+ (f(z)) € Flz]/(f(x)). ltisev,(f(x)) =0 € Flx]/(f(z)) and thusy is
aroot off. It follows that f (z) = (z — a)(ax — 3) for someu, 5 € F[x]/(f(z)) and thus
both roots must lie irF'[z]/(f(x)). Moreover LetL be any other extension containing
Becausef is irreducible ovef’ anda ¢ F' the degreéQ(«) : Q] = 2. Moreover because
Q(«a) C Flz]/(f(x)) and they are both of degreat must beQ(«) = F[z]/(f(z)). But
Q(«) C Land thusF[z]/(f(z)) C L.

c). ConsiderF = Q andp(x) = 2 — 2. The extensio[z]/z* — 2 = Q(+/2), because
23 — 2 is the minimal polynomial of/2 overQ. The other roots o are&+/2 and&2+/2
where¢ € C is a third root of unity. It follows that the splitting field fof () over F' is

Q(V2,€) # Q(V2) = Q[z]/2* - 2.




