
 KTH Teknikvetenskap

 SF2729 GROUPS AND RINGS

 SF2729 GROUPS AND RINGS

 LECTURE NOTES

 LECTURE NOTES

 2010-03-30

 2010-03-30}

SANDRA DI ROCCO

Contents

2. Polynomials 1
2.1. Last time 1
2.2. The field of fractions 2
2.3. One more example: the ring of polynomials 3
2.4. evaluation at subfields 4
2.5. factorization 5
Recommended excercises 6
IV-21 Fields of quotients and Integral domains 6
IV-22 Rings of Polynomials 6
IV-23 Factorization of polynomials 6

2. Polynomials

2.1. Last time. Last time we used the fact that he number of nonzero elements in \mathbb{Z}_{n} that are not zero divisors are exactly the number of invertible elements. We have already observed that invertible elements cannot be zero divisors. It is in fact true that:

Theorem 2.1. Let R be a FINITE ring. Then every non zero element which is not a zero divisor is invertible

Proof. Let $0 \neq r \in R$, notice that the multiplication morphism $r: R \rightarrow R$ is a group homomorphism of abelian group, because R is a ring. This morphism is injective if r is not a zero divisor. In this case, because R is finite it is an isomorphism and thus there is r_{1} such that $r \cdot r_{1}=1_{R}$.

Observe that the same is true if R is a vector space over a field (ex $M_{2}(\mathbb{R})$). Remember that we have observed that every Field is an integral domain. From what proven above it follows that every finite integral domain is a field.
2.2. The field of fractions. There are many integral domains which are not fields (\mathbb{Z} for example). The following constraction gives a way of building a field $Q(D)$ from an integral domain D. A field that contains R and is "generated by " D in the sense that every elemnt of $Q(D)$ is of the form x / y for some element $x, y \in D$.

Consider the set:

$$
\Omega=\{(a, r) \in D \times D: r \neq 0\}
$$

one which we define the following relation:

$$
(a, r) \sim(b, s) \Leftrightarrow a \cdot s=b \cdot r .
$$

This relation defines an equivalence relation, in fact:

- It is reflexive: $(a, r) \sim(a, r) \Leftrightarrow a \cdot r=a \cdot r$.
- It is symmetric: if $(a, r) \sim(b, s)$ i.e. $a \cdot s=b \cdot r$ then $b \cdot r=a \cdot s$.i.e. $(b, s) \sim(a, r)$.
- It is transitive: if $(a, r) \sim(b, s)$ and $(b, s) \sim(c, t)$ i.e. $a \cdot s=b \cdot r$ and $b \cdot t=c \cdot s$, then, because the multiplication is commutative,

$$
a \cdot t \cdot s=a \cdot s \cdot t=b \cdot r \cdot t=r \cdot b \cdot t=r \cdot c \cdot s=c \cdot r \cdot s
$$

which implies that $(a \cdot t-c \cdot r) \cdot s=0$ and thus $a \cdot t-c \cdot r$ since $s \neq 0$.
Let $Q(D)$ the set of equivalence classes and let $\frac{a}{r}$ denote the class $[(a, r)]$. We will now define two binary operations on $Q(D)$.

$$
\frac{a}{r}+\frac{b}{s}=\frac{a \cdot s+b \cdot r}{r \cdot s}, \frac{a}{r} \cdot \frac{b}{s}=\frac{a \cdot b}{r \cdot s}
$$

Note that $r \cdot s \neq 0$ because D is a domain.
In order to make sure that this operations are well defined we have to show that they do not depend on the class representative. Let

$$
\frac{a}{r}=\frac{a^{\prime}}{r^{\prime}} \text { and } \frac{b}{s}=\frac{b^{\prime}}{s^{\prime}} .
$$

This means that $a \cdot r^{\prime}=a^{\prime} \cdot r$ and $b \cdot s^{\prime}=b^{\prime} \cdot s$. It follows that:
$\left(a^{\prime} \cdot s^{\prime}+b^{\prime} \cdot r^{\prime}\right) \cdot r \cdot s=a^{\prime} \cdot s \cdot r \cdot s^{\prime}+b^{\prime} \cdot r^{\prime} \cdot r \cdot s=\left(a^{\prime} \cdot r\right) s^{\prime} \cdot s+\left(b^{\prime} \cdot s\right) r^{\prime} \cdot r=a \cdot r^{\prime} \cdot s^{\prime} \cdot s+b \cdot s^{\prime} \cdot r^{\prime} \cdot r=(a \cdot s+b \cdot r) \cdot r^{\prime} \cdot s^{\prime}$, which implies that

$$
\frac{a^{\prime} \cdot s^{\prime}+b^{\prime} \cdot r^{\prime}}{r^{\prime} \cdot s}=\frac{a \cdot s+b \cdot r}{r \cdot s}
$$

Similarly for the multiplication.
It is straight forward to see (EXERCISE) that with this two operations $Q(D)$ is a commutative ring, where $0=[(0,1)]=\frac{0}{1}, 1=[(1,1)]$.

Notice that any element $\frac{a}{b} \neq 0$, i.e. where $a \neq 0$, has $\frac{b}{a}$ as multiplicative inverse. This proves that $Q(D)$ is a field.
[EXERCISE] Show that $S=\{[(a, 1)], a \in D\} \subset Q(D)$ is a subring and that the map $i: S \rightarrow D$, assigning $i([a, 1])=a$, is a ring-isomorphism.
Example 2.2. $\quad Q(\mathbb{Z})=\mathbb{Q}$.

- $Q(F)=F$ if F is a field. [EXERCISE]

We can conclude that the field $Q(D)$ contains D as a subring (subdomain). The following theorem shows that such a field is unique and it is the minimal such.

Theorem 2.3. Let D be an integral domain and let F be a field containing D. Then there exists $\phi: Q(D) \rightarrow F$ that gives an isomorphism of $Q(D)$ with a subfield of F and such that $\phi([a, 1])=$ a for all $a \in D$.
Proof. We start defining the map with $\phi([a, 1])=\phi(a)=a$, i.e. $\left.\phi\right|_{D}=i d_{D}$, and then with $\phi([a, b])=[\phi(a), \phi(b)]_{F}$. Notice that since $b \neq 0$, then it is $\phi(b) \neq 0$ and that if $[a, b]=\left[a^{\prime}, b^{\prime}\right]$, i.e. $a b^{\prime}=a^{\prime} b$ then $\phi\left(a b^{\prime}\right)=\phi(a) \phi\left(b^{\prime}\right)=\phi\left(a^{\prime} b\right)=\phi\left(a^{\prime}\right) \phi(b)$ which implies $[\phi(a), \phi(b)]_{F}=$ $\left[\phi\left(a^{\prime}\right), \phi\left(b^{\prime}\right)\right]_{F}$. The morphism is then well defined.

$$
\begin{gathered}
\phi\left(\frac{a}{r}+\frac{b}{s}\right)=\phi\left(\frac{a s+b r}{r s}\right)=[\phi(a s+b r), \phi(r s)]_{F}= \\
=[\phi(a) \phi(r)+\phi(b) \phi(r), \phi(r) \phi(s)]_{F}=[\phi(a), \phi(r)]_{F}+[\phi(b), \phi(s)]_{F}=\phi\left(\frac{a}{r}\right)+\phi\left(\frac{b}{s}\right) .
\end{gathered}
$$

Similarly with the multiplication. This shows that ϕ is a ring-homomorphism. To see that is is one-to-one note that $\phi\left(\frac{a}{r}\right)=\phi\left(\frac{b}{s}\right)$ if and only if $[\phi(a), \phi(r)]=[\phi(b), \phi(s)]$, i.e. $\phi(a) \phi(s)=$ $\phi(a s)=\phi(b) \phi(r)=\phi(b r)$ which implies that $\frac{a}{r}=\frac{b}{s}$ since ϕ is the identity on D.

So $Q(D)$ can be thought as the "smallest" field containing D.

2.3. One more example: the ring of polynomials.

Definition 2.4. Lt R be a ring. A polynomial in the variable x with coefficients in R is an expression of the form:

$$
p(x): a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

where $a_{1} \in R$. Equivalently $p(x)=\sum_{0}^{\infty} a_{i} x^{i}$, where $a_{i}=0$ for all but a finite number of i. This means that there is a positive integer n such that $a_{i}=0$ for all $i>n$.

We say that the $a_{i} \mathrm{~s}$ are the coefficients of p.
Two polynomials $\sum a_{i} x^{i}, \sum b_{i} x^{i}$ are equal if nd only id $a_{i}=b_{i}$ for all i.
The degree of $0 \neq p(x)=\sum a_{i} x^{i}$ is $\operatorname{deg}(p(x))=n$ if n is the largest integer such that $a_{n} \neq 0_{R}$. Notice that the degree is not defined for the trivial polynomial, i.e. if $a_{i}=0$ for all i.

We will denote the set of polynomials in x and coefficients in R with $R[x]$. We can define two binary operations:

$$
\begin{gathered}
\sum a_{i} x^{i}+\sum b_{i} x^{i}=\sum\left(a_{i}+b_{i}\right) x^{i} \\
\sum_{0}^{\infty} a_{i} x^{i} \cdot \sum_{0}^{\infty} b_{i} x^{i}=\sum_{k=0}^{\infty}\left(\sum_{i, j i+j=k} a_{i} b_{j}\right) x^{k}
\end{gathered}
$$

The trivial polynomial is the additive unity and the polynomial 1_{R} is the multiplicative unity.
Remark 2.5. - One sees that $R[x]$ is ring, with unity if R has a multiplicative unity and commutative if and only if R is commutative.

- Moreover $R \subset R[x]$ is a subring and $R[x]$ is an integral domain if R is an integral domain. In this case it holds that:

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

Example 2.6. $\mathbb{R}[x]$ and $\mathbb{C}[x]$ are integral domains.
Notice that one can define inductively $R\left[x_{1}, \ldots, x_{m}\right]=R\left[x_{1}, \ldots, x_{m-1}\right]\left[x_{m}\right]$.

2.4. evaluation at subfields.

Definition 2.7. Let $(F,+, \cdot)$ be a field, $E \subset F$ is a subfield if $(E,+, \cdot)$ is a field.
For every $a \in F$, the evaluation morphism is defined as:

$$
e v_{a}: F[x] \rightarrow F, e v_{a}\left(\sum a_{i} x^{i}\right)=\sum a_{i} a^{i}
$$

It is a ring homomorphism:

$$
\begin{gathered}
e v_{a}\left(\sum_{0}^{\infty} a_{i} x^{i} \cdot \sum_{0}^{\infty} b_{i} x^{i}\right)=e v_{a}\left(\sum_{k=0}^{\infty}\left(\sum_{i, j} a_{i+j=k} b_{j}\right) x^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{i, j i+j=k} a_{i} b_{j}\right) a^{k}= \\
=\sum_{0}^{\infty} a_{i} a^{i} \cdot \sum_{0}^{\infty} b_{i} a^{i}=e v_{a}\left(\sum_{0}^{\infty} a_{i} x^{i}\right) \cdot e v_{a}\left(\sum_{0}^{\infty} b_{i} x^{i}\right) .
\end{gathered}
$$

Let E be a subfield, then for every $e \in F$ then one can define:

$$
e v_{e}: E[x] \rightarrow F
$$

which is a ring-homomorphism such that $e v_{a}(x)=a$ and $e v_{a}(b)=b$ for all $b \in E$.
This gives a way of defining what we mean by a "zero" of a polynomial:
Definition 2.8. Let E be a subfield of F and let $\alpha \in F$. We say that α is a zero (in F) of a polynomial $p(x) \in E[x]$ if $e v_{\alpha}(f(x))=0_{F}$.

Example 2.9. We all know that the polynomial $p(x)=x^{2}+1 \in \mathbb{R}[x]$ has no zeroes in \mathbb{R} but it does in \mathbb{C}. In fact if

$$
e v_{i}: \mathbb{R}[x] \rightarrow \mathbb{C}
$$

then $e v_{i}\left(x^{2}+1\right)=i^{2}+1=0$. The same happens for $-i$.
Example 2.10. Let K be a field. the field of fraction of $K[x]$ is usually denoted by

$$
K(x)=\left\{\frac{f(x)}{g(x)}, g(x) \neq 0\right\}
$$

2.5. factorization. Observe that if a plynomial $p(x) \in E[x]$ can be written as $p(x)=f(x) g(x)$, then

$$
e v_{\alpha}(p(x))=e v_{\alpha}(f(x)) e v_{\alpha}(g(x))
$$

and thus α is a zero of p if and only if it is a zero of f or g. This is one of the reasons why it is convenient to be able to factor polynomials.

Theorem 2.11 (division algorithm). Let F be a filed and let $f(x), g(x) \in F[x]$, with $\operatorname{deg}(g(x))>$ 0 . Then there are unique polynomials $q(x), r(x) \in F[x]$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

where $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$. The prove is in the book pg. 210 .
In practice one performs long divisions of polynomials as we are used to (when $F=\mathbb{R}$.)
Theorem 2.12. A non zero polynomial $f(x) \in F[x]$ with $\operatorname{deg}(f(x))=n$ has at most n zeroes in the field F.

Proof. Observe that an element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $f(x)=(x-a) g(x)$. Assume that $a \in F$ is a zero of $f(x)$. In fact by the factorization theorem we can factor:

$$
f(x)=(x-a) g(x)+r(x), \operatorname{deg}(r(x))<1
$$

It follows that $0=f(a)=0+r(x)$ and thus $f(x)=(x-a) g(x)$, because the evaluation morphism is a ring-homomorphism.

Let $a_{1}, \ldots a_{s}$ be the zeroes of f, then

$$
f(x)=\left(x-a_{1}\right) \ldots\left(x-a_{r}\right) g(x)
$$

For the degree reasons and because $F[x]$ is an integral domain it is $r \leq n$.
EXERCISE Show that any finite subgroup of the group F^{*} is cyclic for a finite field F.
Definition 2.13. A non constant polynomial $f(x) \in F[x]$ is irreducible over F if it cannot be factored as a product of two polynomials of lower degree:

$$
f(x)=g(x) h(x),
$$

where $g(x), h(x) \in F[x]$.
Example 2.14. $x^{2}+1$ is irreducible over \mathbb{R} and it is reducible over \mathbb{C}.
There is a special relation between \mathbb{Z} and \mathbb{Q} :
Theorem 2.15. A polynomial $f(x) \in \mathbb{Z}[x]$ factors as $f(x)=g(x) h(x)$ in $\mathbb{Q}[x]$, with $\operatorname{deg}(f)=$ $r, \operatorname{deg}(g)=s$ if and only if it factors as $f(x)=g^{\prime}(x) h^{\prime}(x)$ in $\mathbb{Z}[x]$, with $\operatorname{deg}\left(f^{\prime}\right)=r, \operatorname{deg}\left(g^{\prime}\right)=$ s.

A consequence of this is the so called Eisenstein Criterion:
Theorem 2.16. Let p be a prime and let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, with $a_{n} \not \equiv_{p} 0$ and $a_{i} \equiv_{p} 0$ for all $i<n, a_{0} \not \equiv_{p^{2}} 0$. Then $f(x)$ is irreducible over \mathbb{Q}.

Proof. It is a direct consequence of the previous theorem that if a polynomial $f(x) \in \mathbb{Z}[x]$ with $a_{0} \neq 0$ has a zero in \mathbb{Q} then it has a zero in \mathbb{Z} that must divide a_{0}.

Assume that $f(x)=\left(b_{r} x^{r}+\ldots b_{0}\right) \cdot\left(k_{s} x^{s}+\ldots k_{0}\right)$, then because $b_{0} k_{0}=a_{0} \not \equiv_{p^{2}} 0, b_{0}, k_{0}$ cannot be congruent modulo p at the same time, say $b_{0} \not \equiv_{p} 0$ or $k_{0} \equiv_{p} 0$. Moreover $a_{n}=b_{r} k_{s} \not \equiv_{p} 0$ implies $b_{r}, k_{s} \not \equiv_{p} 0$. Let now t be the smallest value so that $k_{t} \not \equiv_{p} 0$. This implies that $a_{t} \not \equiv_{p} 0$ and thus $t=n$ which is a contraddiction.

EXERCISE. Use induction to prove that every polynomial in $\mathbb{Z}[x]$ factors in a product of irreducible polynomials, uniquely determined except for the order and up to non zero constants.

Recommended excercises

IV-21 Fields of quotients and Integral domains. 12,14,16.
IV-22 Rings of Polynomials. 24,25,26
IV-23 Factorization of polynomials. 9-11,18-21,26,34,35,37.

