

KTH Teknikvetenskap

SF2729 GROUPS AND RINGS LECTURE NOTES 2010-03-30

SANDRA DI ROCCO

CONTENTS

•		4
2.	Polynomials	1
2.1.	Last time	1
2.2.	The field of fractions	2
2.3.	One more example: the ring of polynomials	3
2.4.	evaluation at subfields	4
2.5.	factorization	5
Recommended excercises		6
IV-2	21 Fields of quotients and Integral domains	6
IV-2	22 Rings of Polynomials	6
IV-2	23 Factorization of polynomials	6

2. POLYNOMIALS

2.1. Last time. Last time we used the fact that he number of nonzero elements in \mathbb{Z}_n that are not zero divisors are exactly the number of invertible elements. We have already observed that invertible elements cannot be zero divisors. It is in fact true that:

Theorem 2.1. Let *R* be a FINITE ring. Then every non zero element which is not a zero divisor is invertible

Proof. Let $0 \neq r \in R$, notice that the multiplication morphism $r \cdot : R \to R$ is a group homomorphism of abelian group, because R is a ring. This morphism is injective if r is not a zero divisor. In this case, because R is finite it is an isomorphism and thus there is r_1 such that $r \cdot r_1 = 1_R$. \Box

Observe that the same is true if R is a vector space over a field (ex $M_2(\mathbb{R})$). Remember that we have observed that every Field is an integral domain. From what proven above it follows that every finite integral domain is a field.

SANDRA DI ROCCO

2.2. The field of fractions. There are many integral domains which are not fields (\mathbb{Z} for example). The following construction gives a way of building a field Q(D) from an integral domain D. A field that contains R and is "generated by "D in the sense that every elemnt of Q(D) is of the form x/y for some element $x, y \in D$.

Consider the set:

$$\Omega = \{ (a, r) \in D \times D : r \neq 0 \},\$$

one which we define the following relation:

$$(a,r) \sim (b,s) \Leftrightarrow a \cdot s = b \cdot r.$$

This relation defines an equivalence relation, in fact:

- It is reflexive: $(a, r) \sim (a, r) \Leftrightarrow a \cdot r = a \cdot r$.
- It is symmetric: if $(a, r) \sim (b, s)$ i.e. $a \cdot s = b \cdot r$ then $b \cdot r = a \cdot s$. i.e. $(b, s) \sim (a, r)$.
- It is transitive: if $(a, r) \sim (b, s)$ and $(b, s) \sim (c, t)$ i.e. $a \cdot s = b \cdot r$ and $b \cdot t = c \cdot s$, then, because the multiplication is commutative,

$$a \cdot t \cdot s = a \cdot s \cdot t = b \cdot r \cdot t = r \cdot b \cdot t = r \cdot c \cdot s = c \cdot r \cdot s$$

which implies that $(a \cdot t - c \cdot r) \cdot s = 0$ and thus $a \cdot t - c \cdot r$ since $s \neq 0$.

Let Q(D) the set of equivalence classes and let $\frac{a}{r}$ denote the class [(a, r)]. We will now define two binary operations on Q(D).

$$\frac{a}{r} + \frac{b}{s} = \frac{a \cdot s + b \cdot r}{r \cdot s}, \frac{a}{r} \cdot \frac{b}{s} = \frac{a \cdot b}{r \cdot s}$$

Note that $r \cdot s \neq 0$ because D is a domain.

In order to make sure that this operations are well defined we have to show that they do not depend on the class representative. Let

$$\frac{a}{r} = \frac{a'}{r'}$$
 and $\frac{b}{s} = \frac{b'}{s'}$.

This means that $a \cdot r' = a' \cdot r$ and $b \cdot s' = b' \cdot s$. It follows that:

 $(a' \cdot s' + b' \cdot r') \cdot r \cdot s = a' \cdot s \cdot r \cdot s' + b' \cdot r' \cdot r \cdot s = (a' \cdot r) s' \cdot s + (b' \cdot s) r' \cdot r = a \cdot r' \cdot s' \cdot s + b \cdot s' \cdot r' \cdot r = (a \cdot s + b \cdot r) \cdot r' \cdot s',$ which implies that

$$\frac{a' \cdot s' + b' \cdot r'}{r' \cdot s} = \frac{a \cdot s + b \cdot r}{r \cdot s}$$

Similarly for the multiplication.

It is straight forward to see (EXERCISE) that with this two operations Q(D) is a commutative

ring, where $0 = [(0,1)] = \frac{0}{1}, 1 = [(1,1)]$. Notice that any element $\frac{a}{b} \neq 0$, i.e. where $a \neq 0$, has $\frac{b}{a}$ as multiplicative inverse. This proves that Q(D) is a field.

[EXERCISE] Show that $S = \{[(a, 1)], a \in D\} \subset Q(D)$ is a subring and that the map $i : S \to D$, assigning i([a, 1]) = a, is a ring-isomorphism.

Example 2.2. • $Q(\mathbb{Z}) = \mathbb{Q}$. • Q(F) = F if F is a field. [EXERCISE] We can conclude that the field Q(D) contains D as a subring (subdomain). The following theorem shows that such a field is *unique* and it is the *minimal such*.

Theorem 2.3. Let D be an integral domain and let F be a field containing D. Then there exists $\phi : Q(D) \to F$ that gives an isomorphism of Q(D) with a subfield of F and such that $\phi([a, 1]) = a$ for all $a \in D$.

Proof. We start defining the map with $\phi([a, 1]) = \phi(a) = a$, i.e. $\phi|_D = id_D$, and then with $\phi([a, b]) = [\phi(a), \phi(b)]_F$. Notice that since $b \neq 0$, then it is $\phi(b) \neq 0$ and that if [a, b] = [a', b'], i.e. ab' = a'b then $\phi(ab') = \phi(a)\phi(b') = \phi(a'b) = \phi(a')\phi(b)$ which implies $[\phi(a), \phi(b)]_F = [\phi(a'), \phi(b')]_F$. The morphism is then well defined.

$$\phi(\frac{a}{r} + \frac{b}{s}) = \phi(\frac{as + br}{rs}) = [\phi(as + br), \phi(rs)]_F =$$
$$= [\phi(a)\phi(r) + \phi(b)\phi(r), \phi(r)\phi(s)]_F = [\phi(a), \phi(r)]_F + [\phi(b), \phi(s)]_F = \phi(\frac{a}{r}) + \phi(\frac{b}{s}).$$

Similarly with the multiplication. This shows that ϕ is a ring-homomorphism. To see that is is one-to-one note that $\phi(\frac{a}{r}) = \phi(\frac{b}{s})$ if and only if $[\phi(a), \phi(r)] = [\phi(b), \phi(s)]$, i.e. $\phi(a)\phi(s) = \phi(as) = \phi(b)\phi(r) = \phi(br)$ which implies that $\frac{a}{r} = \frac{b}{s}$ since ϕ is the identity on D.

So Q(D) can be thought as the "smallest" field containing D.

2.3. One more example: the ring of polynomials.

=

Definition 2.4. Lt R be a ring. A polynomial in the variable x with coefficients in R is an expression of the form:

$$p(x): a_0 + a_1 x + \ldots + a_n x^n$$

where $a_1 \in R$. Equivalently $p(x) = \sum_{i=0}^{\infty} a_i x^i$, where $a_i = 0$ for all but a finite number of *i*. This means that there is a positive integer *n* such that $a_i = 0$ for all i > n.

We say that the a_i s are the coefficients of p.

Two polynomials $\sum a_i x^i$, $\sum b_i x^i$ are equal if nd only id $a_i = b_i$ for all i.

The degree of $0 \neq p(x) = \sum a_i x^i$ is $\deg(p(x)) = n$ if n is the largest integer such that $a_n \neq 0_R$. Notice that the degree is not defined for the trivial polynomial, i.e. if $a_i = 0$ for all i.

We will denote the set of polynomials in x and coefficients in R with R[x]. We can define two binary operations:

$$\sum_{i=1}^{\infty} a_i x^i + \sum_{i=1}^{\infty} b_i x^i = \sum_{k=0}^{\infty} (a_i + b_i) x^i$$
$$\sum_{i=1}^{\infty} a_i x^i \cdot \sum_{i=1}^{\infty} b_i x^i = \sum_{k=0}^{\infty} (\sum_{i,j \ i+j=k}^{\infty} a_i b_j) x^k$$

The trivial polynomial is the additive unity and the polynomial 1_R is the multiplicative unity.

Remark 2.5. • One sees that R[x] is ring, with unity if R has a multiplicative unity and commutative if and only if R is commutative.

SANDRA DI ROCCO

 Moreover R ⊂ R[x] is a subring and R[x] is an integral domain if R is an integral domain. In this case it holds that:

$$\deg(f \cdot g) = \deg(f) + \deg(g).$$

Example 2.6. $\mathbb{R}[x]$ and $\mathbb{C}[x]$ are integral domains.

Notice that one can define inductively $R[x_1, \ldots, x_m] = R[x_1, \ldots, x_{m-1}][x_m]$.

2.4. evaluation at subfields.

Definition 2.7. Let $(F, +, \cdot)$ be a field, $E \subset F$ is a *subfield* if $(E, +, \cdot)$ is a field.

For every $a \in F$, the *evaluation morphism* is defined as:

$$ev_a: F[x] \to F, ev_a(\sum a_i x^i) = \sum a_i a^i.$$

It is a ring homomorphism:

$$ev_{a}(\sum_{0}^{\infty}a_{i}x^{i}\cdot\sum_{0}^{\infty}b_{i}x^{i}) = ev_{a}(\sum_{k=0}^{\infty}(\sum_{i,j\,i+j=k}a_{i}b_{j})x^{k}) = \sum_{k=0}^{\infty}(\sum_{i,j\,i+j=k}a_{i}b_{j})a^{k} =$$
$$=\sum_{0}^{\infty}a_{i}a^{i}\cdot\sum_{0}^{\infty}b_{i}a^{i} = ev_{a}(\sum_{0}^{\infty}a_{i}x^{i})\cdot ev_{a}(\sum_{0}^{\infty}b_{i}x^{i}).$$

Let *E* be a subfield, then for every $e \in F$ then one can define:

$$ev_e: E[x] \to F$$

which is a ring-homomorphism such that $ev_a(x) = a$ and $ev_a(b) = b$ for all $b \in E$.

This gives a way of defining what we mean by a "zero" of a polynomial:

Definition 2.8. Let *E* be a subfield of *F* and let $\alpha \in F$. We say that α is a zero (in *F*) of a polynomial $p(x) \in E[x]$ if $ev_{\alpha}(f(x)) = 0_F$.

Example 2.9. We all know that the polynomial $p(x) = x^2 + 1 \in \mathbb{R}[x]$ has no zeroes in \mathbb{R} but it does in \mathbb{C} . In fact if

$$ev_i: \mathbb{R}[x] \to \mathbb{C},$$

then $ev_i(x^2+1) = i^2 + 1 = 0$. The same happens for -i.

Example 2.10. Let K be a field. the field of fraction of K[x] is usually denoted by

$$K(x) = \{\frac{f(x)}{g(x)}, g(x) \neq 0\}.$$

2010-03-30

2.5. factorization. Observe that if a plynomial $p(x) \in E[x]$ can be written as p(x) = f(x)g(x), then

$$ev_{\alpha}(p(x)) = ev_{\alpha}(f(x))ev_{\alpha}(g(x))$$

and thus α is a zero of p if and only if it is a zero of f or g. This is one of the reasons why it is convenient to be able to factor polynomials.

Theorem 2.11 (division algorithm). Let *F* be a filed and let $f(x), g(x) \in F[x]$, with $\deg(g(x)) > 0$. Then there are unique polynomials $q(x), r(x) \in F[x]$ such that

$$f(x) = g(x)q(x) + r(x),$$

where r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. The prove is in the book pg. 210.

In practice one performs long divisions of polynomials as we are used to (when $F = \mathbb{R}$.)

Theorem 2.12. A non zero polynomial $f(x) \in F[x]$ with $\deg(f(x)) = n$ has at most n zeroes in the field F.

Proof. Observe that an element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if f(x) = (x-a)g(x). Assume that $a \in F$ is a zero of f(x). In fact by the factorization theorem we can factor:

$$f(x) = (x - a)g(x) + r(x), \deg(r(x)) < 1.$$

It follows that 0 = f(a) = 0 + r(x) and thus f(x) = (x - a)g(x), because the evaluation morphism is a ring-homomorphism.

Let $a_1, \ldots a_s$ be the zeroes of f, then

$$f(x) = (x - a_1) \dots (x - a_r)g(x)$$

For the degree reasons and because F[x] is an integral domain it is $r \leq n$.

EXERCISE Show that any finite subgroup of the group F^* is cyclic for a finite field F.

Definition 2.13. A non constant polynomial $f(x) \in F[x]$ is irreducible over F if it cannot be factored as a product of two polynomials of lower degree:

$$f(x) = g(x)h(x),$$

where $g(x), h(x) \in F[x]$.

Example 2.14. $x^2 + 1$ is irreducible over \mathbb{R} and it is reducible over \mathbb{C} .

There is a special relation between \mathbb{Z} and \mathbb{Q} :

Theorem 2.15. A polynomial $f(x) \in \mathbb{Z}[x]$ factors as f(x) = g(x)h(x) in $\mathbb{Q}[x]$, with $\deg(f) = r$, $\deg(g) = s$ if and only if it factors as f(x) = g'(x)h'(x) in $\mathbb{Z}[x]$, with $\deg(f') = r$, $\deg(g') = s$.

A consequence of this is the so called *Eisenstein Criterion*:

Theorem 2.16. Let p be a prime and let $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$, with $a_n \not\equiv_p 0$ and $a_i \equiv_p 0$ for all $i < n, a_0 \not\equiv_{p^2} 0$. Then f(x) is irreducible over \mathbb{Q} .

SANDRA DI ROCCO

Proof. It is a direct consequence of the previous theorem that if a polynomial $f(x) \in \mathbb{Z}[x]$ with $a_0 \neq 0$ has a zero in \mathbb{Q} then it has a zero in \mathbb{Z} that must divide a_0 .

Assume that $f(x) = (b_r x^r + ... b_0) \cdot (k_s x^s + ... k_0)$, then because $b_0 k_0 = a_0 \not\equiv_{p^2} 0$, b_0 , k_0 cannot be congruent modulo p at the same time, say $b_0 \not\equiv_p 0$ or $k_0 \equiv_p 0$. Moreover $a_n = b_r k_s \not\equiv_p 0$ implies b_r , $k_s \not\equiv_p 0$. Let now t be the smallest value so that $k_t \not\equiv_p 0$. This implies that $a_t \not\equiv_p 0$ and thus t = n which is a contraddiction.

EXERCISE. Use induction to prove that every polynomial in $\mathbb{Z}[x]$ factors in a product of irreducible polynomials, uniquely determined except for the order and up to non zero constants.

RECOMMENDED EXCERCISES

IV-21 Fields of quotients and Integral domains. 12,14,16.

IV-22 Rings of Polynomials. 24,25,26

IV-23 Factorization of polynomials. 9-11,18-21,26,34,35,37.