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2. POLYNOMIALS

2.1. Last time. Last time we used the fact that he number of nonzero elements in Zn that are
not zero divisors are exactly the number of invertible elements. We have already observed that
invertible elements cannot be zero divisors. It is in fact true that:

Theorem 2.1. Let R be a FINITE ring. Then every non zero element which is not a zero divisor
is invertible

Proof. Let 0 6= r ∈ R, notice that the multiplication morphism r· : R→ R is a group homomor-
phism of abelian group, because R is a ring. This morphism is injective if r is not a zero divisor.
In this case, becauseR is finite it is an isomorphism and thus there is r1 such that r ·r1 = 1R. �

Observe that the same is true if R is a vector space over a field (ex M2(R)). Remember that
we have observed that every Field is an integral domain. From what proven above it follows that
every finite integral domain is a field.
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2.2. The field of fractions. There are many integral domains which are not fields (Z for exam-
ple). The following constraction gives a way of building a field Q(D) from an integral domain
D. A field that contains R and is ”generated by ”D in the sense that every elemnt of Q(D) is of
the form x/y for some element x, y ∈ D.

Consider the set:
Ω = {(a, r) ∈ D ×D : r 6= 0},

one which we define the following relation:

(a, r) ∼ (b, s)⇔ a · s = b · r.
This relation defines an equivalence relation, in fact:
• It is reflexive: (a, r) ∼ (a, r)⇔ a · r = a · r.
• It is symmetric: if (a, r) ∼ (b, s) i.e. a · s = b · r then b · r = a · s. i.e. (b, s) ∼ (a, r).
• It is transitive: if (a, r) ∼ (b, s) and (b, s) ∼ (c, t) i.e. a · s = b · r and b · t = c · s, then,

because the multiplication is commutative,

a · t · s = a · s · t = b · r · t = r · b · t = r · c · s = c · r · s
which implies that (a · t− c · r) · s = 0 and thus a · t− c · r since s 6= 0.

Let Q(D) the set of equivalence classes and let a
r

denote the class [(a, r)]. We will now define
two binary operations on Q(D).

a

r
+
b

s
=
a · s+ b · r

r · s
,
a

r
· b
s

=
a · b
r · s

Note that r · s 6= 0 because D is a domain.
In order to make sure that this operations are well defined we have to show that they do not

depend on the class representative. Let

a

r
=
a′

r′
and

b

s
=
b′

s′
.

This means that a · r′ = a′ · r and b · s′ = b′ · s. It follows that:

(a′·s′+b′·r′)·r·s = a′·s·r·s′+b′·r′·r·s = (a′·r)s′·s+(b′·s)r′·r = a·r′·s′·s+b·s′·r′·r = (a·s+b·r)·r′·s′,
which implies that

a′ · s′ + b′ · r′

r′ · s
=
a · s+ b · r

r · s
.

Similarly for the multiplication.
It is straight forward to see (EXERCISE) that with this two operations Q(D) is a commutative

ring, where 0 = [(0, 1)] = 0
1
, 1 = [(1, 1)].

Notice that any element a
b
6= 0, i.e. where a 6= 0, has b

a
as multiplicative inverse. This proves

that Q(D) is a field.
[EXERCISE] Show that S = {[(a, 1)], a ∈ D} ⊂ Q(D) is a subring and that the map i : S → D,
assigning i([a, 1]) = a, is a ring-isomorphism.

Example 2.2. • Q(Z) = Q.
• Q(F ) = F if F is a field. [EXERCISE]
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We can conclude that the field Q(D) contains D as a subring (subdomain). The following
theorem shows that such a field is unique and it is the minimal such.

Theorem 2.3. Let D be an integral domain and let F be a field containing D. Then there exists
φ : Q(D)→ F that gives an isomorphism ofQ(D) with a subfield of F and such that φ([a, 1]) =
a for all a ∈ D.

Proof. We start defining the map with φ([a, 1]) = φ(a) = a, i.e. φ|D = idD, and then with
φ([a, b]) = [φ(a), φ(b)]F . Notice that since b 6= 0, then it is φ(b) 6= 0 and that if [a, b] = [a′, b′],
i.e. ab′ = a′b then φ(ab′) = φ(a)φ(b′) = φ(a′b) = φ(a′)φ(b) which implies [φ(a), φ(b)]F =
[φ(a′), φ(b′)]F . The morphism is then well defined.

φ(
a

r
+
b

s
) = φ(

as+ br

rs
) = [φ(as+ br), φ(rs)]F =

= [φ(a)φ(r) + φ(b)φ(r), φ(r)φ(s)]F = [φ(a), φ(r)]F + [φ(b), φ(s)]F = φ(
a

r
) + φ(

b

s
).

Similarly with the multiplication. This shows that φ is a ring-homomorphism. To see that is is
one-to-one note that φ(a

r
) = φ( b

s
) if and only if [φ(a), φ(r)] = [φ(b), φ(s)], i.e. φ(a)φ(s) =

φ(as) = φ(b)φ(r) = φ(br) which implies that a
r

= b
s

since φ is the identity on D. �

So Q(D) can be thought as the ”smallest” field containing D.

2.3. One more example: the ring of polynomials.

Definition 2.4. Lt R be a ring. A polynomial in the variable x with coefficients in R is an
expression of the form:

p(x) : a0 + a1x+ . . .+ anx
n,

where a1 ∈ R. Equivalently p(x) =
∑∞

0 aix
i, where ai = 0 for all but a finite number of i. This

means that there is a positive integer n such that ai = 0 for all i > n.
We say that the ais are the coefficients of p.
Two polynomials

∑
aix

i,
∑
bix

i are equal if nd only id ai = bi for all i.
The degree of 0 6= p(x) =

∑
aix

i is deg(p(x)) = n if n is the largest integer such that
an 6= 0R. Notice that the degree is not defined for the trivial polynomial, i.e. if ai = 0 for all i.

We will denote the set of polynomials in x and coefficients in R with R[x]. We can define two
binary operations: ∑

aix
i +

∑
bix

i =
∑

(ai + bi)x
i

∞∑
0

aix
i ·
∞∑
0

bix
i =

∞∑
k=0

(
∑

i,j i+j=k

aibj)x
k

The trivial polynomial is the additive unity and the polynomial 1R is the multiplicative unity.

Remark 2.5. • One sees that R[x] is ring, with unity if R has a multiplicative unity and
commutative if and only if R is commutative.



4 SANDRA DI ROCCO

• MoreoverR ⊂ R[x] is a subring andR[x] is an integral domain ifR is an integral domain.
In this case it holds that:

deg(f · g) = deg(f) + deg(g).

Example 2.6. R[x] and C[x] are integral domains.

Notice that one can define inductively R[x1, . . . , xm] = R[x1, . . . , xm−1][xm].

2.4. evaluation at subfields.

Definition 2.7. Let (F,+, ·) be a field, E ⊂ F is a subfield if (E,+, ·) is a field.

For every a ∈ F, the evaluation morphism is defined as:

eva : F [x]→ F, eva(
∑

aix
i) =

∑
aia

i.

It is a ring homomorphism:

eva(
∞∑
0

aix
i ·
∞∑
0

bix
i) = eva(

∞∑
k=0

(
∑

i,j i+j=k

aibj)x
k) =

∞∑
k=0

(
∑

i,j i+j=k

aibj)a
k =

=
∞∑
0

aia
i ·
∞∑
0

bia
i = eva(

∞∑
0

aix
i) · eva(

∞∑
0

bix
i).

Let E be a subfield, then for every e ∈ F then one can define:

eve : E[x]→ F

which is a ring-homomorphism such that eva(x) = a and eva(b) = b for all b ∈ E.
This gives a way of defining what we mean by a ”zero” of a polynomial:

Definition 2.8. Let E be a subfield of F and let α ∈ F. We say that α is a zero (in F ) of a
polynomial p(x) ∈ E[x] if evα(f(x)) = 0F .

Example 2.9. We all know that the polynomial p(x) = x2 + 1 ∈ R[x] has no zeroes in R but it
does in C. In fact if

evi : R[x]→ C,

then evi(x2 + 1) = i2 + 1 = 0. The same happens for −i.

Example 2.10. Let K be a field. the field of fraction of K[x] is usually denoted by

K(x) = {f(x)

g(x)
, g(x) 6= 0}.
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2.5. factorization. Observe that if a plynomial p(x) ∈ E[x] can be written as p(x) = f(x)g(x),
then

evα(p(x)) = evα(f(x))evα(g(x))

and thus α is a zero of p if and only if it is a zero of f or g. This is one of the reasons why it is
convenient to be able to factor polynomials.

Theorem 2.11 (division algorithm). Let F be a filed and let f(x), g(x) ∈ F [x],with deg(g(x)) >
0. Then there are unique polynomials q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(g(x)). The prove is in the book pg. 210.

In practice one performs long divisions of polynomials as we are used to (when F = R.)

Theorem 2.12. A non zero polynomial f(x) ∈ F [x] with deg(f(x)) = n has at most n zeroes in
the field F.

Proof. Observe that an element a ∈ F is a zero of f(x) ∈ F [x] if and only if f(x) = (x−a)g(x).
Assume that a ∈ F is a zero of f(x). In fact by the factorization theorem we can factor:

f(x) = (x− a)g(x) + r(x), deg(r(x)) < 1.

It follows that 0 = f(a) = 0 + r(x) and thus f(x) = (x − a)g(x), because the evaluation
morphism is a ring-homomorphism.

Let a1, . . . as be the zeroes of f, then

f(x) = (x− a1) . . . (x− ar)g(x)

For the degree reasons and because F [x] is an integral domain it is r ≤ n. �

EXERCISE Show that any finite subgroup of the group F ∗ is cyclic for a finite field F.

Definition 2.13. A non constant polynomial f(x) ∈ F [x] is irreducible over F if it cannot be
factored as a product of two polynomials of lower degree:

f(x) = g(x)h(x),

where g(x), h(x) ∈ F [x].

Example 2.14. x2 + 1 is irreducible over R and it is reducible over C.

There is a special relation between Z and Q :

Theorem 2.15. A polynomial f(x) ∈ Z[x] factors as f(x) = g(x)h(x) in Q[x], with deg(f) =
r, deg(g) = s if and only if it factors as f(x) = g′(x)h′(x) in Z[x], with deg(f ′) = r, deg(g′) =
s.

A consequence of this is the so called Eisenstein Criterion:

Theorem 2.16. Let p be a prime and let f(x) = anx
n + . . . + a0 ∈ Z[x], with an 6≡p 0 and

ai ≡p 0 for all i < n, a0 6≡p2 0. Then f(x) is irreducible over Q.
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Proof. It is a direct consequence of the previous theorem that if a polynomial f(x) ∈ Z[x] with
a0 6= 0 has a zero in Q then it has a zero in Z that must divide a0.

Assume that f(x) = (brx
r+. . . b0)·(ksxs+. . . k0), then because b0k0 = a0 6≡p2 0, b0, k0 cannot

be congruent modulo p at the same time, say b0 6≡p 0 or k0 ≡p 0. Moreover an = brks 6≡p 0
implies br, ks 6≡p 0. Let now t be the smallest value so that kt 6≡p 0. This implies that at 6≡p 0
and thus t = n which is a contraddiction. �

EXERCISE. Use induction to prove that every polynomial in Z[x] factors in a product of
irreducible polynomials, uniquely determined except for the order and up to non zero con-
stants.

RECOMMENDED EXCERCISES
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