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1. INTRODUCTION

In this section we will introduce the notion of further algebraic structures and prove the relation
between them. We will define Euclidean Domains (ED) and prove that every Euclidean domain
is a Principal ideal domain:

ED ⇒ PID.

We will also talk about Unique factorization Domains (UFD) and prove the relation

ED ⇒ PID ⇒ UFD

We will see that these are all strict arrows which cannot be inverted. In fact the search for
examples of PID that are not Euclidean domains has led to interesting research in Algebra. Here
is just an example. In the so called quadratic fields Q(

√
d) = {a + b

√
d, a, b ∈ Q}, one defines

the “integral elements” to be the elements a+ b
√
d such that the trace a2 − b2d and the norm 2a

are integers. The set of integral elements Id is an ideal and

Z[
√
d] ⊆ Id ⊂ Q(

√
d).

One would like to extend to Id the theory of divisibility similar to the one for integers and thus
wants to study when Id is an ED, PID and UFD.

For d < 0 already in 1920 Dickson showed that Id is a ED id and only if d = −1,−2,−3,−7,−11.
For positive d the study continued in the 30s and 30 s and in 50 Davemport showed that Id cannot
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be ED for d > 214. The problem was eventually solved: Id is an ED (w.r.t the norm) if and only
if d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73. In 1967 it was
proven that Id, d < 0 is a PID if and only if d = −163,−67,−43,−19,−11,−7,−3,−2,−1 so
for example I−43 is a PID but not ED.

2. EUCLIDEAN DOMAINS

Definition 2.1. An Euclidean Domain (ED) is an integral domain D endowed with an euclidean
norm, that is a function d : D \ {0} → Z such that

(1) d(a) ≤ d(ab) for all a, b 6= 0.
(2) For every a ∈ D and 0 6= b ∈ D there are h, r ∈ D such that a = bh + r with r = 0 or

d(r) < d(b).

We have already seen two (important) examples of Eucledeal domains, Z where d(a) = |a|,
and F [x] where d(f(x)) = deg(f(x)).

Example 2.2. Z[i] is a ED with d(z = n+ im) = n2 +m2 = |z|. (Section 47 in the book). If F
is a field, then F is a ED with norm d(a) = 0, for all a ∈ F.
Proposition 2.3. (1) Every Euclidian Domain is a PID.

(2) For every a, b ∈ D there is a c ∈ D such that (a) + (b) = (c).

Proof. Let 0 6= I ⊂ D be a proper ideal of an Euclidian domain D and let 0 6= b ∈ I be an
element of minimal norm. Then every other element a ∈ D an be written as a = bh+ r where r
is necessarily 0 which implies that I = (b). It follows that (a) + (b) = (c), for some c ∈ D. �

Notice that c/a, b and every other common divisor divides c. It is than a “biggest common
divisor”. Notice that it is NOT UNIQUE but is it uniquely defined up to a multiplication with a
unit. In fact it is (c) = (x) if a = xu for an unit u.

Observe also that from what said above it follows that 1 is the elemend of minimal norm and
that u ∈ D is a unit if and only of d(u) = 1. In factif u is a unit then d(u) ≤ d(uu−1) = d(1)
and thus d(u) = d(1).

3. UNIQUE FACTORIZATION DOMAINS

Recall that ( Lecture 10) an element a ∈ D for a PID D is prime if and only if it is irreducible.
We will call two element a, b associates if a = bu for a unit u.

Definition 3.1. A domain D is a unique factorization domain (UFD) if
• Every 0 6= a ∈ D which is not a unit there is a unit u ∈ D∗ and a finite number of

irreducible elements q1, . . . , qr ∈ D, such that

a = uq1 · · · qr.
• this factorization is unique up to ordering and associates.

Notice also that every irreducible element in a UFD is prime. In fact if a|bc, i.e. bc = ak then
by decomposing we have b1 · · · bkc1 · · · cr = ad1 · · · dl which implies that a is an associate of
some bi or some ci and thas a/b or a/c. Because every prime is irreducible this means that in a
UFD every element is a product of primes. Moreover observe that:
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Lemma 3.2. Let D be a domain, if every element is a product of primes then this decomposition
is automatically unique up to a unit, i.e. it is a UFD

Proof. Assume a1 · · · ak = b1 · · · bs. Proceed by induction on k. If k = 1, then a1 = ub1 because
a1 is irreducible. Assume k > 2, then a1/bi for some i, say i = 1. By cancellation property we
have then a2 · · · ak = l1 · b2 · bs and we are dome by induction. �

We know that Z is a UFD. Another important example is the F [x] where F is a field. We will
now show that every PID is a UFD. In what follows we will assume that D is a PID.

Lemma 3.3. Let I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . be and infinite ascending chain of ideals of a PID D.
Then the chain stabilizes, i.e. there exist N such that Im = IN for m > N.

Proof. It is straight forward to see that I = ∪Ii is an ideal and thus it is I = ∪Ii = (a), for
some a ∈ D. But if a ∈ I then a ∈ IN for some N and a ∈ Im for all m > N. This mean that
(a) ⊂ Im, for all m ≤ N and Ik ⊂ (a) = I for all k. It follows that (a) = IN = Im for all
m > N. �

Rings for which Lemma 3.3 holds are called Noetherian rings. Note that it is not true that
discending chains stabilize, for example in Z,

... ⊂ (2n) ⊂ . . . ⊂ (8) ⊂ (4) ⊂ (2) ⊂ (1).

Theorem 3.4. Every PID is a UFD.

Proof. Let D be a PID and let S the non-zero elements which are not units and which cannot be
factored in a finite product of prime elements. Assume that S is not empty and let a ∈ S. Let
(c) be a maximal ideal containing (a). Then c is irreducible and c/a. This means that for every
element a ∈ S we can choose a divisor ca|a and a uniquely determined xa such that a = caxa.

Observe that xa cannot be a unit because otherwise a would be irreducible and must belong to
S otherwise would have a factorization and thus a would have one. It follows that xa ∈ S and
(a) ⊂ (xa) is a proper inclusion, in fact if (a) = (xa) then xa = ay for some y ∈ D and thus
a = xaca = ayca which implies yca = 1 which is impossible since ca is irreducible.

The above reasoning shows that we can define a function f : S → S as f(a) = xa. Moreover
by recursion we can define a function φ : Z→ S as

φ(0) = a, an+1 = φ(n+ 1) = f(φ(n)) = xφ(n).

This produces an ascending chain of ideals

(a) ⊂ (a1) ⊂ (a2) ⊂ . . . ⊂ (an) ⊂ . . .

which does not stabilizes. But this contradicts Lemma 3.3. it follows that S is empty and thus
every non-zero element has a factorization.

Assume that a = c1 · · · cn = d1 · · · dm where the ci, dj are irreducible and thus prime. Then
every ci divides some dj. By changing the order we can assume that i = j = 1 and c1 = d1u1.
Notice that if c1/u1 then c1 would be invertible contraddicting the fact that it is prime. Then
c1/d1 and thus u1 must be a unit. Then

d1u1 · · · cn = d1 · · · dm
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By the cancellation low we have that u1c2 · · · cn = d2 · · · dm. By induction on the length of the
decomposition we conclude that n− 1 = m− 1. �

4. POLYNOMIAL RING

Let us look at the following problem: When is a finetely generated ideal contained in a princi-
pal ideal?

Lemma 4.1. Let D be a UFD and let I = (a1, . . . , ak) be a finitely generated ideal. Then there
is a minimal principal ideal (d(I)) containing I.

Proof. Let d be the product of the common primes in the decomposition of the ai’s. Assume that
I ⊂ (d′), then d′/ai for i = 1, . . . , k and thus by definition d′/d, i.e. (d) ⊂ (d′). �

Definition 4.2. A finitely generated ideal I = (a1, . . . , ak) ⊂ D is called primitive if (d(I)) =
D. A polynomial f =

∑
aki x

i ∈ D[x] is called primitive if I = (a1, . . . , ak) is primitive.
Moreover the content of a polynomial f =

∑
aki x

i ∈ D[x] is c(f) ∈ D where c(d) = d(I),
for I = (a1, . . . , ak)

Notice that every polynomial f(x) can be then written as f(x) = c(f)g(x) where g(x) is
primitive. Recall that:

Lemma 4.3. Let R be a ring and let P ⊂ R be a prime ideal. Let I, J be ideals such that
IJ ⊂ P Then I ⊂ P or J ⊂ P.

Proof. Assume I not contained in P , then there is an element a ∈ I and a 6∈ P . But aJ ⊂ P
and because P is prime this implies J ⊂ P. �

Corollary 4.4. (GAUSS LEMMA) Let D be a UFD. The product of two primitive elements is
primitive.

Proof. Assume I = (a1, . . . , ak), J = (b1, . . . , bs) primitive. We have to prove that IJ is prim-
itive. If not there is a proper principle ideal containing it , IJ ⊂ (d). Let d = Πpi, then
IJ ⊂ (d) ⊂ (pi) and by Lemma 4.3 I ⊂ (pi) or J ⊂ (pi) which is impossible because they are
primitive. �

Theorem 4.5. If D is a UFD then D[x] is a UFD.

Proof. Because D[x] is a domain we just have to show that every element is a product of primes
and then the statement will follow by Lemma 4.3. Let K be the field of fractions of D. Let
f(x) ∈ D[x] ⊂ K[x]. Recall that K[x] is a PID and therefore by Theorem 3.4 a UFD. Then we
can decompose

f(x) = F1(x) · · ·Fk(x) where Fi(x) are primes in K[x].

After ”clearing the denominator” we can write:

df(x) = g1(x) · · · gk(x) = c(g1) · · · c(gk)Πfi(x) in D[x],

where the fi are primitive polynomials.
We will show that fi are prime in D[x] from which the statement will follow.



SF2729 GROUPS AND RINGS LECTURE NOTES 2010-04-27 5

Consider the map of rings:

φ : D[x]/(fi)→ K[x]/[(Fi) = (fi)].

It is an injective map. In fact let h(x) ∈ D[x] so that h(x) ∈ (Fi) in K[x]. Then h(x) =
Fi(x)G(x) after clearing the denominators we have

Ah(x) = gi(x)H(x) = c(fi)c(H)fi(x)g(x).

Let A = Πpj, then pj cannot divide fi(x)g(x) since it is primitive by Lemma 4.3. Then
pj/c(fi)c(H) and thus by cancellation we obtain:

h(x) = Bfi(x)g(x)

which implies that h(x) ∈ (fi). The map φ being injective implies that D[x]/(fi) is a subring of
a domain:K[x]/[(Fi) and thus a domain. It follows that (fi) is prime for all i.

Now consider again df(x) = c(g1) · · · c(gk)Πfi(x). Every prime pi dividing d cannot divide
Πfi(x) since they are primitive and therefore have to divide c(g1) · · · c(gk). By cancellation we
obtain f(x) = CΠfi(x). Let C = Πqj be the prime decomposition, it follows then that

f(x) = ΠqjΠfi(x),

a prime decomposition. �

By induction one sees that D[x1, . . . , xk] is a UFD. We have showed that Z[x] is not a PID but
it is a UFD. So the arrow in Theorem 3.4 cannot be reversed.

RECOMMENDED EXCERCISES

• IX-45 1-8,25,26,29,30,31.
• IX-46 1-5, 15, 16, 17. 19.
• IX-47 1-5,10,11,14,15.


