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1. RINGS-FIELDS AND INTEGRAL DOMAINS

1.1. Rings and Fields. This is the first lecture of the second part of the course. We start by
”expanding” the structure of an abelian group in order to define reacher algebraic structures.

Definition 1.1. A ring (R,+, ·) is a set R with two binary operations:

+ : R×R→ R, · : R×R→ R,

such that
(1) (R,+) is an abelian group.
(2) · is associative, i.e. (a · b) · c = a · (b · c) for all a, b, c ∈ R.
(3) For all a, b, c ∈ R, it is a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a

Example 1.2. (1) Z,Q,R,C are rings (notice commutative!).
(2) Observe that 0 · a = (0 + 0) · a = 0 · a+ 0 · a which implies that 0 · a = a · 0 = 0 for all

a ∈ R. Any ring with unity where 0 = 1 consists of R = {0} and it is called the trivial
ring.
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(3) IfR1, R2 are rings thenR1×R2 can be given the structure of a ring, using coordinatewise
operations.

(4) Let R be a ring and X be a set. The set of functions from X to R usually denoted by RX

cen be given the structure of a ring, using he operations on R.
(5) (Gaussian integers) Z[i] = {a+ bi, a, b ∈ Z} with

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, (a+ bi) · (c+ di) = (ac− bd) + (ad+ cb)i.

Definition 1.3. Let R be a ring, if in addition there is an element (multiplicative unit) 1 such that
1 · a = a · 1 = a for all a ∈ R then the ring is said to be a ring with unit.

If the multiplication is commutative, i.e. a · b = b · a for all a, b ∈ R, then the ring is said to be
a commutative ring.

An element x such that x ·a = 1 is called a multiplicative inverse of a and it is denoted by a−1,
(if there is one it is unique!). If an inverse exists the element is called invertible (or sometimes a
unit).

If every non zero element in a ring R with a unity has an inverse the ring is called a division
ring.

A commutative division ring is called a field.

Example 1.4. • Q,R,C are fields.
• Zn is a commutatine ring. When is it a Field?

Let (R,+, ·) be a ring, by R∗ we denote the set of invertible elements in R. (what is Z[i]∗?).

Proposition 1.5. Let (R,+, ·) be a ring with unity 1, then (R∗, ·) is a group.

Proof. Let a, b ∈ R∗, the associativity property gives that:

(a · b) · (b−1 · a−1) = 1, (b−1 · a−1) · (a · b) = 1,

which implies that a · b ∈ R∗. �

A consequence of this is the so called Little theorem of Fermat that we will see later.

1.2. Integral Domains.

Definition 1.6. Lat R be a ring. Elements 0 6= a, b ∈ R are said to be a zero-divisors if a · b = 0.

Example 1.7. In Z,Q,R there are no zero-divisors, but in Z6 there are, ex [3] · [2] = [0].

Proposition 1.8. The element 0 6= [m] ∈ Zn is a zero-divisor if and only if gcd(m,n) 6= 1.

Proof. Assume that gcd(m,n) = d 6= 1 then [n
d
] 6= 0 and [m] · [n

d
] = [n][m

d
] = 0. Assume now

that there is an 0 6= [s] ∈ Zn such that [s] · [m] = 0 then it is ms = kn for some k ∈ Z. If
gcd(m,n) = 1 then n should divide s and thus [s] = 0, which implies that gcd(m,n) 6= 1. �

A corollary of the previous proposition is that Zp is a field only if p is prime.

Theorem 1.9 (Little theorem of Fermat). If a ∈ Z and p is a prime not dividing a then p divides
ap−1 − 1.



SF2729 GROUPS AND RINGS LECTURE NOTES 2010-03-23 3

Proof. (Z∗
p, ·) is a group of order p− 1. it follows that the (multiplicative) order of every element

devides p − 1. It follows that if a 6= 0 mod p then [ap−1] = [1] which means that p divides
ap−1 − 1. �

One can easily generalize this theorem and prove the so called Euler’s theorem. Define the
Euler number:

φ(n) = {0 < k ≤ n, s.t.gcd(k, n) = 1}.
We will see that φ(n) is exactly the cardinality of the group (Z∗

n, ·), i.e. all non zero divisors are
invertible. Then a similar prove gives:

Theorem 1.10. If a ∈ Z is relatively prime to n, then n divides aφ(n) − 1.

The camcellation law in a ring R is the following:

a 6= 0, a · b = a · c⇒ b = c.

Proposition 1.11 (Cancellation law). The cancellation laws hold in a ring R if and only if it has
no zero-divisors.

Proof. Assume that the cancellation laws hold and let a, b zero divisors, then a · b = 0 = a · 0
would implie b = 0, which is a contradiction. Assume there are no zero-divisors and let a 6=
0, a · b = a · c, then a · b− a · c = a · (b− c) = 0 which must implie b− c = 0 and thus b = c. �

Observe that the unity 1 in a ring cannot be a zero-divisor (prove it). This implies that division
rings have no zero-divisors. More generally all subrings of division rings have no zero- divisors.

Example 1.12 (thm 20.5 i the book). Let m ∈ Z,m > 0, let [a], [b] ∈ Zm and let d = gcd(a,m).

(1) ax ≡m b has a solution⇔ d\b.
(2) If d\b the equation has exactly d solutions.

Assume that ax ≡m b has a solution s. That means that as − b = km for some k ∈ Z and
thus d\b because d\a,m. Assume that d\b and write b = db1, a = da1,m = dm1 we see that
[s] ∈ Zn is a solution of ax ≡m b if and only if s1 is a solution of a1x ≡m1 b1. Because
gcd(a1,m1) = 1 [a1] is invertible in Zm1 and thus a1x ≡m1 b1 does have a unique solution. The
numbers s1, s1 +m1, . . . , (d− 1)m1 all reduce to s1 modulo m1 and therrfore are solution of the
original modular equation.

Definition 1.13. A non trivial commutative ring with no zero-divisors is called an integral do-
main.

Definition 1.14. A subset S ⊂ R, of a ring (R,+, ·) is a subring if (S,+, ·) is a ring. In other
words one has to check that :

0 ∈ S, (S,+) is a group , a · b ∈ S for all a, b ∈ S.

Example 1.15. C is an integral domain, Z[i] ⊂ C is a subring and therefore it is an integral
domain.
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1.3. Ring-homorphisms.

Definition 1.16. Let R1, R2 be two rings. A function f : R1 → R2 is said to be a ring homo-
morphism if:

(1) f(a+ b) = f(a) + f(b),
(2) f(a · b) = f(a) · f(b).

and if it is bijective it is called an ring-isomorhism and we write R1
∼= R2...

If R1 = R2 ia ring-homomorphism is called an endmorphism and if it is bijective it is called
an automorphism

Example 1.17. • f : Z→ Zn is a ring homorphism.
• the inclusion S → R is a ring-homomorphism for any subring S ⊂ R.
• the projections πi : R1 ×R2 → Ri are ring-homorphisms for i = 1, 2.
• For any r, s such that gcd(r, s) = 1, it is Zrs

∼= Zr×Zs, via the map f(n·1Zrs) = n·(1, 1).

1.4. Characteristics.

Definition 1.18. The smallest integer r ∈ Z such that r · a = 0 for all element a is a ring R is
called the characteristic of the ring R. If such an integer does not exist, the ring R is said to have
characteristics 0.

Example 1.19. • The characteristic of Zn is n, while Z,Q,R,C have characteristic zero.
• Observe that if R is a ring with unity, 1, then the characteristic is the smallest r such that
r · 1 = 0.
• Observe that The characteristic of any non trivial field F is either 0 or a prime number.

The distributive property gives that:

nm1 = n1 ·m1.

RECOMMENDED EXCERCISES

IV-18 Rings and Fields. 7-12, 14-19, 23-25, 38,44,46,49.

IV-19 Integral Domains. 14,26,30

IV-20 Fermat’s Theorem. 8,9,27-30.


