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1. MORE ON RING-HOMOMORPHISMS

We have already seen the definition of ring homomorphism. Let us repeat it, but this time for
rings with identity.

Definition 1.1. Let R1, R2 be rings with unity. A ring-homomorphism is a map φ : R1 → R2

such that
(1) φ(a+ b) = φ(a) + φ(b).
(2) φ(ab) = φ(a)φ(b).
(3) φ(1R1) = 1R2 .

The last hypothesis is necessary in order for the image to be a subring of R2 with a unity. Note
that (prove it!) if φ is surjective or if R2 has no zero-divisors this hypothesis is automatically
satisfied.

The set
Ker(φ) = {x ∈ R1, φ(x) = 0R2}

is called the Kernel of φ.
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Example 1.2. Let R be a ring with unity. The map Z → R that sends m 7→ m · 1R is a ring
homomorphism. Check that this is in fact the only homomorphism preserving the unity from Z
to R.

Example 1.3. Let φ : R1 → R2 be a ring homomorphism between rings with unity. Note that:
(1) the map φ∗ : R∗1 → R∗2 defined as φ∗(r) = φ(r) is a group homomorphism.
(2) φ∗ is injective if φ is injective.
(3) Is the same true for surjectivity?

2. IDEALS

Definition 2.1. Let R be a ring. An additive subgroup I ⊆ R is said to be a left ideal if

ra ∈ I for all r ∈ R, a ∈ I.

It is said to be a right ideal if
ar ∈ I for all r ∈ R, a ∈ I.

It is called an ideal if it is a left and right ideal. Clearly for commutative rings every left (resp.
right) ideal is an ideal.

Example 2.2. (1) {0R} is called the trivial ideal.
(2) If φ : R1 → R2 is a ring homomorphism, then Ker(φ) is an ideal. Moreover one sees

that a ring-homomorphism is injective if and only if Ker(φ) = {0R1}.
(3) Let R be a ring and let x ∈ R. the set Rx = {rx, r ∈ R} is an ideal and it is called the

left ideal generated by x. Similarly xR is called the right ideal generated by x. When the
ring is commutative Rx = xR is denoted by < x > and it is called the ideal generated
by x. An ideal I for which there is an element x such that I =< x > is called a principal
ideal.

(4) Because ideals of the ring Z are additive subgroups they are of the form mZ =< m >
and thus they are all principal.

(5) Let R be a commutative ring and let r1, . . . rn ∈ R. The subset:

(r1, . . . rn) = {x1r1 + . . .+ xnrn, x1, . . . , xn ∈ R}

is an ideal. It is the smallest ideal containing the elements r1, . . . rn (EXERCISE) and it
is called the ideal generated by r1, . . . rn.

Example 2.3. Consider I = (2, x) ⊂ Z[x]. This ideal is not a principal ideal. In fact if it were
I = (p(x)) for some p(x) ∈ Z[x], then 2 = f1(x)p(x), x = f2(x)p(x) for some f1(x), f2(x) ∈
Z[x]. Recall that Z is an integral domain which implies that the degree function is additive. It
follows that deg(p(x)) = 0 and deg(f2(x)) = 1, which gives p(x) = 1,−1, and thus 1 ∈ I. But
clearly this is impossible since all the polynomials with constant term in I have even constant.

For polynomial with coefficients in a field the situation is quite different.

Proposition 2.4. Let F be a filed, then all ideals in F [x] are principal.
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Proof. Let 0 6= I ⊂ F [x]. If I = 0 then I = (0). Let g(x) be the element of minimal degree.
If deg(g(x) = 0 then g(x) is a unit an thus I = F [x] = (1). Let g(x) 6= f(x) ∈ I, then it is
f(x) = g(x)q(x) + r(x) because I is an ideal it is r(x) ∈ I and deg(r(x)) < deg(g(x)), which
implies r(x) = 0 and thus I = (g(x)). �

Definition 2.5. An integral domain is a principal ideal domanin (PID) is every ideal is principal.

We will now discuss some operations with ideals. Let R be a commutative ring and let I, J be
ideals in R.

• It is straight forward to see that the intersection I ∩ J is again an ideal.
• The union is not in general an ideal. We can instead define:

I + J = {x+ y where x ∈ I, y ∈ J}.

Verfy that it is indeed an ideal and that it is the smallest (w.r.t inclusion) ideal containing
I and J.
• The product is defined as:

IJ = {
m∑
k=1

xkyk where m ∈ Z, xk ∈ I, yk ∈ J}.

Notice that in general {xy, x ∈ I, y ∈ J} is not an ideal.

Example 2.6. If I = nZ, J = mZ are two ideals of Z, it is

I ∩ J = lcm(m,n)Z, I + J = gcd(m,n)Z, IJ = mnZ.

Observe that if an ideal I ⊆ R contains a unit then it is I = R (easy to see). It follows that a
field F has only (0) and F for ideals, i.e. it has no non trivial proper ideals.

3. QUOTIENT RINGS

Let R be a commutative ring and let I be an ideal of R. Because R is an abelian group, I is a
normal subgroup of the group (R,+), and thus there is a well defined quotient group R/I. We
will denote an element in R/I as x+ I. Recall that

x+ I = y + I if and only if x− y ∈ I.

We define a multiplication as:

(x+ I) · (y + I) = xy + I.

It is indeed a well defined binary operation, let x′ ∈ x+ I, y′ ∈ y+ I, i.e x′ = x+h, y′ = y+ g.
Then x′y′ = xy + (x′g + y′h + gh) and thus x′y′ + I = xy + I. It is easy to see that R/I is a
ring with unity 1 = 1R + I. It also follows easily that

Proposition 3.1. The map
π : R→ R/I, π(x) = x+ I

is a well defined surjective ring homomorphism with Ker(π) = I.
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Example 3.2 (Fundamental homomorphism theorem). Let φ : R1 → R2 be a ring homomor-
phism (of commutative rings with unity). The following diagram is commutative:

R1

��

// φ(R1) ⊆ R2

R/Ker(φ)

77ooooooooooo

where the map f : R/Ker(φ) → φ(R1) is defined as r + Ker(φ) 7→ φ(r) and it is an isomor-
phism.

Observe that the map f is a well defined ring-homomorphism. If x+Ker(φ) = y +Ker(φ)
for x− y ∈ Ker(φ), then φ(x+ y) = φ(x)− φ(y) = 0R2 . Moreover f is clearly surgective and
Ker(f) = Ker(φ) = {0R/Ker(φ)} whichi implies that f is injective and thus an isomorphism.

For example Zn
∼= Z/nZ as commuative rings with unity.

4. PRIME AND MAXIMAL IDELAS

Let R be a commutative ring.

Definition 4.1. We say that an element a ∈ R divides b ∈ R, a|b, if there is x ∈ R such that
b = ax. An element 0R 6= x ∈ R which is not a unit is said to be prime if for all a, b ∈ R it is:

x|ab⇒ x|a or x|b.
We say that an element 0 6= x, which is not a unit, is irreducible if for all a, b ∈ R, then

x = ab⇒ a is invertible or b is invertible.

This definition can be extended to ideals.

Definition 4.2. A proper ideal I ⊂ R is said to be prime if for all a, b ∈ R it is

ab ∈ I ⇒ a ∈ I or b ∈ I.

Corollary 4.3. It follows that for principal ideals (x) is prime if and only if x is prime.

Proof. Let (x) be prime and let x|ab then ab = xy for an element y ∈ R which implies that
ab ∈ (x). Then it is a ∈ (x), i.e x|a or b ∈ (x), i.e x|b. �

Proposition 4.4. I is prime if and only if R/I is an integral domain.

Proof. Let I be a prime ideal and let (r1 + I)(r2 + I) = r1r2 + I = 0R + I. Then it is r1r2− 0 =
r1r2 ∈ I and thus r1 ∈ I or r2 ∈ I, i.e. r1 + I = 0 or r2 + I = 0. Viceversa assume that R/I is
an integral domain and that ab ∈ I. This means that ab + I = (a + I)(b + I) = 0 and thus the
conclusion. �

Example 4.5. Observe that R/(0) ∼= R which implies that a commutative ring R is an integral
domain if and only if the ideal (0) is prime.

Example 4.6. The non trivial prime ideals of Z are all of the form (p) where p is prime.
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Definition 4.7. An ideal I ⊆ R is said to be maximal if it is not contained in any other proper
ideal ideal of R.

Example 4.8. 2Z is maximal, in fact if 2Z ⊆ mZ then m|2 and thus m = 1, 2, i.e. mZ = 2Z or
mZ = Z.

We leave as an exercise to prove that: There is a bijection of sets between the set of ideals of
R containing I and the ideals of R/I, via the quotient map π : R→ R/I.

Proposition 4.9. I is maximal if and only if R/I is a field.

Proof. By the previous observation if R/I is a field then the only ideals are (0) and R/I which
means exactly that that there is no proper ideal containing I and thus I is maximal. Now assume
that I is maximal and assume that there is 0 6= a + I which is not a unit. This means a 6∈ I and
there is no element b such that ab− 1R ∈ I. Consider J = (a+ I)R/I. it is a non trivial ideal of
R/I which does not contain the unity, and thus it is proper. By the observation above π−1(J) is
a proper ideal of R containing I, which is impossible. �

It follows that if {0} is maximal then R ∼= R/{0} is a fileld. We can than conclude that:
a commutative ring with unity is a field if and only if {0} and R are the only ideals.

Example 4.10. Let K be a filed. The ideal (x) is maximal and K[x]/(x) ∼= K. (use the evalua-
tion at 0.).

Proposition 4.11. Every maximal ideal is prime.

Proof. I maximal implies that R/I is a field which implies that R/I is an integral domain and
thus I is prime. �

Note that the converse is not true:

Example 4.12. The ideal (0) ∈ Z is prime but not maximal, (0) ⊂ 2Z 6= Z. The ideal (x) ⊂ Z[x]
is also prime but not maximal.

Example 4.13. Notice that if R is an PID then for every non invertible element 0 6= x it is:

x irreducible then (x) is maximal.

In fact if x is irreducible and (x) ⊂ J = (a) 6= R the it is x = ab for some b ∈ R which then
implies that b is a unit and thus J = (x).

More generally

Proposition 4.14. If R is an integral domain and 0 6= x ∈ R is not invertible then

x prime⇒ irreducible.

Proof. Let x be prime and let x = ab. this means that x|ab and thus x|a or x|b. If x|a then xc = a
and thus xcb = x which means that because R is an integral domain cb = 1. It follows that b is
invertible. Similar if x|b. �

Proposition 4.15. If R is a PID and x ∈ R is a non invertible element then

x irreducible⇒ x prime .
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Proof.
x irreducible⇒ (x) maximal⇒ (x) prime ⇒ x prime

�

As a corollary we see that:

Proposition 4.16. If R is a PID and x ∈ R is a non invertible element then

x irreducible⇔ (x) maximal⇔ (x) prime ⇔ x prime

Example 4.17. Apply the above to F [x].
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