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1. MORE ON RING-HOMOMORPHISMS

We have already seen the definition of ring homomorphism. Let us repeat it, but this time for
rings with identity.

Definition 1.1. Let R;, R, be rings with unity. A ring-homomorphism is a map ¢ : Ry — Rs
such that

(1) ¢(a+b) = ¢(a) + ¢(b).
(2) ¢(ab) = ¢(a)p(b).
(3) (b(lRl) = 1R2'
The last hypothesis is necessary in order for the image to be a subring of R with a unity. Note
that (prove it!) if ¢ is surjective or if 2y has no zero-divisors this hypothesis is automatically

satisfied.
The set

Ker(¢) = {x € Ry, ¢(x) = Og,}
is called the Kernel of ¢.



2 SANDRA DI ROCCO

Example 1.2. Let R be a ring with unity. The map Z — R that sends m — m - 1 is a ring
homomorphism. Check that this is in fact the only homomorphism preserving the unity from Z
to R.

Example 1.3. Let ¢ : R — R, be a ring homomorphism between rings with unity. Note that:
(1) the map ¢* : Rj — Rj defined as ¢*(r) = ¢(r) is a group homomorphism.
(2) ¢* is injective if ¢ is injective.
(3) Is the same true for surjectivity?

2. IDEALS
Definition 2.1. Let R be a ring. An additive subgroup / C R is said to be a left ideal if
ra € lforallr € Riael.

It is said to be a right ideal if
ar € [ forallr € R,a € I.

It is called an ideal if it is a left and right ideal. Clearly for commutative rings every left (resp.
right) ideal is an ideal.

Example 2.2. (1) {Og} is called the trivial ideal.

(2) If ¢ : Ry — Ry is a ring homomorphism, then Ker(¢) is an ideal. Moreover one sees
that a ring-homomorphism is injective if and only if Ker(¢) = {Og, }.

(3) Let R be aring and let z € R. the set Rz = {rx,r € R} is an ideal and it is called the
left ideal generated by x. Similarly x R is called the right ideal generated by . When the
ring is commutative Rx = xR is denoted by < = > and it is called the ideal generated
by x. An ideal I for which there is an element = such that [ =< x > is called a principal
ideal.

(4) Because ideals of the ring Z are additive subgroups they are of the form mZ =< m >
and thus they are all principal.

(5) Let R be a commutative ring and let rq,...7, € R. The subset:

(ri,...rn) ={xiri + ... + &1y, 1, ..., 2, € R}

is an ideal. It is the smallest ideal containing the elements 71, . .. r,, (EXERCISE) and it
is called the ideal generated by r, ... 1.

Example 2.3. Consider I = (2,x) C Z[z]. This ideal is not a principal ideal. In fact if it were
I = (p(x)) for some p(x) € Z[z], then 2 = fi(z)p(z),z = fo(z)p(x) for some fi(x), fo(z) €
Z[z]. Recall that Z is an integral domain which implies that the degree function is additive. It
follows that deg(p(x)) = 0 and deg( f>(x)) = 1, which gives p(z) = 1, —1, and thus 1 € I. But
clearly this is impossible since all the polynomials with constant term in / have even constant.

For polynomial with coefficients in a field the situation is quite different.

Proposition 2.4. Let F' be a filed, then all ideals in F'[z| are principal.
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Proof. Let 0 # I C Flz]. If I = 0then I = (0). Let g(z) be the element of minimal degree.
If deg(g(z) = O then g(z) is a unit an thus [ = F[z] = (1). Let g(z) # f(x) € I, then it is
f(z) = g(x)q(x) + r(x) because I is an ideal it is r(x) € I and deg(r(x)) < deg(g(x)), which
implies 7(z) = 0 and thus I = (g(z)). O

Definition 2.5. An integral domain is a principal ideal domanin (PID) is every ideal is principal.

We will now discuss some operations with ideals. Let R be a commutative ring and let I, J be
ideals in R.

e [t is straight forward to see that the intersection / N J is again an ideal.
e The union is not in general an ideal. We can instead define:

I+J={x+ywherez €l ,yc J}.

Verfy that it is indeed an ideal and that it is the smallest (w.r.t inclusion) ideal containing
I and J.
e The product is defined as:

1J = {Zxkyk wherem € Z,xy, € I,y € J}.
k=1

Notice that in general {zy,z € I,y € J} is not an ideal.
Example 2.6. If [ = nZ, J = mZ are two ideals of Z, it is
InJ=lem(m,n)Z, I +J = gcd(m,n)Z, IJ = mnZ.

Observe that if an ideal / C R contains a unit then it is / = R (easy to see). It follows that a
field F" has only (0) and F’ for ideals, i.e. it has no non trivial proper ideals.

3. QUOTIENT RINGS

Let R be a commutative ring and let I be an ideal of R. Because R is an abelian group, [ is a
normal subgroup of the group (R, +), and thus there is a well defined quotient group R/I. We
will denote an element in R/[ as x + I. Recall that

r+1=y+Tifandonlyifx —y € I.
We define a multiplication as:
(x+1)-(y+1)=ay+1.

It is indeed a well defined binary operation, letx’ € x+ I,/ € y+ 1, iex’ =x+h,y =y+g.
Then 2’y = zy + (2'g + y'h + gh) and thus o'y’ + I = xy + I. It is easy to see that R/ is a
ring with unity 1 = 1 + . It also follows easily that

Proposition 3.1. The map
7m:R—R/,n(x)=x+1

is a well defined surjective ring homomorphism with Ker(m) = 1.
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Example 3.2 (Fundamental homomorphism theorem). Let ¢ : R; — R» be a ring homomor-
phism (of commutative rings with unity). The following diagram is commutative:

Ry P(R1) C Ry
.
R/Ker (o)

where the map f : R/Ker(¢) — ¢(R;) is defined as r + Ker(¢) — ¢(r) and it is an isomor-
phism.

Observe that the map f is a well defined ring-homomorphism. If x + Ker(¢) = y + Ker(¢)
forz —y € Ker(¢), then ¢(x + y) = ¢p(x) — ¢(y) = Og,. Moreover f is clearly surgective and
Ker(f) = Ker(¢) = {Or/ker(s)} Whichi implies that f is injective and thus an isomorphism.

For example Z,, = 7 /nZ as commuative rings with unity.

4. PRIME AND MAXIMAL IDELAS

Let R be a commutative ring.

Definition 4.1. We say that an element a € R divides b € R, alb, if there is x € R such that
b = ax. An element Or # x € R which is not a unit is said to be prime if for all a,b € R itis:

x|ab = x|a or x|b.
We say that an element 0 # z, which is not a unit, is irreducible if for all a,b € R, then
x = ab = a is invertible or b is invertible.
This definition can be extended to ideals.
Definition 4.2. A proper ideal / C R is said to be prime if for all a,b € R itis
abel =aclorbel.
Corollary 4.3. It follows that for principal ideals () is prime if and only if x is prime.

Proof. Let (x) be prime and let z|ab then ab = xy for an element y € R which implies that
ab € (x). Thenitisa € (z),i.e x|aorb € (z), i.e x|b. O

Proposition 4.4. [ is prime if and only if R/ is an integral domain.

Proof. Let I be a prime ideal and let (r; + I)(ro+ 1) =79+ 1 = 0gr+ . Thenitis ryry — 0 =
riro € Tand thusmy € Torry € I,i.e. 11 +1 = 0orry + I = 0. Viceversa assume that R/1 is
an integral domain and that ab € I. This means that ab + I = (a + I)(b+ I) = 0 and thus the
conclusion. O

Example 4.5. Observe that R/(0) = R which implies that a commutative ring R is an integral
domain if and only if the ideal (0) is prime.

Example 4.6. The non trivial prime ideals of 7Z are all of the form (p) where p is prime.
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Definition 4.7. An ideal / C R is said to be maximal if it is not contained in any other proper

ideal ideal of R.

Example 4.8. 27 is maximal, in fact if 2Z C mZ then m|2 and thus m = 1,2, i.e. mZ = 2Z or
ma. = 7.

We leave as an exercise to prove that: There is a bijection of sets between the set of ideals of
R containing / and the ideals of R/I, via the quotient map 7 : R — R/I.

Proposition 4.9. [ is maximal if and only if R/1 is a field.

Proof. By the previous observation if R/ is a field then the only ideals are (0) and R/ which
means exactly that that there is no proper ideal containing I and thus 7 is maximal. Now assume
that I is maximal and assume that there is 0 # a + [ which is not a unit. This means a ¢ [ and
there is no element b such that ab — 1z € I. Consider J = (a+ [)R/I. it is a non trivial ideal of
R/I which does not contain the unity, and thus it is proper. By the observation above 7~ !(.J) is
a proper ideal of R containing /, which is impossible. OJ

It follows that if {0} is maximal then R = R/{0} is a fileld. We can than conclude that:
a commutative ring with unity is a field if and only if {0} and R are the only ideals.

Example 4.10. Let K be a filed. The ideal (z) is maximal and K[z|/(z) = K. (use the evalua-
tion at 0.).

Proposition 4.11. Every maximal ideal is prime.

Proof. I maximal implies that R/[ is a field which implies that R/ is an integral domain and
thus 7 is prime. O

Note that the converse is not true:

Example 4.12. The ideal (0) € Z is prime but not maximal, (0) C 2Z # Z. The ideal (x) C Z|x]
is also prime but not maximal.

Example 4.13. Notice that if R is an PID then for every non invertible element 0 # x it is:
x irreducible then () is maximal.

In fact if x is irreducible and (z) C J = (a) # R the itis x = ab for some b € R which then
implies that b is a unit and thus J = ().

More generally
Proposition 4.14. If R is an integral domain and 0 # x € R is not invertible then
x prime = irreducible.

Proof. Let x be prime and let x = ab. this means that z|ab and thus z|a or z|b. If z|a then xc = a
and thus zcb = x which means that because R is an integral domain cb = 1. It follows that b is
invertible. Similar if z|b. O

Proposition 4.15. If R is a PID and x € R is a non invertible element then

x irreducible = x prime .
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Proof.
x irreducible = (z) maximal = (x) prime =- x prime

As a corollary we see that:

Proposition 4.16. If R is a PID and x € R is a non invertible element then

x irreducible < (x) maximal < (x) prime < x prime
Example 4.17. Apply the above to F[x].
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