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7. THE SEVENTH LECTURE- ISOMORPHISMTHEOREMS, FREE GROUPS ANDGROUP

PRESENTATIONS

In the seventh lecture, which is the last of the lectures in the first part of the course, we start by
looking at the isomorphism theorems and then proceeed to free groups and group presentations.
1

We recall the first isomorphism theorem from the fourth lecture:

Theorem 7.1(First Isomorphism theorem). If φ : G −→ H is a group homomorphism we
have an isomorphism

G/ ker φ
∼

−→ imφ.

Proof. Let K = ker φ and define a homorphism

Φ : G/K −→ H

by Φ(aK) = φ(a), for a ∈ G. This is well-defined since ifaK = bK, we haveab−1 ∈ K and
φ(ab−1) = eH . Henceφ(a) = φ(b).

The homomorphismΦ is injective since the kernel ofΦ is given by

ker Φ = {aK ∈ G/K|aK = K} = {K}.

ThusΦ gives an isomorphism ofG/K onto the imageimΦ =∈ φ. �

We will state the second isomorphism theorem as in [1] which is slightly more general than in
[2]. In order to do this, we need the following definition.

Definition 7.2 (Normalizer). The normalizer of a subgroupH ≤ G is given by

NG(H) = {a ∈ G|aHa−1 = H} = {a ∈ G|aH = Ha}.

Exercise 7.3.Show that NG(H) is a subgroup containing H and that it is the largest subgroup
containing H in which H is normal. In particular, H is normal if and only if NG(H) = G.

1The sixth lecture is based on the sections 34, 38-40 of Chapter VII in A First Course in Abstract Algebra [2].
1



2 MATS BOIJ

Theorem 7.4 (Second Isomorphism theorem).If K and H are subgroups of G and H ≤
NG(K), then HK is a subgroup of G, K is normal in HK and H ∩K is normal in H . Further-
more we have that

HK

K
∼

=
H

H ∩ K
.

Proof. We start by checking thatHK is a subgroup. Ifh1, h2 ∈ H andk1, k2 ∈ K we get

h1k1(h2k2)
−1 = h1k1k

−1

2 h−1

2 = h1h
−1

2 k′

1k
′

2

for somek′

1, k
′

2 ∈ K, sinceH ≤ NG(K). HenceHK is a subgroup.
Next, we check thatK is normal inHK which follows from

hkk′(hk)−1 = hkk′k−1h−1 = hh−1k′′ = k′′

for somek′′ in K sinceH ≤ NG(K).
Now, we check thatH ∩K is normal inH. If k ∈ H ∩K andh ∈ H we get thathkh−1 ∈ H

sinceh, k ∈ H, but alsohkh−1 ∈ K sinceH ≤ NG(K). Thereforehkh−1 ∈ H ∩K andH ∩K
normal iH.

Finally, we will prove the isomorphism. In order to do this, we construct a homomorphism

Φ : HK −→ H/H ∩ K

by
Φ(hk) = hH ∩ K, ∀h ∈ H, ∀k ∈ K.

This is well-defined sinceh1k1 = h2k2 implies thath−1

1 h2 = k1k
−1

2 which is inH ∩ K. It is a
homomorphism since

Φ(h1k1h2k2) = Φ(h1h2k
′

1k2) = h1h2H ∩ K = (h1H ∩ K) ∗ (h2H ∩ K),

for all h1, h2 in H and allk1, k2 in K.
SinceΦ is surjective it is by the First Isomorphism Theorem sufficient to show thatker Φ = K.

We have that
ker Φ = {hk ∈ HK|h ∈ H ∩ K} = K,

which finishe the proof. �

Theorem 7.5(Third Isomorphism Theorem). If H ≤ K are normal subgroups of G we have
that

G/H

K/H
∼

= G/K.

Proof. We can construct a homomorphism

Φ : G/H −→ G/K

by
Φ(gH) = aK

for all a in G. It is well-defined sincea1H = a2H implies thata−1

1 a2 ∈ H, but sinceH ≤ K we
geta1K = a2K. Fora1, a2 ∈ G we have that

Φ(a1H ∗ a2H) = Φ(a1a2H) = (a1a2)K = a1K ∗ a2K
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which shows thatΦ is a homomorphism. SinceΦ is surjective it is by the First Isomorphism
Theorem sufficient to show thatker Φ = K/H. Since the unit inG/K is the coseteK, the
kernel is given by

ker Φ = {aH|aK = eK} = {aH|a ∈ K} = K/H,

which finishes the proof. �

In the fourth lecture, we also looked at the proof of the structure theorem for finitely generated
abelian groups. It was needed to present these groups as quotients of free abelian groups.

If we like to study groups in general, we have to use somethingmore general than free abelian
groups and therefore we introducefree groups.

Definition 7.6 (Free group). Let A be any set (which we will call analphabet) and defineF [A]
to be the set of all finite wordsan1

1 an2

2 · · ·anm

m , wherea1, a2, . . . , am ∈ A andn1, n2, . . . , nm ∈ Z

modulo the equivalence relation generated by

aman = am+n, ∀m, n ∈ Z

for subwords. The empty word is equivalent toa0 for anya ∈ A and is denoted bye.
Composition of words gives a group structure onF [A] with e as a unit. This group is called

thefree group on the alphabet A.

The idea is that in a free group the symbols in the alphabetA satisfiy no relations apart from
aman = am+n. This is similar to the situation with free abelian groups, where we have no other
relations thana + b = b + a, between the generators.

Theorem 7.7. For any group G there is a set A and a surjective homomorphism F [A] −→ G.
In particular, any group is the factor group of a free group by a normal subgroup.

Proof. Let A be a subset ofG such thatG = 〈A〉, i.e.,A is a set of generators ofG. We now
defineΦ : F [A] −→ G by

Φ(an1

1 an2

2 · · ·anm

m ) = an1

1 an2

2 · · ·anm

m

where the argument ofΦ is a word in the alphabetA in F [A] while the right hand side is a product
which is inG. If two words are equivalent, they will map to the same element in G since such
an equivalence corresponds to a relation which is valid in any group.

Since the group operation onF [A] is given by composition of words,Φ is a homomorphism.
Since〈A〉 = G, we get thatΦ is surjective and the First Isomorphism Theorem tells us that

G
∼

= F [A]/ ker Φ. �

Example 7.8. The free abelian groupFA is generated byA and therefore we have a surjective
homomorphism

Φ : F [A] −→ FA.

The kernelker Φ is the smallest normal subgroup containing all the commutatorsaba−1b−1, for
a, b ∈ A.
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Definition 7.9 (relation, presentation). A relation in a group generated by a subsetA is an equal-
ity

an1

1 an2

2 · · ·ank

k = bm1

1 bm2

2 · · · bmℓ

ℓ , ai, bj ∈ A, ni, mj ∈ Z.

All such relations can be rewritten as

an1

1 an2

2 · · ·anm

m = e

and we denote the relation by the word on the left hand side as an element ofF [A].
If we have a set of relationsS = {ri}i∈I ⊆ F [A], we can letR be the smallest normal subgroup

containingS. If R is the kernel of the homomorphismΦ : F [A] −→ G given by Theorem 7.7
we say that the generatorsA together with the relationsS = {ri}i∈I give group presentation of
G.

Example 7.10.We can use the idea of group presentations to study groups of order2p, wherep
is an odd prime. There is only one abelian group in this case,Z2p

∼

= Z2 × Zp.
Now assume thatG is non-abelian of order2p. We have elements of order1, 2 andp. Leta be

any element of orderp andb be any element of order2. G is generated by{a, b} since there can
be no proper subgroup containing an element of order2 and an element of orderp.

The subgroupH = 〈a〉 has to be normal. (IfK = gHg−1 6= H we get thatH ∩K = {e} and
|HK| = p2 since|HK| = |H|| · |K|/|H ∩ K|. HoweverHK is a subset ofG, sop2 < 2p gives
a contradiction.)

Sinceb has order two, we have thatb = b−1 and sinceH = 〈a〉 is normal we get thatbab = ak,
for somek = 0, 1, 2, . . . , p − 1. Thus we can say thatG has a presentation

(a, b|ap = e, b2 = e, bab = ak) = (a, b|ap = e, b2 = e, ba = akb)

for somek = 0, 1, . . . , p − 1.
Using the relationb2 = e we get that

a = b2a = b(ba) = bakb = ak2

b2 = ak2

.

using the relationba = akb several times. Sincea has prime orderp, we know thatk2 ≡ 1
(mod p). This equation has only two solutions in the fieldZp and we getk = 1 or k = p − 1.
In the first case we haveba = ab, which implies thatG is abelian contradicting our assumption.
Thus we are left with only one non-abelian group of order2p, which is the Dihedral groupD2p

with the presentation
(a, b|ap = e, b2 = e, bab = a−1)

RECOMMENDED EXCERCISES
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VII-39 Free Groups. 11

VII-40 Group Presentations. 10,11
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