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6. THE SIXTH LECTURE - GROUP ACTIONS

In the sixth lecture we study what happens when groups actetsn® Recall that we have
already when looking at permutations defined what an acti@gooup on a set is.

Definition 6.1 (Group action) A group actionof a groupG on a setX is a function
GxX — X

(a,x) — ax
satisfying the following conditions:
i) ex =z, forallz € X.
i1) (ab).x = a.(b.z), foralla,b € G and allz € X.
Example 6.2. There are a number of natural action that we have already met:

e The general linear grou@l, (R) acts on the vector spaé¥'.
e Any group acts on itself bieft multiplication a.b = ab.

e Any group acts on itself bgonjugation a.b = aba .

e The symmetric group'x acts on the sek'.

We also looked at the following result which shows that theéamof group actions can be
seen as a generalization of the notion of symmetric groups.

Theorem 6.3. An action ofG on X is equivalent to a group homomorphigm G — S.
Proof. Given® we get the group action by
GxX — X

(a,z) — ax=P(a)(x)

The sixth lecture is based on the sections 16-17 of Chapter A First Course in Abstract Algebra [1].
1
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On the other hand, if we have a gruop action, we may defingz — Sx by ®(a)(z) = a.x
foralla € G and allz € X. The map®(a) : X — X is bijective sinceb(a™!) is the inverse
as

P(a N (®(a)(z)) =a'.(ax) = (ata)zr=cax =2, VrcX.
O

Definition 6.4 (Transitive action, faithful action, kernel of actionhe action ofG on X is said
to betransitiveif for any pair(z,y) € X x X, there is an element < G such thati.z = y.

The action ofGG on X is faithful if any two elements # b in G have different actions o/,
ie, if

ar=bx, VreX = a=0b.

The kernel of the action ofG on X is given by alla € X which acts trivially onX, i.e.,

satisfiesi.z = z forall z € X.

Remark 6.5. The kernel of the action aff on X is equal to the kernel of the homomorphism
® : G — Sx given by the action. Hence the kernel of the action is a nosoalgroup.
Furthermore, we have that we get an induced actigi ofer & on X since the homomorphism
G — Sy factors throughz / ker ®.

Exercise 6.6.Show that the action is faithful if and only if its kernel is/tal.

Definition 6.7 (Orbits) For any element € X, theorbit of xunder the action of7 is given by
Gz = {a.x|a € G}.

Exercise 6.8.Show that the action is transitive if and only if there is agi&orbit.

Theorem 6.9. The orbits give a partition oX into disjoint subsets.

Proof. We get an equivalence relation dhby z ~ y < a.x = y for somea € G. We check
that

i) (reflexivity) x ~ z sincee.x = z.
ii) (symmetry)r ~ y < a.x = y forsomea € G < x = a L.y forsomes € G &y ~ .
i1i) (transitivity) z ~ y andy ~ z implies thate.x = y andb.y = z for a,b € G, but then
(ba).x = b.(a.x) = by = zandzx ~ z.

The equivalence classes under this equivalence relateotharorbits ofz on X. 0J

Definition 6.10 (Stabilizer or Isotropy subgrouplor each element € X, we define thestabi-
lizer of z in G to be

G, ={a € Gla.x = x}.
In the text book, the stabilizer aof is called thasotropy subgroup of.

Exercise 6.11.Show thati, is in fact a subgroup ofs for anyz € X.

Remark 6.12. The kernel of the action is the intersection of all the stabik.
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Theorem 6.13.For a givenz € X, the non-empty sets
Gyy ={a € Gla.x =y}
are the left cosets of the stabilizét,,.
Proof. If b.z = y we have that
Goy={a€Glax=y}={a€Glax=ba}={acGb'acG,}=0bG,.

Theorem 6.14.|Gz| = (G : G,) if the orbit Gz is finite and|G| = |Gz| - |G| if G is finite.

Proof. By the Theorem 6.13, the elements in the orbii:@$ in one-to-one correspondence with
the left cosets of7, which proves that their number is the same. The second statdwilows
from the fact thatG : G,) = |G|/|G.| if G is finite. O

We can use the notion of group actions to prove the followiagial converse to Lagrange’s
theorem:

Theorem 6.15. (Cauchy’s Theorem])f p is a prime divisor of the order of7, thenG has an
element of ordep.

Proof. Let p be a prime divisor ofG| and letX be the setof elements & =G x G x---x G
satisfying
a10ag - -ap = €.
The cardinality ofX is |G|P~! since we can choose the- 1 first elements in arbitrarily and the
solve for the last element. HengE| = 0 (mod p).
The cyclic groufZ, acts onX by cyclic permutations of the components since

(@rag---a;)(aip1---a,) =e <= (G142 ap)(a1a2---a;) =€

foralli=1,2,...,p— 1.
The stabilizer of an element is a subgrou@gf which means that it is either trivial or equal

to Z,, sincep is a prime. If it is equal t&,, the element has to be of the folf@ a, . . ., a), med
af =e.

The orbits have size one prby Theorem 6.14. If there was only one orHite, e, . .., e)} of
sizel, we would have thatX| = 1 (mod p), which contradict$X| = 0 (mod p). Hence there
is at leasp orbits{(a, a, ..., a)} of size one. Each such elemen e has ordep. O

Example 6.16.We can use this result in order to compute the order of thergeleear group
over a finite fieldF,. The general linear grou = GI,(F,) acts on the finite vector spaé¥.
Look at the stabilizer of the vectar= (1,0,...,0)" under this action.

We get thatG;,, is given by all the invertible matrices which first column atpr:. Hence
|G| = ¢"7'| Gl,—1(F,)|. Furthermore(7 acts transitively on the non-zero vectorsRjf. Thus
we get from Theorem 6.14 that

| G, (Fy)| = |G| - |Ga| = (¢" = 1)¢" | Glo1 (Fy)|
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and by induction, we get

| GL(Fy)| = qn(rhl)/2 l_‘[(qZ - 1)
=1
As we have seen, any group acts on itself in two natural waytefbmultiplication(a.b = ab)
and byconjugation(a.b = aba™'). In the case of left multiplication, the action is transitiso
there is a single orbit and all the stailizers are trivial.
In the case of conjugation, the orbits are calbehjugacy classeand the stabilzeré:, are
non-trivial apart from when is in the centet (G).

Definition 6.17 (Centralizer) For each elementin G, thecentralizerof a in GG is given by
Cg(a) = {b € Glab = ba} = {b € G|bab™" = a}.
Theorem 6.18(The Class Equation). For a finite groupGG we have that

~_la|
Gl =12(G)| +
; |Ca(as)]
whereay, as, . . ., a; are representatives for all the non-trivial conjugacy das inG.

Proof. GG acts on itself by conjugation and we get at partitionCbfnto orbits, which are the
conjugacy classes. The elements of the center are in a tamgugacy class. The remainder of
the elements are in non-trivial conjugacy classes and #eedithe conjugacy class containing
ais|G|/|Cs(a)| by Theorem 6.14. O

Example 6.19.We can deduce from the class equation that the centep-gfraup, i.e., a group
of prime power order, is non-trivial. In fact, if is a prime andG| = p™, n > 0, we have that
the left hand side of the class equation is divisibleobyOn the other hand, all the terms in the
sum on the right hand side are divisible ppgince|Cq(a)| < |G|if a ¢ Z(G). Hence|Z(G)| is
divisible byp andZ(G) is non-trivial.

The following result will help us count the number of orbiteen a finite group acts on a finite
set. In particular, it will help when counting objects up yorsnetries.

Theorem 6.20(Burnside’s Lemma)lf G is a finite group acting on a finite set withorbits, we

have
Glr =) |Xal,

acCG
whereX, = {z € Xla.xz =z}, fora € G.

Proof. We count the se$ = {(a, z)|a.x = 2} C G x X in two ways. Firstly, for each orbz,
there is the same number of elements in the stabilizor fan e&the elements in the orbit. The
contribution from each orbit if7z| - |G| = |G|, which shows thaS| = r|G].

Secondly, we make a sum over all elements G and add the number of elementéixed by
g. Inthis way, we get thatS| = > . [ X,|. O

Exercise 6.21.Count the number of essentially different cubes that candmberwith three pairs
of identical faces.
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