KTH Teknikvetenskap

SF2729 GROUPS AND RINGS LECTURE NOTES
 2010-02-23

MATS BOIJ

5. The fifth lecture - Homomorphisms and Factor Grouops

In the fifth lecture, we start by a quick look at homomorphisms and go furher to define factor groups which are quotients of a group by a normal subgroup. The elements of the factor groups are cosets. We will end by using this to prove the structure theorem for finitely generated abelian groups. ${ }^{1}$
Definition 5.1 (Homomorphism, kernel and image). A group homomorphism is a function ϕ : $G \longrightarrow H$ between groups preserving the gruop structure, i.e., satisfying

$$
\phi\left(a *_{G} b\right)=\phi(a) *_{H} \phi(b), \quad \forall a, b \in G .
$$

The kernel of ϕ is given by

$$
\operatorname{ker} \phi=\left\{a \in G \mid \phi(a)=e_{H}\right\}
$$

and the image of ϕ is given by

$$
\operatorname{im} \phi=\{\phi(a) \mid a \in G\} .
$$

Remark 5.2. More generally, we can define $\phi(K) \leq H$ as

$$
\phi(K)=\{\phi(a) \mid a \in K\}
$$

for any subgroup $K \leq G$ and

$$
\phi^{-1}(K)=\{a \in G \mid \phi(a) \in K\}
$$

for any subgroup $K \leq H$.
Example 5.3. The exponential function is a homomorphism $\exp : \mathbb{C} \longrightarrow \mathbb{C}^{*}$. We have that the unit circle S^{1} is a subgroup in \mathbb{C}^{*} and the inverse image of S^{1} under the exponential map is the imaginary axis $i \mathbb{R}$ in \mathbb{C}.

Example 5.4. The exponential map exp : $M_{2}(\mathbb{R}) \longrightarrow \mathrm{Gl}_{2}(\mathbb{R})$ is not a homomorphism, but induces a homomorphism on the subset of skew-symmetic matrices. The image is the special orthogonal group $\mathrm{SO}_{2}(\mathbb{R})$.

[^0]Definition 5.5 (Normal subgroup). A subgroup $H \leq G$ is normal if the left and right cosets are the same, i.e. if any of the following three equivalent conditions holds:
i) $a H=H a$, for all $a \in G$.
ii) $a H a^{-1}=H$, for all $a \in G$.
iii) $a^{-1} H a=H$, for all $a \in G$.

Remark 5.6. All subgroups of an abelian group are normal.
Theorem 5.7. The kernel of a homomorphism $\phi: G \longrightarrow H$ is a normal subgroup in G.
Proof. If a is any element in G and $b \in \operatorname{ker} \phi$, we have that

$$
\left.\phi\left(a^{-1} b a\right)=\phi\left(a^{-1}\right) e_{H} \phi(a)=\phi\left(a^{-1} a\right)\right)=\phi\left(e_{G}\right)=e_{H}
$$

Hence $a^{-1} b a \in \operatorname{ker} \phi$ and $\operatorname{ker} \phi$ is normal in G.
We will soon see that any normal subgroup is the kernel of some homomorphism.
Definition 5.8 (Factor group). Let $H \leq G$ be a normal subgroup. The factor group, or quotient group, G / H is the set of cosets of H with the binary operation given by

$$
a H * b H=a b H,
$$

for a, b in G.
Remark 5.9. We have to check that the binary operation is well defined. We can see this since $(a H)(b H)=a(H b) H=a b H H=a b H$ since H is normal. The operation is associative since the operation on G is associative, and the coset $H=e H$ is a unit. The inverse of $a H$ is given by $a^{-1} H$. Hence the factor group is in fact a group.
Theorem 5.10. If $H \leq G$ is a normal subgroup, there is a natural quotient homomorphism $G \longrightarrow G / H$ whose kernel is H.

Proof. The homomorphism $\phi: G \longrightarrow G / H$ is given by $\phi(a)=a H$. Because of the definition of the operation on G / H we have that

$$
\phi(a b)=a b H=a H b H=\phi(a) \phi(b), \quad \forall a, b \in G .
$$

The kernel of ϕ is given by

$$
\operatorname{ker} \phi=\{a \in G \mid a H=H\}=\{a \in G \mid a \in H\}=H .
$$

Theorem 5.11 (Isomorphism theorem). If $\phi: G \longrightarrow H$ is a group homomorphism we have an isomorphism

$$
G / \operatorname{ker} \phi \xrightarrow{\sim} \operatorname{im} \phi .
$$

Proof. Let $K=\operatorname{ker} \phi$ and define a homorphism

$$
\Phi: G / K \longrightarrow H
$$

by $\Phi(a K)=\phi(a)$, for $a \in G$. This is well-defined since if $a K=b K$, we have $a b^{-1} \in K$ and $\phi\left(a b^{-1}\right)=e_{H}$. Hence $\phi(a)=\phi(b)$.

The homomorphism Φ is injective since the kernel of Φ is given by

$$
\operatorname{ker} \Phi=\{a K \in G / K \mid a K=K\}=\{K\}
$$

Thus Φ gives an isomorphism of G / K onto the image $\operatorname{im} \Phi=\in \phi$.
Example 5.12. We have seen that the alternating grop A_{n} is a subgroup of the symmetric group S_{n}. In fact, it is normal since it is the kernel of the homomorphism sgn : $S_{n} \longrightarrow\{ \pm 1\}$. By Theorem 5.11 we get that the factor group S_{n} / A_{n} is isomorphich to the image, $\{ \pm 1\}$ when $n \geq 2$.
Example 5.13. Since the special linear group $\mathrm{Sl}_{n}(\mathbb{R})$ is the kernel of det: $\mathrm{Gl}_{n}(\mathbb{R}) \longrightarrow \mathbb{R}^{*}$, we get that $\mathrm{Sl}_{n}(\mathbb{R})$ is a normal subgroup and by Theorem 5.11 the factor group $\mathrm{Gl}_{n}(\mathbb{R}) / \mathrm{Sl}_{n}(\mathbb{R})$ is isomorphic to the image, \mathbb{R}^{*}.
Example 5.14. The three permutations of type $\left[2^{2}\right]$ form a subgroup H of $G=S_{4}$ together with the identity permutation. Thus subgroup is normal since the type is preserved under conjugation. The quotient G / H has order $24 / 4=6$ and since there is no element of order 6 in S_{4}, there can be no element of order 6 in the factor group G / H. Hence G / H has to be isomorphic to S_{3} and there is a homomorphism from S_{4} to S_{3} whose kernel is H.

Definition 5.15. (Center) The center of a gruop G is the subgroup given by

$$
Z(G)=\{a \in G \mid a b=b a, \quad \forall b \in G\}
$$

Theorem 5.16. The center, $Z(G)$, is a normal subgroup og G.
Proof. First check that $Z(G)$ is a subgroup. If $a, b \in Z(G)$, and c is any element of G, we get that

$$
\left(a b^{-1}\right) c=a\left(c^{-1} b\right)^{-1}=a\left(b c^{-1}\right)^{-1}=a c b^{-1}=c a b^{-1}=c\left(a b^{-1}\right)
$$

which shows that $a b^{-1} \in Z(G)$.
Now if $a \in Z(G)$ and b is any element of G, we have

$$
b a b^{-1}=a b b^{-1}=a \in Z(G)
$$

which shows that $b Z(G) b^{-1}=Z(G)$ and $Z(G)$ is normal.
Definition 5.17 (Simple group). A group is simple if it has no proper non-trivial normal subgroups.

Remark 5.18. Note that this means that all homomorphisms from a simple group are injective or trivial.

Finitely generated abelian groups. In the previous lecture we looked at the structure theorem for finitely generated abelian groups. Now we are in a situation where we can understand why this theorem holds using factor groups.
Theorem 5.19. A finitely generated abelian group is isomorphic to $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{k}} \times \mathbb{Z}^{r}$, where $m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z}^{+}$and $r \in \mathbb{N}$ are such that m_{i} divides m_{i+1} for $i=1,2, \ldots, k-1$.

Sketch of proof. Let A be a finitely generated abelian gruop written additively. Since A is finitely generated, we have a surjective homomorphism from a free abelian gruop \mathbb{Z}^{n} to A. Let K be the kernel of this homomorphism. We can find a homomorphism from a free abelian group F to \mathbb{Z}^{n} mapping onto K and we can think of K being generated by the rows of a matrix with n columns and possiby infinitely many rows.
Let m_{1} be the smallest positive integer in the subgroup of \mathbb{Z} genereted by all the entries of the matrix. Then any other element in the matrix is divisible by m_{1} and by elementary row and column operations we can arrange so that m_{1} appears in the top left corner. Now we can use such operatations again to eliminate everything else from the first row and first column. By induction on n we can proceed to get a diagonal matrix with entries $m_{1}, m_{2}, \ldots, m_{k}$ in the top left corner and the rest of the matrix zero. Moreover, m_{i} divides m_{j} for all $1 \leq i \leq j \leq k$.
The row and column operations only changes bases in the free abelian groups, but we have not obtained a homomorphism $\Phi: \mathbb{Z}^{k} \longrightarrow \mathbb{Z}^{n}$ such that the image is isomorphic to K after a change of bases in \mathbb{Z}^{n}, which in turn corresponds to another choice of generators in A.

The theorem now follows from the isomorphism theorem since A is isomorphic to $\mathbb{Z}^{n} / K \cong$ $\mathbb{Z}^{n} / \mathrm{im} \Phi$.

Remark 5.20. The rank of A is the number r in the previous theorem and we see from the proof that $r=n-k$. Some of the numbers $m_{1}, m_{2}, \ldots, m_{k}$ may be equal to 1 and these copies of the trivial group $0=\mathbb{Z}_{1}=\mathbb{Z} / \mathbb{Z}$ may be omitted and we can get the same statement with the additional condition that $m_{1}>1$.

Recommended excercises

III-13 Homomorphisms. 32, 39-45, 47,48, 50, 52
III-14 Factor groups. 23, 24, 30, 31, 33-36, 40
III-15 Factor-Groups Computations and Simple Groups. 19-23, 34-36, 39

References

[1] J. B. Fraleigh. A First Course In Abstract Algebra. Addison Wesley, seventh edition, 2003.

[^0]: ${ }^{1}$ The fifth lecture is based on the sections 13-15 of Chapter II in A First Course in Abstract Algebra [1].

