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4. THE FOURTH LECTURE- LAGRANGE'S THEOREM AND FINITELY GENERATED ABELIAN
GROUPS

In the fourth lecture, we start by studying cosets of a sulggiia order to get to Lagrange’s
theorem and to prepare for making factor groups. Then we &iatirect products and the
structure theorem for finitely generated abelian groups.

Definition 4.1 (Cosets) Let H be a subgroup of a groug. Theleft-cosets off in G are the
subsets o7 that can be written as

gH = {ghlh € H}
for some elemeny in G. Similarly, right-cosets ofH in G are the subsets d@F that can be
written as

Hg ={hglh € H}
for some elemenj in G. G/ H.

It turns out the the cosets are the equivalence classes wfahaguivalence relations o
defined by the subgrouf.

Theorem 4.2.The relation given by ~; b < a~'b € H is an equivalence relation with the left
cosets offf as its equivalence classes.

Similarly, the right cosets off are the equivalence classesof-z b < ab~! € H.

In particular, the cosets give two partitions of the éeinto disjoint subsets.

Proof. We first check that the relations are equivalence relations:
i) (reflexivity) e 'a = aa~! = e € H,foralla € G.
ii) (symmetry(a=1b)~' = b~'a and hence~'b € H < b~'a € H sinceH is a subgroup.
We also gefab™')"! =ba! andab™ € H < ba~! € H.
i1) (transitivity) If a='b € H andb~'c € H, we geta~'c = (a7'b)(b~'c) € H. Moreover, if
ab™' € H andbc™! € H, we getac™! = (ab~!)(bc™!) € H.

The fourth lecture is based on the sections 10-11 of ChaliteAl First Course in Abstract Algebra [1].
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Now, we check that ~;, b if and only if they are in the same coset. Infact}bc H < b €
aH. Inthe same way

ab™' € H < a e Hb.

Since the equivalence classes give a partition of the segietvehat the cosets give two parti-
tions of the set7 into disjoint subsets. O

Theorem 4.3(Lagrange’s Theorem)f G is a finite group andd < G a subgroup, thenH | is
a divisor in|G|.

Proof. We know from above that the left cosets Bf form a partition of disjoint subsets. It
is now sufficient to see that all the cosets have the samencditgti In fact, we have that left
multiplication by g gives a bijection

H — gH.
O

Definition 4.4 (index). Theindexof a subgroup in the group is the number of left (or right)
cosets off in G and is denoted byG : H).

Exercise 4.5.Show that even if the groug is infinite, the index of a subgroup may be finite and
in that case, the number of left and right cosets are the same.

Corollary 4.6. a!“l = ¢ for any element: of a finite groupG, i.e., the order of: divides the
order of G.

Proof. The cyclic subgroup generated byhas an order which is the order of Because of
Lagrange’s theorem, we have that the ordefwfdivides the order of5. O]

As an easy consequence of Lagranges theorem, we get theifalaseful result from number
theory:

Theorem 4.7.Letn be any positive integer then we have that
a®™ =1 (mod n)

for all integersa relatively prime ton, where¢(n) denotes the number of positive integers less
thann which are relatively prime ta.

Proof. Let Z! denote the set of residue classes moadurehich are relatively prime ta. These
are the invertible elements i, under multiplication and they hence form a group. The order
of this multiplicative group ig(n), since this is the number of invertible residue classes haodu
n. [

Corollary 4.8 (Fermat's Theorem)a” = a (mod p) if a is an integer ang is a prime.
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4.1. Direct products.

Definition 4.9 (Direct product) If G and H are groups, we can define a group structure on the
Cartesian product;y x H, by componentwise operations:

(917 h1) * (92, hz) = (91 *G g2, 1 *g h2)7
for g1, 9, € G andhy, hy € H.
More generally, we can define this for any collection of g®{H,; }.;c; and we get thelirect
product] [, ., H;.

Remark 4.10. The direct product is associative in the sense that
3
Hl X (HQ X Hg) = (Hl X HQ) X H3 = HHZ

i=1

Theorem 4.11.The groupr:1 L, 1s cyclic and isomorphic t&,,, ..., if and only if the
numbersny, mo, ..., my are pairwise relatively prime.

Proof. The element1,1,...,1) has an order which is the least common multiple of the orders
of the factors. Hence if the numbers are pairwise relatipeiye, the product is cyclic.

If there is a common factor between any two of the numbeysms,, ..., m;, we can find
non-trivial elements of the same order in two of the factdiisese elements generates different
subgroups of the same order in the product, which cannot biecdyy the characterization of
cyclic groups. O

Definition 4.12 (Free abelian group)For any setS let s = [ [, Z be thefree abelian group
onS. (This is the same as the group of integer functions amder pointwise addition.)

Exercise 4.13.Show that for any abelian group with a generating sef, there is a a surjective
group homomorphism
FS — A.

Theorem 4.14(Fundamental Theorem of Finitely Generated Abelian Graufay finitely gen-
erated abelian group is a direct product of cyclic groups.

We will not prove this theorem completely now, but will looksome ingredients that goes
into it.

Lemma 4.15. Let A be an abelian group of ordet and for any prime divisop of n, denote by
A, the set of elements iA of p power order. Themd = [, A,.

Proof. Write n = p{"'p3? - - - pi*, wherepy, ps, . . ., py are the distinct prime divisors of. Let
¢ =n/p" =I1;.p; -
Define a homorphism
b: A, xA, x---A, —A
by ®(ay, ag,...,ar) = ar +as + -+ + a.
Assume thatt = a; + a3 + --- + a = 0. Then we have thaj;a = ¢;a; = 0, for all
1=1,2,...,k. But,¢g,a; = 0 < a; =0, sincea; hasp; power order. Hence is injective.
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To see thatb is surjective, we can find an integer = Zle b;q; such thatn = 1 (mod n).
For such an element we have that

k k
a:ma:E biqia:E a;
i=1 i=1

wherea; = bq;a € Ay, fori=1,2,... k.
To find such an integen, we note thaf[f:1 L, = Ly via the homomorphism

k
\I](bh b2’ ey bk) = Z bzqw
=1

where it is sufficient to check injectivity because the twougrs have the same ord@r(by, bs, ..., by) =
0 implies thatb; is divisible byp;" for eachi since all the terms;q; are divisible byp; for j # i.
HenceV is injective. OJ

This lemma reduces the study of finite abelian groups to tetysaf abelian groups of prime
power order, i.e., abeligngroups.
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