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3. THE THIRD LECTURE - PERMUTATIONS

In the third lecture, we take a closer look at the example of the symmetric groups of permu-
tations which turns out to be the general example in the sensethat any group is isomorphic to a
subgroup of some symmetric group. In the case of finite groups, this is Cayley’s theorem.1

Definition 3.1 (Symmetric group). If X is any set, thesymmetric group onX is the set of
bijective functionsσ : X −→ X under composition. In the special case whenX = {1, 2, . . . , n},
we writeSn for S{1,2,...,n} — the symmetric group onn letters.

We shall now look more closely on finite permutations. There are several notations we use for
the same permutation:

Example 3.2.Letσ denote the pemutation inS7 which is given byσ(1) = 4, σ(2) = 6, σ(3) = 3,
σ(4) = 7, σ(5) = 5, σ(6) = 2, σ(7) = 1, can be written in thetwo-row notationas

σ =

(

1 2 3 4 5 6 7
4 6 3 7 5 2 1

)

=





1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓
4 6 3 7 5 2 1





in theone-row notationas
σ = [4 6 3 7 5 2 1]

or in thecycle notationas
σ = (1 4 7)(2 6)(3)(5)

sinceσ partitions the set{1, 2, . . . , 7} into the four disjoint cycles

1
σ
7→ 4

σ
7→ 7

σ
7→ 1, 2

σ
7→ 6

σ
7→ 2, 3

σ
7→ 3, 5

σ
7→ 5

of lengths3, 2, 1 and1. We often omit the cycles of length one and writeσ = (1 4 7)(2 6).

Theorem 3.3.If X is finite, any permutationσ in SX is a product of disjoint cyclic permutations.
The cycles are the minimal invariant subsets.

1The third lecture is based on the sections 8-9 of Chapter II inA First Course in Abstract Algebra [1].
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Proof. Let x be any element ofX and letY = {σi(x)|i ∈ Z} — theorbit of x underσ. Now
Y is an invariant subset ofX which contains no non-empty subset invariant underσ. Thusσ

defines a cyclic permutation onY .
Moreover,σ defines a permutation ofX \ Y , and by induction on|X|, we can write this

permutation as a product of cycles. (The base for the induction is the empty set for which the
statement is trivially true.) �

Definition 3.4 (Cycle type). The cycle type, or just type, of the permutationσ ∈ Sn is the
partition of the integern into cycle lengths corresponding to the lengths of the cycles inσ.

Definition 3.5 (Conjugate permutations). Two permutations,σ andτ , are the same up to rela-
belling of the elements ofX if there is a permutationρ such that

σ = ρ−1τρ.

which means that the diagram
X

σ
−→ X

ρ ↓ ρ ↓

X
τ

−→ X

commutes.

Remark 3.6. Observe that the same definition makes sense for any groupG. In particular, we
recognize this from linear algebra when two matrices,A andP−1AP , define the same linear map
with respect to different bases.

Exercise 3.7.Show that ifX is finite, two permutations inSX are conjugate if and only if they
have the same cycle type.

Exercise 3.8.Show that the symmetric groupSn is generated by the adjacent transpositions,
(1 2), (2 3),. . . ,(n − 1 n).

Definition 3.9 (Inversions, length). An inversionin a permutationσ ∈ Sn is a pair(i, j), such
that1 ≤ i < j ≤ n andσ(i) > σ(j). The number of inversions inσ is thelengthof σ, denoted
by ℓ(σ).

Example 3.10.The permutationσ = [4 6 3 7 5 2 1] has has lengthℓ(σ) = 3+4+2+3+2+1 = 15
since4 comes before3 smaller numbers,6 comes before4 smaller numbers, etc.

Theorem 3.11.The length ofσ equals the minimal number of factors in an expressionσ =
si1si2 · · · siℓ, wheresi1, si2 , . . . , siℓ are adjacent transpositions.

Idea of proof.The number of inversions is either increased or decreased byone by multiplication
with an adjacent transpositionsi = (i i + 1). Thusℓ(σ) is a lower bound for the numbers of
adjacent transpositions needed. On the other hand, we can make sure to use only transpositions
that increases the length, so it can be done withℓ(σ) transpositions. �

Example 3.12.
(1 4) = [4 2 3 1] = (1 2)(2 3)(3 4)(2 3)(1 2)

andℓ([4 2 3 1]) = 3 + 1 + 1 = 5.
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Definition 3.13 (Even and odd permutations, sign). A permutationσ ∈ Sn is evenor odd de-
pending on if its length is even or odd. The sign ofσ is +1 if σ is even and−1 if σ is odd.

Theorem 3.14.The sign function defines a group homomorphism

sgn : Sn −→ {±1}.

Proof. Let σ andτ be permutaions of lengtha = ℓ(σ) andb = ℓ(τ). Then we can writeστ as a
product ofa + b adjacent transpositions. Since the length increases or decreases by one for each
factor in such an expression, we get that

ℓ(στ) ≡ a + b (mod 2).

Hence
sgn(στ) = (−1)a+b = (−1)a(−1)b = sgn(σ) sgn(τ)

which proves thatsgn is a group homomorphism. �

Definition 3.15(Alternating group). The even permutations form a subgroupAn of the symmet-
ric groupSn. This subgroup is called thealternating group onn letters.

Remark 3.16. Seen in this way, it is clear thatAn ≤ Sn, since it is the kernel of the homomor-
phismsgn.

3.1. Group actions. For any groupG we say thatG actson a setX of there is an operation

G × X −→ X

(g, x) 7−→ g.x

such that
(1) (g ∗ h).x = g.(h.x), for all g, h ∈ G andx ∈ X.
(2) e.x = x, for all x ∈ X.

Remark 3.17. This is a generalization of the way we look at the symmetric group onX as
function onX. The symmetric group onX acts onX by definition.

Theorem 3.18.An action ofG on the setX is equivalent to a group homomorphismG → SX .

Proof. If we have a group action, we can define functionG −→ SX by g 7→ σg, whereσg

is the permutation given byσg(x) = g.x, ∀x ∈ X. Observe thatσg is a permutation since
σg ◦ σg−1 = σe = Id by (1) and (2).

On the other hand, given a group homomorphismφ : G −→ SX , we can define a group action
onX by

g.x = φ(g)(x), ∀g ∈ G, ∀x ∈ X.

This is a group action sincee ∈ G is mapped to the identity permutation and

(g ∗ h).x = φ(g ∗ h)(x) = (φ(g) ◦ φ(h))(x) = φ(g)(φ(h)(x)) = g.(h.x).

�

Definition 3.19 (Faithful action). The action ofG on X is faithful if all elements ofG corre-
sponds to different permutations, i.e., if the corresponding homommorphism is injective.
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Theorem 3.20(Cayley’s theorem). Any finite groupG is isomorphic to a subgroup of a symmet-
ric group.

Proof. The groupG acts on thesetG by the binary operation. Hence we have a homomorphism
G −→ SG and in order to conclude the theorem, it is sufficient to see that this is an injective ho-
momorphism, i.e., that the action is faithful. (An injective homomorphism gives an isomorphism
between the source and the image.)

Suppose thatg andh acts in the same way. Then we have thatg.e = g = h.e = h, which
implies thatg = h. �

In general,G can be identified with a subgroup of a much smaller symmetric group. The good
news in the theorem is that we don’t loose any generality by just studying permutation groups,
rather than all finite groups.

Definition 3.21 (Orbits). If G acts onX we define theorbit of x ∈ X underG as

Gx = {g.x|g ∈ G}.

Theorem 3.22.The action ofG on X partitionsX into disjoint orbits. In particular we have
thatGx = Gy or Gx ∩ Gy = ∅.

Proof. If x ∈ Gy, we have thatx = h.y for some elementh ∈ G. Hence we have that

Gx = {g.x|g ∈ G} = {g.(h.y)|g ∈ G} = {gh.y|g ∈ G} = {g.y|g ∈ Gh} = {g.y|g ∈ G} = Gy

sinceGh = {gh|g ∈ G} = G.
If Gx∩Gy 6= ∅ we can findg, h ∈ G such thatg.x = h.y, but this means thatx = g−1.(g.x) =

g−1.(h.y) = (g−1h).y ∈ Gy. Hence by the above argumentGx = Gy.
Any element inx is in some orbit,Gx, which proves that the orbits partitionX into disjoint

subsets. �

Example 3.23.We can look at the symmetry groupG of the cube as acting on different sets:
• The set of six faces.G acts faithfully and we getG →֒ S6.
• The set of eight corners.G acts faithfully and we getG →֒ S8.
• The set of twelve edges.G acts faithfully and we getG →֒ S12.
• The set of four diagonals.G acts faithfully and we getG →֒ S4. Actually, this is an

isomorphism.
• The set of three pairs of opposite faces.G does not act faithfully and we get a surjective

homomorphism,G −→ S3.
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