

KTH Teknikvetenskap

SF2729 GROUPS AND RINGS LECTURE NOTES 2010-05-06

SANDRA DI ROCCO

CONTENTS

1.	Vector spaces over a field	1
2.	Field extensions	2
3.	Algebraic Extensions	3
Recommended excercises		5

1. VECTOR SPACES OVER A FIELD

This is a notion that you have studied in linear algebra when the fields considered were only \mathbb{R} or \mathbb{C} . All the important results on vectors, basis and dimension generalize to all fields. The scalars are no longer just real or complex numbers, but the elements of a field.

Definition 1.1. Let F be a fileld. A vector space over F consists of an abelian group (V, +) endowed with a "scalar multiplication", i.e a function

 $F \times V \to V, (a, v) \mapsto av \in V,$

such that:

(1) (ab)v = a(bv),(2) (a + b)v = av + bv,(3) a(v + w) = av + aw,(4) $1_Fv = v.$

Example 1.2. $\mathbb{R}^n, F^n, M_{m,n}(\mathbb{C})$. For all fields F, F[x] is a vector space over F.

Example 1.3. Let K be a subfield of F. Then F is a vector space over K with scalar multiplication given by the operation of multiplication.

Definition 1.4. $W \subset V$ is a subvector space if it is a subgroup and the scalar multiplication restricts to a scalar multiplication on W.

SANDRA DI ROCCO

- **Definition 1.5.** A vector v is a linear combination on vectors (v_1, \ldots, v_l) if there are elements a_1, \ldots, a_l such that $v = \sum_{i=1}^{l} a_i v_i$.
 - Elements v_1, \ldots, v_k are linearly independent if:

$$a_1v_1 + \ldots + a_kv_k = 0_V \Rightarrow a_1 = \ldots = a_k = 0_F.$$

Elements v_1, \ldots, v_k are linearly dependent if there are a_1, \ldots, a_k (at least one of which non zero) such that $a_1v_1 + \ldots + a_kv_k = v$.

- Let $I = \{v_i\}$ be a set of vectors in V (possibly infinite). By Span(I) we denote the subvectorspace of all possible finite linear combinations of vectors in I.
- V is said to be *finitely generated* if there is a finite number v_1, \ldots, v_k , such that $V = Span(v_1, \ldots, v_k)$.
- A subset $B = \{v_1, \ldots, v_k\} \subset V$ is a basis of V is $V = Span(v_1, \ldots, v_k)$ and v_1, \ldots, v_k are linearly independent.

Example 1.6. Consider $\mathbb{Q}[\sqrt{2}]$. It is a vector space over \mathbb{Q} with scalar product:

$$(q, a + b\sqrt{2}) \mapsto (qa) + (qb)\sqrt{2}.$$

One sees that the vectors $(1, \sqrt{2})$ are linearly independent and generate the whole space.

Similarly to what showed in linear algebra one proves that two basis must have the same number of vectors and thus defines:

 $\dim(V) = n$ is there is a basis consisting of n vectors.

otherwise one says that V is infinite dimensional.

Example 1.7. The polynomials F[x] is an infinite dimensional vector space over F. If one looks at only polynomial up to degree k, $F_k[x]$ then this is a vector space over F of dimension k + 1. The vector space $\mathbb{Q}[\sqrt{2}]$ has dimension 2 over \mathbb{Q} .

2. FIELD EXTENSIONS

Definition 2.1. We say that a field L is an extension of a field K if K is a subfield of L.

Example 2.2. \mathbb{R} and \mathbb{C} are extensions of \mathbb{Q} . The field $\mathbb{Z}_3[x]/x^2 + 1$ is an extension of \mathbb{Z}_3 .

Definition 2.3. Let *L* be an extension of *K*. The degree of the extension is:

$$[L:K] = \dim_K(F)$$

If the dimension if finite then the extension is said to be a finite extension.

Example 2.4. Notice that $\mathbb{C} = Span_{\mathbb{R}}(1, i)$, it is then a finite extension with degree $[\mathbb{C}, \mathbb{R}] = 2$. Another example of fine extension is $\mathbb{Z}_3[x]/x^2 + 1$. Every element is a combination of $1 + (x^2 + 1)$ and $x + (x^2 + 1)$. This two elements are linearly independent and thus:

$$\dim_{\mathbb{Z}}(\mathbb{Z}_3[x]/x^2 + 1) = [\mathbb{Z}_3[x]/x^2 + 1 : \mathbb{Z}_3] = 2.$$

Proposition 2.5. Assume that L is an extension of K and K is an extension of F. Then

[L:F] = [L:K][K:F].

SF2729 GROUPS AND RINGS LECTURE NOTES 2010-05-06

Proof. Notice that if L is an infinite extension of K it will be an infinite extension of F. Viceversa if K is an infinite extension of F then L will certainly be an infinite extension of F. We may assume that the extensions are finite. Let [L : K] = m, [K : F] = n. Let a_1, \ldots, a_n a basis of K over F and let b_1, \ldots, b_m a basis of L over K. We shal prove that $\{a_i b_j\}$ for a basis of L over F. They certainly generate L as for every element $a \in L, a = \sum \beta_i b_i$ and for every $\beta_i \in K, \beta_i = \sum \alpha_{ij} a_j$. Now assume that

$$\sum_{i=1}^m \sum_{j=1}^n \gamma_{ij} a_i b_j = 0_L.$$

Then $\sum_{1}^{n} \gamma_{ij} a_i = 0_K$ for j = 1, ..., m. But then we have that $\gamma_{ij} = 0_F$ for all i = 1 ... n.

EXERCISE Prove that if L is an extension of K then L = K if and only if [L : K] = 1.

Observe that one can define an extension by "adding" certain elements. Let S be a set of elements of a field L and let K be a subfields of L. one can define K(S) to be the smallest subfield of L containing K and S. This is an extension of K. For example $\mathbb{R}(i) = \mathbb{C}$. If $S = \{a\}$ the extension K(a) is said to be a *simple extension*.

EXERCISE Show that $F[a] = Im(ev_a : K[x] \to L) \subseteq F(a)$ and that F[a] = F(a) if and only if F[a] is a field.

3. Algebraic Extensions

Definition 3.1. Let *L* be an extension of *K*. An element $\alpha \in L$ is said to be *algebraic over F* if there is a $0 \neq f(x) \in F[x]$ such that $f(\alpha) = 0_L$, i.e. $f \in Ker(ev_\alpha)$.

Example 3.2. The elements $\sqrt{2}$, *i* are algebraic over \mathbb{Q} because they are roots of $x^2 - 2$, $x^2 + 1$.

Definition 3.3. An extension L over K is said to be an *algebraic extension* if every element $\alpha \in L$ is algebraic over K. An extension which is not algebraic is said to be *trascendental*.

Example 3.4. \mathbb{C} is an algebraic extension of \mathbb{R} and \mathbb{R} is an algebraic extension of \mathbb{Q} .

Proposition 3.5. *Every finite extension is algebraic.*

Proof. Let L be an extension of K with [L:K] = n. Let $\alpha \in L$. The elements $1, \alpha, \alpha^2, \ldots, \alpha^n$ must be linearly independent over K which means that there are $a_0, \ldots, a_n \in K$ such that $a_0+a_1\alpha+\ldots+a_n\alpha^n=0$. Obviously α is the root of the polynomial $f(x) = \sum a_i x^i \in K[x]$. \Box

As observed above, if $a \in L$ and L is an extension of K the we have that

$$K[a] \cong K[x]/Ker(ev_a).$$

Because F[x] is a PID there is a polynomial $f_a \in K[x]$ such that $Ker(ev_a) = (f_a)$. Recall that f_a is uniquely defined up to a non vanishing constant. In particular there is ONLY one generator which is monic, i.e. with leading coefficient equal to one.

The monic generator is called the *minimal polynomial of a over K*.

SANDRA DI ROCCO

Proposition 3.6. Let L be an extension of K and let $a \in L$. Let $p(x) \in K[x]$ be a monic polynomial. The following statements are equivalent:

- (1) p(x) if the minimal polynomial of a over K.
- (2) p(x) is irreducible and p(a) = 0.

(3) p(x) is the minimal polynomial (w.r.t degree) in $Ker(ev_a)$.

Proof. (1)Rightarrow(2) Let p(x) be the minimal polynomial of a over K. then clearly p(a) = 0. If p(x) = g(x)h(x) then g(a) = 0 or f(a) = 0. Assume g(a) = 0 then $g \in Ker(ev_a)$ and this p/g. But we are assuming that g/p which is a contradiction.

(2) \Rightarrow (1) Because p(a) = 0 then f_a/p and because p is irreducible it is $p = \alpha f_a$ for a constant $\alpha \in K^*$. But f_a and p are monic which implies $\alpha = 1$.

 $(1) \Rightarrow (3)$ Obvious. $(3) \Rightarrow (1)$. Such p is certainly a generator of $Ker(ev_a)$.

We conclude that $K[x]/(f_a) \cong K[a]$. Because f_a is irreducible the ideal (f_a) is a maximal ideal and therefore F[a] is a field and it follows that:

$$K[a] = K(a).$$

If $\deg(f_a) = n$, we have that

$$F[a] = \{\sum_{0}^{n-1} a_i x^i + (f_a)\}$$

It follows that the elements $1 + (f_a)$, $x + (f_a)$, ..., $x^{n-1} + (f_a)$ for a basis for $K[x]/(f_a)$ and thus using the isomorphism:

$$K[x]/(f_a) \cong K[a]$$
 via $p(x) + (f_a) \mapsto p(a)$

we see that $1, a, \ldots, a^{n-1}$ is a basis of K(a) and that

$$[F(a):F] = n$$

Example 3.7. the polynomial $x^2 - 2$ is the minimal polynomial for $\sqrt{2}$ over \mathbb{Q} . we have then that:

$$\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}[x]/(x^2 - 1)$$

Similarly $\mathbb{C} \cong \mathbb{R}(i) \cong \mathbb{R}[i] \cong \mathbb{R}[x]/(x^2+1)$.

We can then conclude that:

 α is algebraic over K if and only if $K(\alpha) = K[\alpha]$ is a finite extension of K and moreover $[K(\alpha) : K]$ is equal to the degree of the minimal polynomial of α over K.

EXERCISE Let L be a field extension of K. Show that the set of the elements in L which are algebraic over K is a subfield of L containing K.

Definition 3.8. This subfield is said to be the algebraic closure of K in L. If the algebraic closure of a field K is the flied K itself then K is said to be algebraically closed.

Example 3.9. The field \mathbb{Q} is not algebraically closed in \mathbb{R} , we know that $\sqrt{2} \notin \mathbb{Q}$. Observe that for every $n \ge 1$ then $[Q(\sqrt{2}^n) : Q] = n$ since $x^n - 2$ is the minimal polynomial. It follows that if $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} is \mathbb{R} then:

$$[\overline{\mathbb{Q}}:Q] \ge [Q(\sqrt{2}^n):Q] = n \text{ for all } n \ge 1$$

which implies that $\overline{\mathbb{Q}}$ is not a finite extension. This shows that Proposition 3.5 cannot be inverted.

EXERCISE Let F be a subfield of L. Show that the algebraic closure of F in L is algebraically closed.

RECOMMENDED EXCERCISES

- VI-29 29, 30, 31, 36, 37.
- VI-30 21, 22, 24.
- VI-31 22, 23, 24, 25, 28