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1. VECTOR SPACES OVER A FIELD

This is a notion that you have studied in linear algebra when the fields considered were only
R or C. All the important results on vectors, basis and dimension generalize to all fields. The
scalars are no longer just real or complex numbers, but the elements of a field.

Definition 1.1. Let F' be a fileld. A vector space over F' consists of an abelian group (V, +)
endowed with a “scalar multiplication”, i.e a function

FxV =V, (a,v) —av €V,

such that:
(1) (ab)v = a(bv),
(2) (a+b)v = av+ bu,
3) a(v +w) = av + aw,
@) 1p0 = 0.

Example 1.2. R", ", M,, ,(C). For all fields F, F'[z] is a vector space over I

Example 1.3. Let K be a subfield of F'. Then F' is a vector space over /K with scalar multipli-
cation given by the operation of multiplication.

Definition 1.4. W C V is a subvector space if it is a subgroup and the scalar multiplication
restricts to a scalar multiplication on WW.
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Definition 1.5. e A vector v is a linear combination on vectors (vy,...,v;) if there are
elements ay, ... q; such that v = le a;v;.
e Elements vy, ..., vy are linearly independent if:
a1+ ...+avr =0y = a1 =...=a; = 0p.
Elements vy, ..., v, are linearly dependent if there are aq, ..., a; (at least one of which

non zero) such that a;v; + ... + apvg = v.

e Let [ = {v;} be a set of vectors in V' (possibly infinite). By Span(I) we denote the
subvectorspace of all possible finite linear combinations of vectors in /.

e V is said to be finitely generated if there is a finite number vy, ..., vy, such that V' =
Span(vy, ..., vg).

e Asubset B = {vy,...,v} C Visabasisof VisV = Span(vy,...,v) and vy, ..., v
are linearly independent.

Example 1.6. Consider Q[v/2]. It is a vector space over Q with scalar product:
(q,a 4 bV2) — (qa) + (gb)V/2.
One sees that the vectors (1, v/2) are linearly independent and generate the whole space.

Similarly to what showed in linear algebra one proves that two basis must have the same
number of vectors and thus defines:

dim (V') = n is there is a basis consisting of n vectors.

otherwise one says that V' is infinite dimensional.

Example 1.7. The polynomials F'[z] is an infinite dimensional vector space over F. If one looks
at only polynomial up to degree k, F},[x] then this is a vector space over F' of dimension k + 1.
The vector space Q[v/2] has dimension 2 over Q.

2. FIELD EXTENSIONS
Definition 2.1. We say that a field L is an extension of a field K if K is a subfield of L.
Example 2.2. R and C are extensions of Q. The field Z3[z]/x* + 1 is an extension of Zs.
Definition 2.3. Let L be an extension of K. The degree of the extension is:
[L: K] =dimg(F)
If the dimension if finite then the extension is said to be a finite extension.

Example 2.4. Notice that C = Spang(1,7), it is then a finite extension with degree [C, R] = 2.
Another example of fine extension is Zs[z]/x? + 1. Every element is a combination of 1 +
(z? + 1) and = + (22 + 1). This two elements are linearly independent and thus:

dimg (Zs[x]/2* + 1) = [Zs]x]/2* + 1 : Zs] = 2.
Proposition 2.5. Assume that L is am extension of K and K is an extension of F'. Then
[L:F|=I[L:K|K:F|.
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Proof. Notice that if L is an infinite extension of K it will be an infinite extension of F'. Viceversa
if K is an infinite extension of /' then L will certainly be an infinite extension of /. We may
assume that the extensions are finite. Let [L : K| = m,[K : F| = n. Let a4, ...a, a basis
of K over F' and let by,...,b,, a basis of L over /. We shal prove that {a;b;} for a basis of
L over F. They certainly generate L as for every element a € L,a = ) (;b; and for every
Bi € K, B; = ) a;ja;. Now assume that

Z Z 'yijaibj = OL-
=1 j=1

Then | 7;ja; = Ok for j = 1,...m. But then we have that 7;; = Op foralli =1...n. 0

EXERCISE Prove that if L is an extension of K then L = K if and only if [L : K] = 1.

Observe that one can define an extension by “adding” certain elements. Let S be a set of
elements of a field L and let K be a subfields of L. one can define K (S) to be the smallest
subfield of L containing K and S. This is an extension of K. For example R(i) = C.If S = {a}
the extension K (a) is said to be a simple extension.

EXERCISE Show that F'la] = Im(ev, : K[z] — L) C F(a) and that F'[a] = F(a) if and only
if F'[a] is a field.
3. ALGEBRAIC EXTENSIONS

Definition 3.1. Let L be an extension of K. An element o € L is said to be algebraic over F'if
thereisa 0 # f(x) € F[z] such that f(«) = 0, i.e. f € Ker(ev,).

Example 3.2. The elements /2, i are algebraic over Q because they are roots of 22 — 2, 2% + 1.

Definition 3.3. An extension L over K is said to be an algebraic extension if every element
a € L is algebraic over K. An extension which is not algebraic is said to be trascendental.

Example 3.4. C is an algebraic extension of R and R is an algebraic extension of Q.
Proposition 3.5. Every finite extension is algebraic.

Proof. Let L be an extension of K with [L : K] = n. Leta € L. The elements 1, o, a?, ..., a"
must be linearly independent over K° which means that there are ao,...,a, € K such that
ap+aja+. . .+a,a™ = 0. Obviously « is the root of the polynomial f(z) = > a;2* € K[z]. O

As observed above, if a € L and L is an extension of /X the we have that
Kla| = K[z]/Ker(ev,).

Because F[x] is a PID there is a polynomial f, € K[z| such that Ker(ev,) = (f,). Recall that
fo 1s uniquely defined up to a non vanishing constant. In particular there is ONLY one generator
which is monic, i.e. with leading coefficient equal to one.

The monic generator is called the minimal polynomial of a over K.
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Proposition 3.6. Let L be an extension of K and let a € L. Let p(x) € K|x] be a monic
polynomial. The following statements are equivalent:

(1) p(z) if the minimal polynomial of a over K.
(2) p(x) is irreducible and p(a) = 0.
(3) p(z) is the minimal polynomial (w.r.t degree) in Ker(ev,).

Proof. (1) Rightarrow(2) Let p(x) be the minimal polynomial of a over K. then clearly p(a) =
0.If p(z) = g(x)h(x) then g(a) = 0 or f(a) = 0. Assume g(a) = 0 then g € Ker(ev,) and this
p/g. But we are assuming that ¢g/p which is a contradiction.

(2) = (1) Because p(a) = 0 then f,/p and because p is irreducible it is p = a.f, for a constant
a € K*. But f, and p are monic which implies o = 1.

(1) = (3) Obvious. (3) = (1). Such p is certainly a generator of Ker(ev,). O

We conclude that K[z]/(f,) & K]la]. Because f, is irreducible the ideal (f,) is a maximal
ideal and therefore F'[a] is a field and it follows that:

Kla] = K(a).
If deg(f,) = n, we have that

n—1

Fla) = {3 ai' + (f)}.

0
It follows that the elements 1+ (f,), z+ (fa), ..., 2" '+ (f,) for a basis for K[x]/(f,) and thus
using the isomorphism:

Klx]/(fa) = Kla] via p(z) + (fa) — p(a)
we see that 1,a, ...,a" ! is a basis of K (a) and that

[F(a): F| =n.

Example 3.7. the polynomial > — 2 is the minimal polynomial for v/2 over Q. we have then
that:
Q(v2) = Q[v2] = Qlz]/(2* - 1)
Similarly C = R() & R[] = R[z]/(2* 4+ 1).
We can then conclude that:

« is algebraic over K if and only if K(«) = Kla] is a finite extension of K and moreover
[K () : K] is equal to the degree of the minimal polynomial of o over K.

EXERCISE Let L be a field extension of /. Show that the set of the elements in L which are
algebraic over K is a subfield of L containing K.

Definition 3.8. This subfield is said to be the algebraic closure of K in L. If the algebraic closure
of a field K is the flied K itself then K is said to be algebraically closed.
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Example 3.9. The field Q is not algebraically closed in R, we know that v/2 ¢ Q. Observe that
for every n > 1 then [Q(\/ﬁn) : Q] = n since ™ — 2 is the minimal polynomial. It follows that
if Q is the algebraic closure of QQ is R then:

@:Q] > [Q(V2"): Q] =nforalln>1
which implies that Q is not a finite extension. This shows that Proposition 3.5 cannot be inverted.

EXERCISE Let F' be a subfield of L. Show that the algebraic closure of F'in L is algebraically
closed.
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