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1. VECTOR SPACES OVER A FIELD

This is a notion that you have studied in linear algebra when the fields considered were only
R or C. All the important results on vectors, basis and dimension generalize to all fields. The
scalars are no longer just real or complex numbers, but the elements of a field.

Definition 1.1. Let F be a fileld. A vector space over F consists of an abelian group (V,+)
endowed with a “scalar multiplication”, i.e a function

F × V → V, (a, v) 7→ av ∈ V,
such that:

(1) (ab)v = a(bv),
(2) (a+ b)v = av + bv,
(3) a(v + w) = av + aw,
(4) 1Fv = v.

Example 1.2. Rn, F n,Mm,n(C). For all fields F , F [x] is a vector space over F.

Example 1.3. Let K be a subfield of F . Then F is a vector space over K with scalar multipli-
cation given by the operation of multiplication.

Definition 1.4. W ⊂ V is a subvector space if it is a subgroup and the scalar multiplication
restricts to a scalar multiplication on W.
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Definition 1.5. • A vector v is a linear combination on vectors (v1, . . . , vl) if there are
elements a1, . . . al such that v =

∑l
1 aivi.

• Elements v1, . . . , vk are linearly independent if:

a1v1 + . . .+ akvk = 0V ⇒ a1 = . . . = ak = 0F .

Elements v1, . . . , vk are linearly dependent if there are a1, . . . , ak (at least one of which
non zero) such that a1v1 + . . .+ akvk = v.
• Let I = {vi} be a set of vectors in V (possibly infinite). By Span(I) we denote the

subvectorspace of all possible finite linear combinations of vectors in I.
• V is said to be finitely generated if there is a finite number v1, . . . , vk, such that V =
Span(v1, . . . , vk).
• A subset B = {v1, . . . , vk} ⊂ V is a basis of V is V = Span(v1, . . . , vk) and v1, . . . , vk

are linearly independent.

Example 1.6. Consider Q[
√

2]. It is a vector space over Q with scalar product:

(q, a+ b
√

2) 7→ (qa) + (qb)
√

2.

One sees that the vectors (1,
√

2) are linearly independent and generate the whole space.

Similarly to what showed in linear algebra one proves that two basis must have the same
number of vectors and thus defines:

dim(V ) = n is there is a basis consisting of n vectors.

otherwise one says that V is infinite dimensional.

Example 1.7. The polynomials F [x] is an infinite dimensional vector space over F. If one looks
at only polynomial up to degree k, Fk[x] then this is a vector space over F of dimension k + 1.
The vector space Q[

√
2] has dimension 2 over Q.

2. FIELD EXTENSIONS

Definition 2.1. We say that a field L is an extension of a field K if K is a subfield of L.

Example 2.2. R and C are extensions of Q. The field Z3[x]/x
2 + 1 is an extension of Z3.

Definition 2.3. Let L be an extension of K. The degree of the extension is:

[L : K] = dimK(F )

If the dimension if finite then the extension is said to be a finite extension.

Example 2.4. Notice that C = SpanR(1, i), it is then a finite extension with degree [C,R] = 2.
Another example of fine extension is Z3[x]/x

2 + 1. Every element is a combination of 1 +
(x2 + 1) and x+ (x2 + 1). This two elements are linearly independent and thus:

dimZ(Z3[x]/x
2 + 1) = [Z3[x]/x

2 + 1 : Z3] = 2.

Proposition 2.5. Assume that L is am extension of K and K is an extension of F . Then

[L : F ] = [L : K][K : F ].
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Proof. Notice that ifL is an infinite extension ofK it will be an infinite extension of F . Viceversa
if K is an infinite extension of F then L will certainly be an infinite extension of F. We may
assume that the extensions are finite. Let [L : K] = m, [K : F ] = n. Let a1, . . . an a basis
of K over F and let b1, . . . , bm a basis of L over K. We shal prove that {aibj} for a basis of
L over F. They certainly generate L as for every element a ∈ L, a =

∑
βibi and for every

βi ∈ K, βi =
∑
αijaj. Now assume that

m∑
i=1

n∑
j=1

γijaibj = 0L.

Then
∑n

1 γijai = 0K for j = 1, . . .m. But then we have that γij = 0F for all i = 1 . . . n. �

EXERCISE Prove that if L is an extension of K then L = K if and only if [L : K] = 1.

Observe that one can define an extension by ”adding” certain elements. Let S be a set of
elements of a field L and let K be a subfields of L. one can define K(S) to be the smallest
subfield of L containing K and S. This is an extension of K. For example R(i) = C. If S = {a}
the extension K(a) is said to be a simple extension.

EXERCISE Show that F [a] = Im(eva : K[x] → L) ⊆ F (a) and that F [a] = F (a) if and only
if F [a] is a field.

3. ALGEBRAIC EXTENSIONS

Definition 3.1. Let L be an extension of K. An element α ∈ L is said to be algebraic over F if
there is a 0 6= f(x) ∈ F [x] such that f(α) = 0L, i.e. f ∈ Ker(evα).

Example 3.2. The elements
√

2, i are algebraic over Q because they are roots of x2 − 2, x2 + 1.

Definition 3.3. An extension L over K is said to be an algebraic extension if every element
α ∈ L is algebraic over K. An extension which is not algebraic is said to be trascendental.

Example 3.4. C is an algebraic extension of R and R is an algebraic extension of Q.

Proposition 3.5. Every finite extension is algebraic.

Proof. Let L be an extension of K with [L : K] = n. Let α ∈ L. The elements 1, α, α2, . . . , αn

must be linearly independent over K which means that there are a0, . . . , an ∈ K such that
a0+a1α+. . .+anα

n = 0.Obviously α is the root of the polynomial f(x) =
∑
aix

i ∈ K[x]. �

As observed above, if a ∈ L and L is an extension of K the we have that

K[a] ∼= K[x]/Ker(eva).

Because F [x] is a PID there is a polynomial fa ∈ K[x] such that Ker(eva) = (fa). Recall that
fa is uniquely defined up to a non vanishing constant. In particular there is ONLY one generator
which is monic, i.e. with leading coefficient equal to one.

The monic generator is called the minimal polynomial of a over K.
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Proposition 3.6. Let L be an extension of K and let a ∈ L. Let p(x) ∈ K[x] be a monic
polynomial. The following statements are equivalent:

(1) p(x) if the minimal polynomial of a over K.
(2) p(x) is irreducible and p(a) = 0.
(3) p(x) is the minimal polynomial (w.r.t degree) in Ker(eva).

Proof. (1)Rightarrow(2) Let p(x) be the minimal polynomial of a over K. then clearly p(a) =
0. If p(x) = g(x)h(x) then g(a) = 0 or f(a) = 0. Assume g(a) = 0 then g ∈ Ker(eva) and this
p/g. But we are assuming that g/p which is a contradiction.

(2)⇒ (1) Because p(a) = 0 then fa/p and because p is irreducible it is p = αfa for a constant
α ∈ K∗. But fa and p are monic which implies α = 1.

(1)⇒ (3) Obvious. (3)⇒ (1). Such p is certainly a generator of Ker(eva). �

We conclude that K[x]/(fa) ∼= K[a]. Because fa is irreducible the ideal (fa) is a maximal
ideal and therefore F [a] is a field and it follows that:

K[a] = K(a).

If deg(fa) = n, we have that

F [a] = {
n−1∑

0

aix
i + (fa)}.

It follows that the elements 1+(fa), x+(fa), . . . , x
n−1 +(fa) for a basis for K[x]/(fa) and thus

using the isomorphism:

K[x]/(fa) ∼= K[a] via p(x) + (fa) 7→ p(a)

we see that 1, a, . . . , an−1 is a basis of K(a) and that

[F (a) : F ] = n.

Example 3.7. the polynomial x2 − 2 is the minimal polynomial for
√

2 over Q. we have then
that:

Q(
√

2) ∼= Q[
√

2] ∼= Q[x]/(x2 − 1)

Similarly C ∼= R(i) ∼= R[i] ∼= R[x]/(x2 + 1).

We can then conclude that:
α is algebraic over K if and only if K(α) = K[α] is a finite extension of K and moreover

[K(α) : K] is equal to the degree of the minimal polynomial of α over K.

EXERCISE Let L be a field extension of K. Show that the set of the elements in L which are
algebraic over K is a subfield of L containing K.

Definition 3.8. This subfield is said to be the algebraic closure ofK in L. If the algebraic closure
of a field K is the flied K itself then K is said to be algebraically closed.
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Example 3.9. The field Q is not algebraically closed in R, we know that
√

2 6∈ Q. Observe that
for every n ≥ 1 then [Q(

√
2
n
) : Q] = n since xn − 2 is the minimal polynomial. It follows that

if Q is the algebraic closure of Q is R then:

[Q : Q] ≥ [Q(
√

2
n
) : Q] = n for all n ≥ 1

which implies that Q is not a finite extension. This shows that Proposition 3.5 cannot be inverted.

EXERCISE Let F be a subfield of L. Show that the algebraic closure of F in L is algebraically
closed.
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