
 KTH Teknikvetenskap
 SF2729 GROUPS AND RINGS
 LECTURE NOTES
 2010-05-06

SANDRA DI ROCCO

Contents

1. Vector spaces over a field
2. Field extensions 2
3. Algebraic Extensions 3

Recommended excercises

1. Vector spaces over a field

This is a notion that you have studied in linear algebra when the fields considered were only \mathbb{R} or \mathbb{C}. All the important results on vectors, basis and dimension generalize to all fields. The scalars are no longer just real or complex numbers, but the elements of a field.

Definition 1.1. Let F be a fileld. A vector space over F consists of an abelian group $(V,+)$ endowed with a "scalar multiplication", i.e a function

$$
F \times V \rightarrow V,(a, v) \mapsto a v \in V
$$

such that:
(1) $(a b) v=a(b v)$,
(2) $(a+b) v=a v+b v$,
(3) $a(v+w)=a v+a w$,
(4) $1_{F} v=v$.

Example 1.2. $\mathbb{R}^{n}, F^{n}, M_{m, n}(\mathbb{C})$. For all fields $F, F[x]$ is a vector space over F.
Example 1.3. Let K be a subfield of F. Then F is a vector space over K with scalar multiplication given by the operation of multiplication.
Definition 1.4. $W \subset V$ is a subvector space if it is a subgroup and the scalar multiplication restricts to a scalar multiplication on W.

Definition 1.5. - A vector v is a linear combination on vectors $\left(v_{1}, \ldots, v_{l}\right)$ if there are elements $a_{1}, \ldots a_{l}$ such that $v=\sum_{1}^{l} a_{i} v_{i}$.

- Elements v_{1}, \ldots, v_{k} are linearly independent if:

$$
a_{1} v_{1}+\ldots+a_{k} v_{k}=0_{V} \Rightarrow a_{1}=\ldots=a_{k}=0_{F}
$$

Elements v_{1}, \ldots, v_{k} are linearly dependent if there are a_{1}, \ldots, a_{k} (at least one of which non zero) such that $a_{1} v_{1}+\ldots+a_{k} v_{k}=v$.

- Let $I=\left\{v_{i}\right\}$ be a set of vectors in V (possibly infinite). By $\operatorname{Span}(I)$ we denote the subvectorspace of all possible finite linear combinations of vectors in I.
- V is said to be finitely generated if there is a finite number v_{1}, \ldots, v_{k}, such that $V=$ $\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$.
- A subset $B=\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ is a basis of V is $V=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$ and v_{1}, \ldots, v_{k} are linearly independent.
Example 1.6. Consider $\mathbb{Q}[\sqrt{2}]$. It is a vector space over \mathbb{Q} with scalar product:

$$
(q, a+b \sqrt{2}) \mapsto(q a)+(q b) \sqrt{2} .
$$

One sees that the vectors $(1, \sqrt{2})$ are linearly independent and generate the whole space.
Similarly to what showed in linear algebra one proves that two basis must have the same number of vectors and thus defines:

$$
\operatorname{dim}(V)=n \text { is there is a basis consisting of } n \text { vectors. }
$$

otherwise one says that V is infinite dimensional.
Example 1.7. The polynomials $F[x]$ is an infinite dimensional vector space over F. If one looks at only polynomial up to degree $k, F_{k}[x]$ then this is a vector space over F of dimension $k+1$. The vector space $\mathbb{Q}[\sqrt{2}]$ has dimension 2 over \mathbb{Q}.

2. FIELD EXTENSIONS

Definition 2.1. We say that a field L is an extension of a field K if K is a subfield of L.
Example 2.2. \mathbb{R} and \mathbb{C} are extensions of \mathbb{Q}. The field $\mathbb{Z}_{3}[x] / x^{2}+1$ is an extension of \mathbb{Z}_{3}.
Definition 2.3. Let L be an extension of K. The degree of the extension is:

$$
[L: K]=\operatorname{dim}_{K}(F)
$$

If the dimension if finite then the extension is said to be a finite extension.
Example 2.4. Notice that $\mathbb{C}=\operatorname{Span}_{\mathbb{R}}(1, i)$, it is then a finite extension with degree $[\mathbb{C}, \mathbb{R}]=2$.
Another example of fine extension is $\mathbb{Z}_{3}[x] / x^{2}+1$. Every element is a combination of $1+$ $\left(x^{2}+1\right)$ and $x+\left(x^{2}+1\right)$. This two elements are linearly independent and thus:

$$
\operatorname{dim}_{\mathbb{Z}}\left(\mathbb{Z}_{3}[x] / x^{2}+1\right)=\left[\mathbb{Z}_{3}[x] / x^{2}+1: \mathbb{Z}_{3}\right]=2
$$

Proposition 2.5. Assume that L is am extension of K and K is an extension of F. Then

$$
[L: F]=[L: K][K: F]
$$

Proof. Notice that if L is an infinite extension of K it will be an infinite extension of F. Viceversa if K is an infinite extension of F then L will certainly be an infinite extension of F. We may assume that the extensions are finite. Let $[L: K]=m,[K: F]=n$. Let $a_{1}, \ldots a_{n}$ a basis of K over F and let b_{1}, \ldots, b_{m} a basis of L over K. We shal prove that $\left\{a_{i} b_{j}\right\}$ for a basis of L over F. They certainly generate L as for every element $a \in L, a=\sum \beta_{i} b_{i}$ and for every $\beta_{i} \in K, \beta_{i}=\sum \alpha_{i j} a_{j}$. Now assume that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_{i j} a_{i} b_{j}=0_{L}
$$

Then $\sum_{1}^{n} \gamma_{i j} a_{i}=0_{K}$ for $j=1, \ldots m$. But then we have that $\gamma_{i j}=0_{F}$ for all $i=1 \ldots n$.
EXERCISE Prove that if L is an extension of K then $L=K$ if and only if $[L: K]=1$.
Observe that one can define an extension by "adding" certain elements. Let S be a set of elements of a field L and let K be a subfields of L. one can define $K(S)$ to be the smallest subfield of L containing K and S. This is an extension of K. For example $\mathbb{R}(i)=\mathbb{C}$. If $S=\{a\}$ the extension $K(a)$ is said to be a simple extension.

EXERCISE Show that $F[a]=\operatorname{Im}\left(e v_{a}: K[x] \rightarrow L\right) \subseteq F(a)$ and that $F[a]=F(a)$ if and only if $F[a]$ is a field.

3. Algebraic Extensions

Definition 3.1. Let L be an extension of K. An element $\alpha \in L$ is said to be algebraic over F if there is a $0 \neq f(x) \in F[x]$ such that $f(\alpha)=0_{L}$, i.e. $f \in \operatorname{Ker}\left(e v_{\alpha}\right)$.
Example 3.2. The elements $\sqrt{2}, i$ are algebraic over \mathbb{Q} because they are roots of $x^{2}-2, x^{2}+1$.
Definition 3.3. An extension L over K is said to be an algebraic extension if every element $\alpha \in L$ is algebraic over K. An extension which is not algebraic is said to be trascendental.

Example 3.4. \mathbb{C} is an algebraic extension of \mathbb{R} and \mathbb{R} is an algebraic extension of \mathbb{Q}.
Proposition 3.5. Every finite extension is algebraic.
Proof. Let L be an extension of K with $[L: K]=n$. Let $\alpha \in L$. The elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ must be linearly independent over K which means that there are $a_{0}, \ldots, a_{n} \in K$ such that $a_{0}+a_{1} \alpha+\ldots+a_{n} \alpha^{n}=0$. Obviously α is the root of the polynomial $f(x)=\sum a_{i} x^{i} \in K[x]$.

As observed above, if $a \in L$ and L is an extension of K the we have that

$$
K[a] \cong K[x] / \operatorname{Ker}\left(e v_{a}\right) .
$$

Because $F[x]$ is a PID there is a polynomial $f_{a} \in K[x]$ such that $\operatorname{Ker}\left(e v_{a}\right)=\left(f_{a}\right)$. Recall that f_{a} is uniquely defined up to a non vanishing constant. In particular there is ONLY one generator which is monic, i.e. with leading coefficient equal to one.

The monic generator is called the minimal polynomial of a over K.

Proposition 3.6. Let L be an extension of K and let $a \in L$. Let $p(x) \in K[x]$ be a monic polynomial. The following statements are equivalent:
(1) $p(x)$ if the minimal polynomial of a over K.
(2) $p(x)$ is irreducible and $p(a)=0$.
(3) $p(x)$ is the minimal polynomial (w.r.t degree) in $\operatorname{Ker}\left(e v_{a}\right)$.

Proof. (1)Rightarrow(2) Let $p(x)$ be the minimal polynomial of a over K. then clearly $p(a)=$ 0 . If $p(x)=g(x) h(x)$ then $g(a)=0$ or $f(a)=0$. Assume $g(a)=0$ then $g \in \operatorname{Ker}\left(e v_{a}\right)$ and this p / g. But we are assuming that g / p which is a contradiction.
$(2) \Rightarrow(1)$ Because $p(a)=0$ then f_{a} / p and because p is irreducible it is $p=\alpha f_{a}$ for a constant $\alpha \in K^{*}$. But f_{a} and p are monic which implies $\alpha=1$.
$(1) \Rightarrow(3)$ Obvious. $(3) \Rightarrow(1)$. Such p is certainly a generator of $\operatorname{Ker}\left(e v_{a}\right)$.
We conclude that $K[x] /\left(f_{a}\right) \cong K[a]$. Because f_{a} is irreducible the ideal $\left(f_{a}\right)$ is a maximal ideal and therefore $F[a]$ is a field and it follows that:

$$
K[a]=K(a)
$$

If $\operatorname{deg}\left(f_{a}\right)=n$, we have that

$$
F[a]=\left\{\sum_{0}^{n-1} a_{i} x^{i}+\left(f_{a}\right)\right\}
$$

It follows that the elements $1+\left(f_{a}\right), x+\left(f_{a}\right), \ldots, x^{n-1}+\left(f_{a}\right)$ for a basis for $K[x] /\left(f_{a}\right)$ and thus using the isomorphism:

$$
K[x] /\left(f_{a}\right) \cong K[a] \text { via } p(x)+\left(f_{a}\right) \mapsto p(a)
$$

we see that $1, a, \ldots, a^{n-1}$ is a basis of $K(a)$ and that

$$
[F(a): F]=n
$$

Example 3.7. the polynomial $x^{2}-2$ is the minimal polynomial for $\sqrt{2}$ over \mathbb{Q}. we have then that:

$$
\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}[x] /\left(x^{2}-1\right)
$$

Similarly $\mathbb{C} \cong \mathbb{R}(i) \cong \mathbb{R}[i] \cong \mathbb{R}[x] /\left(x^{2}+1\right)$.
We can then conclude that:
α is algebraic over K if and only if $K(\alpha)=K[\alpha]$ is a finite extension of K and moreover $[K(\alpha): K]$ is equal to the degree of the minimal polynomial of α over K.

EXERCISE Let L be a field extension of K. Show that the set of the elements in L which are algebraic over K is a subfield of L containing K.

Definition 3.8. This subfield is said to be the algebraic closure of K in L. If the algebraic closure of a field K is the flied K itself then K is said to be algebraically closed.

Example 3.9. The field \mathbb{Q} is not algebraically closed in \mathbb{R}, we know that $\sqrt{2} \notin \mathbb{Q}$. Observe that for every $n \geq 1$ then $\left[Q\left(\sqrt{2}^{n}\right): Q\right]=n$ since $x^{n}-2$ is the minimal polynomial. It follows that if $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} is \mathbb{R} then:

$$
[\overline{\mathbb{Q}}: Q] \geq\left[Q\left(\sqrt{2}^{n}\right): Q\right]=n \text { for all } n \geq 1
$$

which implies that $\overline{\mathbb{Q}}$ is not a finite extension. This shows that Proposition 3.5 cannot be inverted.
EXERCISE Let F be a subfield of L. Show that the algebraic closure of F in L is algebraically closed.

RECOMMENDED EXCERCISES

- VI-29 29, 30, 31, 36, 37.
- VI-30 21, 22, 24.
- VI-31 22, 23, 24, 25, 28

