
Solution to Homework 3
Mathematical Systems Theory, SF2832

Fall 2018
You may use min(5,(your score)/4) as bonus credit on the exam.

1. Consider a state space realization (A, b, c) as follows

ẋ =

0 1 0
0 0 1
0 0 −1

x+

00
1

u

y =
[
c1 c2 1

]
x,

where c1, c2 are constants.

(a) For what c1, c2 is the system observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
Solution: The poles are roots of s3 + s2 and zeros are roots of s2 + c2s + c1.
Observability implies that there is no zero-pole cancellation. The rest is omitted.

(b) Design a feedback controller u = kx such that dimension of the unobservable
subspace for (c, A + bk) is maximized while A + bk is guaranteed to have one
eigenvalue at −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
Solution: The dimension of the unobservable subspace is maximized when all
zeros are canceled by the poles. Thus the desired closed-loop poles should be
roots of (s+ 1)(s2 + c2s+ c1). The rest is omitted.

(c) Design a feedback control u = kx that makes y(t) = 0, ∀t ≥ 0 if initially
y(0) = 0. For the closed-loop system, discuss conditions on c1, c2 such that
limt→∞ x(t) = 0 when y(t) = 0, ∀t ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
Solution: y = x3+ c2x2+ c1x1 ≡ 0 implies that ẏ = −x3+u+ c2x3+ c1x2 ≡ 0.
Then u = x3 − c2x3 − c1x2. limt→∞ x(t) = 0 if both c1, c2 are positive.

2. Consider a state space system as follows

ẋ1 = x2

ẋ2 = αx1 + u

y = x2,

where α is a constant. Let P (t, t1) where 0 ≤ t ≤ t1 denote the solution to the
dynamical Riccati equation associated with the following optimal control problem

min J =

∫ t1

0
(y2 + u2)dt.

(a) For what α is P (t, t1) positive definite ∀t < t1? . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
Solution: α ̸= 0.
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(b) For α = 0 compute limt1→∞ P (0, t1) and give the reason why the limit exists
but is not positive definite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
Solution: When α = 0, The cost function does not depend on x1. Thus p11(t) =
p12(t) = p21(t) ≡ 0 for any t1 > 0. p22(t) is solved by minimizing the cost
function subject to ẋ2 = u. The rest is omitted.

3. Consider the Dynamical Riccati equation

Ṗ = −ATP − PA+ PBBTP −Q

P |t=t1 = S,

where Q ≥ 0, S ≥ 0 and we use P (t, t1, S) to denote the unique solution (which
implies that P (t1, t1, S) = S).

(a) Show that P (t0, t1, 0) ≤ P (t0, t̄1, 0) for any t0 ≤ t1 ≤ t̄1 (we say P1 ≤ P2 if
P2 − P1 ≥ 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
Solution: Note that xT0 P (t0, t1, S)x0 is the optimal cost over the time interval
[t0, t1]. The cost will be higher if the time interval is longer, thus P (t0, t1, 0) ≤
P (t0, t̄1, 0) for any t0 ≤ t1 ≤ t̄1.

(b) Assume that (A,B) is controllable. Show that Pa = P (t, t1, Pa) for any t ≤ t1,
where Pa = limt1→∞ P (0, t1, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
Solution: Clearly Pa is constant and is the solution to the corresponding ARE.
When S = Pa, Pa satisfies both the terminal condition and the dynamical
Riccati equation. Thus Pa = P (t, t1, Pa).

4. Consider a one-dimensional system

x(t+ 1) = ax(t) + v(t)

y(t) = x(t) + w(t),

where a ̸= 0, v, w are uncorrelated white noises, with covariances σ, r respectively.
Solution: This problem has appeared before as a homework problem. The solution
is thus omitted.

(a) Design a Kalman filter x̂(t) for x(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
(b) Express the covariance matrix p(t) = E{(x(t)− x̂(t))2} in terms of a, σ, r.(2p)
(c) What is a− ak(t) as t → ∞ (where k(t) is the Kalman gain)? . . . . . . . . . . . (2p)


