
Solution to Homework 2
Mathematical Systems Theory, SF2832

Fall 2018
You may use min(5,(your score)/4) as bonus credit on the exam.

1. Consider the pair (c, A), where

A =

[
a1 0
0 a2

]
c =

[
1 1

]
.

For what a1 and a2 the Lyapunov equation ATP+PA+cT c = 0 (where P is assumed
to be symmetric)

(a) has a positive definite solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Solution: a1 < 0, a2 < 0 and a1 ̸= a2.

(b) has a negative definite solution (−P is positive definite)?

Solution: Omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(c) has no solution ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: a1 + a2 = 0.

2. Given the following system

ẋ = Ax+ bu =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

x+


0
0
...
0
1

u

y = cx =
[
c1 c2 · · · cn−1 1

]
x.

(a) Show that if ceAtx0 = 0, ∀t ≥ 0 implies that x0 must be 0, then (c, A) is
observable. For the case ci = 0, i = 1, · · · , n − 1, discuss condition on ai, i =
1, · · · , n such that the system is observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: ceAtx0 ≡ 0 implies (ceAtx0)
(k) ≡ 0, i.e. cAkeAtx0 ≡ 0, k = 0, 1, ....

Then ΩeAtx0 ≡ 0 and the conclusion follows. For the given case, a1 ̸= 0 is the
condition for observability.

(b) For the case ci = 0, i = 1, · · · , n − 2 and cn−1 = γ, find a feedback control
u = kx such that the dimension of the unobservable subspace for the closed-loop
system is maximized, where the closed-loop system is ẋ = (A + bk)x, y = cx.
(2p)

Solution: The desired poles should be defined by ϕ(s) = (sn−1+γsn−2)(s+d)
where d is arbitrary. Then the feedback matrix k follows.
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(c) For what n and γ, there is a feedback control solving (b) that is also a stabilizing
control? Namely all eigenvalues of A+ bk have negative real parts. . . . . . . (2p)

Solution: n = 2 and γ > 0.

3. Consider

R(s) =


k

s+ 1

1

s+ 1

1

s+ 1

1

s+ 1

 ,

where k is a constant.

(a) Determine the standard reachable realization of R(s). . . . . . . . . . . . . . . . . . . . (1p)

Solution: Omitted

(b) Determine the standard observable realization of R(s). . . . . . . . . . . . . . . . . . . (2p)

Solution: Omitted

(c) What is the McMillan degree of R(s)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: δ(R) = 1 if k = 1 otherwise δ(R) = 2.

4. Suppose that the following is a realization of a given R(s):

(A,B,C) =



0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 −1

 ,


0 0
1 1
0 0
−1 1

 ,
[
0 1 0 0

]
(a) Find a feedback control u =

[
k1
k2

]
x that assigns the closed-loop poles to {−1,−1,−1,−2},

and contains as few non-zero elements in k1 as possible. . . . . . . . . . . . . . . . . . (2p)

Solution: Since u2 alone would make the system controllable, we can set k1 = 0.
Then an easy way to solve the pole placement problem is to convert the single
input system into the standard controllable form, for which we obtain that
c = [1 − 2 3 2] (do not confuse this c with the output matrix given for the
realization). The rest is omitted.

(b) Is the realization minimal? If not, use Kalman decomposition to find a minimal
realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: No, since it is not observable. Here is one minimal realization: ẋ1 =
x2 + u1 + u2, ẋ2 = −u1 + u2, y = x1.


