Causal Wiener filtering

Assume that x and y are two jointly stationary second order processes, with spectral density given by

$$
\Phi(z)=\left[\begin{array}{cc}
\Phi_{x} & \Phi_{x y} \\
\Phi_{y x} & \Phi_{y}
\end{array}\right](z)
$$

We would like to find a strictly causal function $F(t)$ such that $\chi(t)=$ $\hat{F}(z) y(t)$ is the best linear estimator of $x(t)$ given $y(t-1), y(t-2), \cdots$.

If $y(t)$ is a white noise process, it is easy to see that the optimal filter is given by a causal function

$$
\hat{F}(z)=\left[\Phi_{x y}(z)\right]_{+},
$$

where $[\cdot]_{+}$denotes the strictly causal part of the function.
Lemma 4.1.4. Assume the observation process y is normalized white noise. Then the matrix function F defining the best linear causal estimator $\chi(t)$ of $x(t)$ given the past history of y up to and including time $t-1$, i.e.

$$
\chi(t):=\mathrm{E}\left[x(t) \mid \mathbf{H}_{t}^{-}(y)\right]=\sum_{s=-\infty}^{\infty} F(t-s) y(s)
$$

is given by

$$
F(t)= \begin{cases}\Lambda_{x y}(t), & t>0 \\ 0, & t \leq 0\end{cases}
$$

where $\Lambda_{x y}$ is the cross covariance matrix of the processes x and y
Proof: The orthogonality condition provides
$\mathrm{E}\left\{(x(t)-\chi(t)) y(\tau)^{\prime}\right\}=\mathrm{E}\left\{\left(x(t)-\sum_{s=-\infty}^{\infty} F(t-s) y(s)\right) y(\tau)^{\prime}\right\}=0, \quad \tau \leq t-1$.
which can be written as

$$
\Lambda_{x y}(t-\tau)=\sum_{s=-\infty}^{\infty} F(t-s) I \delta(t-s)=F(t-\tau), \quad \tau \leq t-1
$$

And in order that $\chi(t) \in \mathbf{H}_{t}^{-}(y)$, the function F has to be strictly causal.
In general, the process y is not white noise, and then the following trick using a whitening filter can be applied. Assuming that we can determine a minimum-phase spectral factor W of Φ_{y}, the process $e(t)=W^{-1}(z) y(t)$

Figure 1: Cascade structure of the Wiener filter
is the (forward) normalized innovation process of $y(t)$, i.e. a white noise process and we can consider the cascade form of the Wiener filter illustrated in Figure 1.

The part \hat{G} can now be determined as \hat{F} above, the only difference is that we have to exchange $\Phi_{x y}$ with

$$
\begin{equation*}
\Phi_{x e}=\Phi_{x y} W^{-*} \tag{1}
\end{equation*}
$$

The estimator is then given by

$$
\chi(t)=\frac{1}{W(z)}\left[\frac{\Phi_{x y}(z)}{W^{*}(z)}\right]_{+} y(t) .
$$

To derive the expression (1), assume that $\epsilon(t)$ is the innovation process of the joint process $(x(t), y(t))$. Then consider the spectral representations

$$
x(t)=\int_{-\pi}^{\pi} e^{i t \theta} d \hat{x}(\theta)=\int_{-\pi}^{\pi} e^{i t \theta} W_{x}\left(e^{i \theta}\right) d \hat{\epsilon}(\theta) .
$$

and

$$
y(t)=\int_{-\pi}^{\pi} e^{i t \theta} d \hat{y}(\theta)=\int_{-\pi}^{\pi} e^{i t \theta} W_{y}\left(e^{i \theta}\right) d \hat{\epsilon}(\theta)
$$

The cross-covariance $\Lambda_{x y}(\tau)=\mathrm{E}\{x(t+\tau) y(t)\}$ can be written

$$
\begin{aligned}
\Lambda_{x y}(\tau) & =\mathrm{E}\left\{\int_{-\pi}^{\pi} e^{i(t+\tau) \theta} W_{x}\left(e^{i \theta}\right) d \epsilon(\theta) \int_{-\pi}^{\pi} e^{-i t \theta} W_{y}\left(e^{-i \theta}\right) d \epsilon(\theta)\right\} \\
& =\int_{-\pi}^{\pi} e^{i \tau \theta} W_{x}\left(e^{i \theta}\right) W_{y}\left(e^{-i \theta}\right) \frac{d \theta}{2 \pi}
\end{aligned}
$$

and thus $\Phi_{x y}=W_{x} W_{y}^{*}$. Now, since $e(t)=W^{-1}(z) y(t)=W^{-1}(z) W_{y}(z) \epsilon(t)$ it holds that

$$
\Phi_{x e}=W_{x}\left(W^{-1} W_{y}\right)^{*}=W_{x} W_{y}^{*} W^{-*}=\Phi_{x y} W^{-*}
$$

which proves (1).

Example 1

Assume that

$$
\Phi_{y}(z)=\frac{5 / 4+1 / 2\left(z+z^{-1}\right)}{5 / 4+1 / 2\left(z+z^{-1}\right)}, \quad \Phi_{x y}(z)=\frac{z+\alpha}{z+\beta}
$$

Then, it is easy to see that

$$
\Phi_{y}(z)=\frac{(z+1 / 2)\left(z^{-1}+1 / 2\right)}{(z-1 / 2)\left(z^{-1}-1 / 2\right)}=W(z) W\left(z^{-1}\right),
$$

where

$$
W(z)=\frac{z+1 / 2}{z-1 / 2}
$$

is stable and minimum-phase.
Then, assuming $\beta \neq 2$ (simple poles of the denominator below)

$$
\frac{\Phi_{x y}(z)}{W\left(z^{-1}\right)}=\frac{z+\alpha}{z+\beta} \frac{z^{-1}-1 / 2}{z^{-1}+1 / 2}=\frac{A}{z+\beta}+\frac{B}{z^{-1}+1 / 2}+C,
$$

where

$$
A=(\alpha-\beta) \frac{1+\beta / 2}{1-\beta / 2}, \quad B=\frac{1-\alpha / 2}{1-\beta / 2}, \quad C=\frac{1-\alpha+\beta / 2}{1-\beta / 2} .
$$

Now, assuming $|\beta|<1$

$$
\left[\frac{\Phi_{x y}(z)}{W\left(z^{-1}\right)}\right]_{+}=\frac{A}{z+\beta},
$$

and

$$
\frac{1}{W(z)}\left[\frac{\Phi_{x y}(z)}{W\left(z^{-1}\right)}\right]_{+}=\frac{z-1 / 2}{z+1 / 2} \frac{A}{z+\beta},
$$

Example 2

Consider now a pair (x, y) of jointly stationary stochastic processes, with spectral density given by

$$
\Phi(z)=\left[\begin{array}{cc}
\Phi_{x} & \Phi_{x y} \\
\Phi_{y x} & \Phi_{y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{200+40\left(z+z^{-1}\right)}{3-\left(z z^{-1}\right)} & \frac{1}{z+1 / 2} \\
\frac{1}{z^{-1}+1 / 2} & e^{z+z^{-1}}
\end{array}\right] .
$$

The stable minimum phase spectral factor W of Φ_{y} is given by

$$
W(z)=e^{z^{-1}}=\sum_{k=0}^{\infty} \frac{z^{-k}}{k!} \in H^{2} .
$$

It is easy to see that also $W^{-1} \in H^{2}$.
Then

$$
\hat{G}(z)=\left[\frac{\Phi_{x y}(z)}{W\left(z^{-1}\right)}\right]_{+}=\left[\frac{\frac{1}{z+1 / 2}}{e^{z}}\right]_{+}=\left[\frac{e^{-z}}{z+1 / 2}\right]_{+},
$$

and the causal part can be determined as follows

$$
\begin{aligned}
\hat{G}(z) & =e^{1 / 2}\left[\frac{e^{-(z+1 / 2)}}{z+1 / 2}\right]_{+} \\
& =e^{1 / 2}\left[\frac{1-(z+1 / 2)+\frac{1}{2!}(z+1 / 2)^{2}-\frac{1}{3!}(z+1 / 2)^{3}+\cdots}{z+1 / 2}\right]_{+} \\
& =e^{1 / 2}\left(\left[\frac{1}{z+1 / 2}\right]_{+}-[1]_{+}+\left[\frac{1}{2!}(z+1 / 2)\right]_{+}-\left[\frac{1}{3!}(z+1 / 2)^{2}\right]_{+}+\cdots\right) \\
& =e^{1 / 2} \frac{1}{z+1 / 2} .
\end{aligned}
$$

Alternatively, note that $G(t)=0$ for $t \leq 0$, and for $t>0$

$$
G(t)=\Lambda_{x e}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t \theta} \frac{\Phi_{x y}\left(e^{i \theta}\right)}{W\left(e^{-i \theta}\right)} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t \theta} \frac{e^{-e^{i \theta}}}{e^{-i \theta}+1 / 2} d \theta .
$$

By using the Residue theorem

$$
G(t)=\left.z^{t-1} e^{-z}\right|_{z=-1 / 2}=\left(-\frac{1}{2}\right)^{t-1} e^{1 / 2}, \quad t=1,2, \cdots
$$

Then

$$
\hat{G}(z)=\sum_{t=1}^{\infty}\left(-\frac{1}{2}\right)^{t-1} e^{1 / 2} z^{-t}=e^{1 / 2} z^{-1}\left(1+1 / 2 z^{-1}\right)^{-1}=\frac{e^{1 / 2}}{z+1 / 2},
$$

as before.
The optimal prediction is given by the filter

$$
\frac{1}{W(z)}\left[\frac{\Phi_{x y}(z)}{W\left(z^{-1}\right)}\right]_{+}=\frac{1}{e^{z^{-1}}} \frac{e^{1 / 2}}{z+1 / 2}=\frac{e^{1 / 2-z^{-1}}}{z+1 / 2}
$$

