
Causal Wiener filtering

Assume that x and y are two jointly stationary second order processes, with
spectral density given by

Φ(z) =

[
Φx Φxy

Φyx Φy

]
(z)

We would like to find a strictly causal function F (t) such that χ(t) =
F̂ (z)y(t) is the best linear estimator of x(t) given y(t − 1), y(t − 2), · · ·.

If y(t) is a white noise process, it is easy to see that the optimal filter is
given by a causal function

F̂ (z) =
[
Φxy(z)

]
+

,

where [·]+ denotes the strictly causal part of the function.
Lemma 4.1.4. Assume the observation process y is normalized white

noise. Then the matrix function F defining the best linear causal estimator
χ(t) of x(t) given the past history of y up to and including time t − 1, i.e.

χ(t) := E[x(t)|H−
t (y)] =

∞∑
s=−∞

F (t − s)y(s)

is given by

F (t) =

{
Λxy(t), t > 0
0, t ≤ 0

where Λxy is the cross covariance matrix of the processes x and y

Proof: The orthogonality condition provides

E{(x(t)−χ(t))y(τ)′} = E{(x(t)−
∞∑

s=−∞

F (t− s)y(s))y(τ)′} = 0, τ ≤ t− 1.

which can be written as

Λxy(t − τ) =
∞∑

s=−∞

F (t − s)Iδ(t − s) = F (t − τ), τ ≤ t − 1.

And in order that χ(t) ∈ H−
t (y), the function F has to be strictly causal. 2

In general, the process y is not white noise, and then the following trick
using a whitening filter can be applied. Assuming that we can determine
a minimum-phase spectral factor W of Φy, the process e(t) = W−1(z)y(t)
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Ĝ(z)

Figure 1: Cascade structure of the Wiener filter

is the (forward) normalized innovation process of y(t), i.e. a white noise
process and we can consider the cascade form of the Wiener filter illustrated
in Figure 1.

The part Ĝ can now be determined as F̂ above, the only difference is that
we have to exchange Φxy with

Φxe = ΦxyW
−∗. (1)

The estimator is then given by

χ(t) =
1

W (z)

[
Φxy(z)

W ∗(z)

]
+

y(t).

To derive the expression (1), assume that ε(t) is the innovation process
of the joint process (x(t), y(t)). Then consider the spectral representations

x(t) =

∫ π

−π

eitθdx̂(θ) =

∫ π

−π

eitθWx(e
iθ)dε̂(θ).

and

y(t) =

∫ π

−π

eitθdŷ(θ) =

∫ π

−π

eitθWy(e
iθ)dε̂(θ),

The cross-covariance Λxy(τ) = E{x(t + τ)y(t)} can be written

Λxy(τ) = E

{∫ π

−π

ei(t+τ)θWx(e
iθ)dε(θ)

∫ π

−π

e−itθWy(e
−iθ)dε(θ)

}
=

∫ π

−π

eiτθWx(e
iθ)Wy(e

−iθ)
dθ

2π
,

and thus Φxy = WxW
∗
y . Now, since e(t) = W−1(z)y(t) = W−1(z)Wy(z)ε(t)

it holds that

Φxe = Wx(W
−1Wy)

∗ = WxW
∗
y W−∗ = ΦxyW

−∗,

which proves (1).
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Example 1

Assume that

Φy(z) =
5/4 + 1/2(z + z−1)

5/4 + 1/2(z + z−1)
, Φxy(z) =

z + α

z + β

Then, it is easy to see that

Φy(z) =
(z + 1/2)(z−1 + 1/2)

(z − 1/2)(z−1 − 1/2)
= W (z)W (z−1),

where

W (z) =
z + 1/2

z − 1/2

is stable and minimum-phase.
Then, assuming β 6= 2 (simple poles of the denominator below)

Φxy(z)

W (z−1)
=

z + α

z + β

z−1 − 1/2

z−1 + 1/2
=

A

z + β
+

B

z−1 + 1/2
+ C,

where

A = (α − β)
1 + β/2

1 − β/2
, B =

1 − α/2

1 − β/2
, C =

1 − α + β/2

1 − β/2
.

Now, assuming |β| < 1 [
Φxy(z)

W (z−1)

]
+

=
A

z + β
,

and
1

W (z)

[
Φxy(z)

W (z−1)

]
+

=
z − 1/2

z + 1/2

A

z + β
,

Example 2

Consider now a pair (x, y) of jointly stationary stochastic processes, with
spectral density given by

Φ(z) =

[
Φx Φxy

Φyx Φy

]
=

[
200+40(z+z−1)

3−(z+z−1)
1

z+1/2

1
z−1+1/2

ez+z−1

]
.

The stable minimum phase spectral factor W of Φy is given by

W (z) = ez−1

=
∞∑

k=0

z−k

k!
∈ H2.
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It is easy to see that also W−1 ∈ H2.
Then

Ĝ(z) =

[
Φxy(z)

W (z−1)

]
+

=

[
1

z+1/2

ez

]
+

=

[
e−z

z + 1/2

]
+

,

and the causal part can be determined as follows

Ĝ(z) = e1/2

[
e−(z+1/2)

z + 1/2

]
+

= e1/2

[
1 − (z + 1/2) + 1

2!
(z + 1/2)2 − 1

3!
(z + 1/2)3 + · · ·

z + 1/2

]
+

= e1/2

([
1

z + 1/2

]
+

− [1]+ +

[
1

2!
(z + 1/2)

]
+

−
[

1

3!
(z + 1/2)2

]
+

+ · · ·
)

= e1/2 1

z + 1/2
.

Alternatively, note that G(t) = 0 for t ≤ 0, and for t > 0

G(t) = Λxe(t) =
1

2π

∫ π

−π

eitθ Φxy(e
iθ)

W (e−iθ)
dθ =

1

2π

∫ π

−π

eitθ e−eiθ

e−iθ + 1/2
dθ.

By using the Residue theorem

G(t) = zt−1e−z
∣∣
z=−1/2

=

(
−1

2

)t−1

e1/2, t = 1, 2, · · · .

Then

Ĝ(z) =
∞∑

t=1

(
−1

2

)t−1

e1/2z−t = e1/2z−1(1 + 1/2z−1)−1 =
e1/2

z + 1/2
,

as before.
The optimal prediction is given by the filter

1

W (z)

[
Φxy(z)

W (z−1)

]
+

=
1

ez−1

e1/2

z + 1/2
=

e1/2−z−1

z + 1/2
.
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