Causal Wiener filtering

Assume that z and y are two jointly stationary second order processes, with
spectral density given by
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We would like to find a strictly causal function F'(t) such that x(¢) =
F(2)y(t) is the best linear estimator of z(t) given y(t — 1), y(t — 2), - - -.

If y(t) is a white noise process, it is easy to see that the optimal filter is
given by a causal function

P) = [2a(2)]
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where [-], denotes the strictly causal part of the function.

Lemma 4.1.4. Assume the observation process y is normalized white
noise. Then the matriz function F defining the best linear causal estimator
X(t) of x(t) given the past history of y up to and including time t — 1, i.e.
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X(t) = E()H; (y)] = Y F(t—s)y(s)
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15 given by

Ayy(t), t>0
F<t>:{0y() t<0

where A,y is the cross covariance matriz of the processes x and y

Proof: The orthogonality condition provides

E{(z(t) = x())y(1)} = E{(x(t) = > Ft—s)y(s)y(r)} =0, 7<t-1.

which can be written as
Aoyt =7)= Y F(t—s)I5(t—s)=F(t—r7), 7<t-1

And in order that x(t) € H; (y), the function F' has to be strictly causal. O

In general, the process y is not white noise, and then the following trick
using a whitening filter can be applied. Assuming that we can determine
a minimum-phase spectral factor W of ®,, the process e(t) = W(2)y(t)
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Figure 1: Cascade structure of the Wiener filter

is the (forward) normalized innovation process of y(t), i.e. a white noise
process and we can consider the cascade form of the Wiener filter illustrated
in Figure 1.

The part G can now be determined as E above, the only difference is that
we have to exchange ®,, with

¢, = @, W (1)

The estimator is then given by

x(t) =

v W), O

To derive the expression (1), assume that €(t) is the innovation process
of the joint process (z(t),y(t)). Then consider the spectral representations

x(t) = / :eiwda}(e) = / :einx(ew)dé(Q).

and

y(t) = / " dg(0) = / "W, () de(9),
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The cross-covariance A, (7) = E{z(t + 7)y(t)} can be written

Agy(T) = E{ / ' eV () de(H) / ' e_“HWy(e_w)de(Q)}
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and thus ®,, = W,W;. Now, since e(t) = W (2)y(t) = W (2)W,(2)e(t)
it holds that

Dy = Wo(WIW,)* = W, W W™ = @y W,

which proves (1).



Example 1
Assume that

C5/4+1/2(z+271) zta
y(2) = 5/4+1/2(z + 271)’ Pay(2) = 2+ 0
Then, it is easy to see that
. (z+1/2)(z71 +1/2) W 1
(I)y( ) (Z—1/2)(271—1/2) W( )W( )7
where 12
W =375

is stable and minimum-phase.
Then, assuming 3 # 2 (simple poles of the denominator below)

Doy(2)  z+az'-1/2 A B

Wi(z=1) _z—i—ﬁz—l—l—l/Z_z+ﬂ+z—1+1/2+c’
where
B 14+8/2 _ 1—-a/2 ,, 1—a+B/2
A_(a_ml—ﬁ/Q’ B=1"3r YT 1-5n

Now, assuming |§| < 1

W(z1) z+ 3
and
1 Doy(z) |  2—-1/2 A
W(z) |:W(Z_1)]+ 2412240
Example 2

Consider now a pair (z,y) of jointly stationary stochastic processes, with
spectral density given by

2004-40(z+2z"1) 1
CI)(Z) _ ¢, (I)xy 3—(z+2z1) z+1/2
- o, P, B L 7 z+z71
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The stable minimum phase spectral factor W of ®, is given by
W= =3 e n
(Z) =€ = Z F € .
k=0
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It is easy to see that also W1 ¢ H?.

T -] - (2] [
Wi(z=1], e ], z+1/2],

and the causal part can be determined as follows

Gz) = {;1//2]
_ {1— Z+1/2 %(2+1/2)2—%(z+1/2)3+...}
z+1/2 )
N (L+1/2} -y +B(Z+1/2)L—{;,(z+1/2)L+...)

z+1/2

Alternatively, note that G(t) = 0 for t <0, and for ¢t > 0
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By using the Residue theorem

t—1
R _ (.1 1/2 _
G(t)=z2""e ‘z:—l/Z_ 5 et =1,2---

Then
1/2
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z) = Z (_5) 2ot — M2 71(] 1 2,1y e

t=1 Z+1/2

as before.
The optimal prediction is given by the filter
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