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Abstract 
The main purpose of this master thesis, commissioned by Handelsbanken, is to provide a 

framework for estimation of Value-at-Risk in fixed income portfolios over time-horizons 

exceeding one day. We conduct a comparative study of various methods of scaling one day 

Value-at-Risk and their respective performance, focusing on time-horizons of ten days, three 

months and one year, taking into consideration the specific challenges of fixed income asset 

classes. We also investigate Value-at-Risk scaling in the setting of non-stationary portfolio 

weights, concentrating on the dynamic hedging strategy CPPI. 

We find that the square-root-of-time rule performs relatively well in a majority of cases, both 

on simulated data and on real fixed income index data. Combined with other methods such as 

bootstrap, and using a two-step method, scaling Value-at-Risk to three months and one year 

works well for low volatility assets, less so for more volatile assets with large jumps in price. 

The implementation of CPPI show an expected change in the distribution of the returns where 

we see less large drops in the portfolio value accompanied by a decrease in the expected 

return; however we also see an increase in complexity and assumptions which one has to 

address when deciding if the implementation of a so called Management Action structure is 

appropriate..   
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1. Introduction 
  

1.1 Motivation 
Value-at-Risk has been the dominating way of measuring risk in applied risk 

management, although it has taken substantial criticism from academics. One of the 

reasons for its widespread use within financial institutions is The Basel Committee on 

Banking Supervision‟s recommendation that the capital reserves of these companies‟ 

portfolios should be proportional to the 10-day Value-at-Risk at the 99% confidence level. 

The problem that arises in estimating this figure is the lack of sufficient 10-day return 

data. The way around this recommended in Basel II is to scale 1-day Value-at-Risk with 

the square-root-of-time rule. The satisfactory performance when applied to a 10-day 

horizon is documented by several authors. However, the suitability of using the  

square-root-of-time rule for longer time horizons, for example when  

calculating yearly risk measures (e.g. Economic Capital, EC) for banks or the  

measure of risk in trading books recently recommended by the committee,  

IRC (Incremental Risk Charge, 1 year 99.9% VaR), is less investigated.  

Also, focus has been on equity rather than fixed income. A significant part of this  

study will therefore address the issues arising with fixed income asset classes  

and the scaling of Value-at-Risk to time periods exceeding 10 days. 

 

Recent updates in the insurance equivalent of Basel II, Solvency II, has allowed for taking 

into account the effects of non-stationary portfolio weights in the form of so called 

Management Actions in the internal risk models of insurance companies. We investigate 

the impact on 3-month Value-at-Risk when changing from a stationary portfolio to one 

which is rebalanced each month and we will exemplify this by implementing the hedging 

strategy CPPI (Constant Proportion Portfolio Insurance). 

 

1.2 Problem formulation 
The purpose of this master thesis is to provide a framework for estimation of Value-at-

Risk in fixed income portfolios over time-horizons exceeding one day. We will conduct a 

comparative study of various methods of scaling one day Value-at-Risk and their 

respective performance, focusing on time-horizons of ten days, three months and one year, 

taking into consideration the specific challenges of fixed income asset classes. We will 

also investigate the effect of non-stationary portfolio weights on portfolio risk, focusing 

on the dynamic hedging strategy CPPI. 
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1.3 Methodology 
The main focus of this study is to compare methods for the scaling of Value-at-Risk to 

time-horizons exceeding one day. To accomplish this we begin with a thorough analysis 

of a number of fixed income indices to be used for this purpose, since understanding the 

statistical properties of the data set is crucial in drawing further conclusions. We analyze 

the data in two steps. To begin with we look at histograms and descriptive statistics in 

chapter 3. We then proceed with a distribution analysis in chapter 4, were we investigate 

the data tails and the amount of autocorrelation and heteroskedasticity. Finally we attempt 

to estimate parameters for the respective data sets for AR, GARCH and AR-GARCH 

models. 

In chapter 5 we conduct a comparative study of several methods of scaling 1-day Value-

at-Risk to 10-day Value-at-Risk. The study is based on data simulated from the 

distributions fitted in chapter 4. In Chapter 6 we focus on 3-month and 1-year Value-at-

Risk for real fixed income data and the special considerations to be taken for longer time 

horizons. We then perform back testing analysis to investigate the precision of the 

different procedures. These results are then compared to those in chapter 5. 

In chapter 7 we investigate the effects of non-stationary portfolio weights. We do this by 

comparing a risk model estimating quarterly Value-at-Risk with stationary portfolio 

weights to one that is rebalanced each month in accordance with the so called CPPI 

structure. 

Chapter 8 finally consists of conclusions regarding the most appropriate ways of scaling 

Value-at-Risk in fixed income portfolios and considerations to be taken when estimating 

risk in a non-stationary portfolio, as well as suggestions for future research. 
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2. Theoretical background 
 

2.1 Price process models 

For a given daily price process  we will in this study consider the logged returns, i.e. 

 

 

This then means that the N-day log-returns, denoted , are the arithmetic sum of the 1-

day log-returns: 

 

 

Common returns, i.e.    , are related to logged returns in the 

following as   

 

2.2 Value-at-Risk (VaR) 
For a random variable R, which is considered the return of some asset, the Value-at-Risk 

at level α of R is defined as 

 

 

           or   

i.e.  is the negative  -quantile of R 

Using logged returns (X) we have the relation 

 

2.3 Random Walk 
A series of independent innovations, commonly used for modeling logged returns: 

 

 

In this study we use normal and student-t distributed innovations (  
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2.4 AR(1) 

An Autoregressive process   of order (lag) 1, AR(1), is defined as 

 

2.5 GARCH(1,1) 

A Generalized Autoregressive Conditional Heteroskedasticity process  of order (1,1), 

GARCH(1,1) , is defined as 

 

 

 

2.6 AR(1)-GARCH(1,1) 

A generalization of the GARCH(1,1) model, the AR(1)-GARCH(1,1) process, is defined 

as 

 

 

 

 

 

We may also assume the innovations  to be e.g. Student-t distributed instead of normally 

distributed as in 2.3-2.6. 
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3. Data 

 
In order to choose appropriate models for estimating the Value-at-Risk we start by studying a 

set of fixed income indices to understand the distribution and behavior of fixed income 

securities. The indices are the following: the FTSE Euro Corporate Bonds All Maturities 

(Bloomberg ticker FECVC), Dow Jones Corporate Bond Total Return Index (Bloomberg 

ticker DJCBT), JPMorgan Emerging Markets Bonds Index (Bloomberg ticker JPGCCOMP), 

Credit Suisse High Yield Index II Total Return (DLJHTR), the index of the Swedish Nation 

Debt Office‟s and the mortgage institutions borrowings via bonds, OMRX-Bond Index 

(Bloomberg ticker RXBO).  

FTSE Euro Corp. Bond Index is denoted in euro and consists of investable and liquid 

investment grade bonds. Dow Jones Corp. Bond Index is denoted in US dollars and consists 

of readily tradable, high grade bonds with equal weighting and monthly rebalancing. Credit 

Suisse High Yield Index contains US dollar denoted bonds with a rating lower than 

investment grade. The index JPMorgan Em. Mark. Bond Index consists of US dollar denoted 

emerging market bonds, weighted by market-capitalization.  

The data were provided by Bloomberg and includes time series of varying length and 

incremental period. All series are daily apart from Credit Suisse High Yield Index which is 

weekly. We examine the distribution of the time series for different lengths of time and we 

start by examining each time series for the full length available (which means time series of a 

length of upwards sixteen years). However it becomes hard to justify stationarity and 

consistency in parameter estimation when using such long time series, especially in the light 

of the recent financial crisis and its impact on the returns. We therefore continue our analysis 

using time series stretching one year back in time as well as two years back in time. This 

gives us a range of reasonable estimates on, for example, degrees of freedom for the student-t 

distributions and the parameters for the different time series models. The standard deviation 

of daily log-returns ranges from 0.0072 for JPMorgan Emerging Market Bonds Index to 

0.0016 for the less volatile OMRX-Bond Index. 

Data set Nr. Years STD daily returns 

Dow Jones Corp. Bond Index 3 0.0049 

Credit Suisse High Yield Index 13 0.0092 (weekly) 

FTSE Euro Corp. Bond Index 4 0.0016 

JPMorgan Em. Mark. Bond Index 15 0.0072 

OMRX-Bond Index 13 0.0016 
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Dow Jones Corporate Bond Total Return Index 2006-11-28 – 2009-10-06 

  

Figure 3.1: Price development Dow                    Figure 3.2: Histogram of monthly Dow Jones 

Jones Corp. Bond Index                                       Corp. Bond Index returns vs. normal                                                                                              

.                                                                             distribution 

 

  

Figure 3.3: Histogram of daily returns vs.          Table 3.1: Descriptive statistics for daily and 

normal distribution Dow Jones Corp. Bond       monthly returns Dow Jones Corp. Bond Index 

Index 

        

 

 

 

 

 

 

 

Dow Jones Corp. Bond Index Descriptive Statistics 
Mean (daily returns) 3.04e-4 
Standard deviation (daily returns) 0.0049 
Skewness (daily returns) -0.5696 
Kurtosis (daily returns) 8.2368 
Mean (monthly returns)  0.0006 
Standard deviation (monthly returns)  0.0248 
Skewness (monthly returns) -0.1150 
Kurtosis (monthly returns)  4.4100 
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Credit Suisse High Yield Index II Total Return 1996-07-11 - 2009-10-01 

  

Figure 3.4: Price development Credit Suisse          Figure 3.5: Histogram of monthly log-            

High Yield Index                                                      returns vs. normal distribution Credit .            

.                                                                                 Suisse High Yield Index 

 

 

Figure 3.6: Histogram of weekly returns vs.    Table 3.2: Descriptive statistics for weekly   

normal distribution Credit Suisse High            and monthly returns Credit Suisse High Yield 

Yield Index                                                        Index 

 

 

 

 

 

 

 
 

Credit Suisse High Yield Index Descriptive 
Statistics 

Mean (weekly returns) 0.0013 

Standard deviation (weekly returns) 0.0092 

Skewness (weekly  returns) -2.0313 

Kurtosis (weekly  returns) 20.8702 

Mean (monthly returns)  0.0049 

Standard deviation (monthly returns)  0.0259 

Skewness (monthly returns)  -2.1454 

Kurtosis (monthly returns)  15.8232 
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FTSE Euro Corporate Bonds All Maturities Price 2005-04-26 - 2009-10-06 

Figure 3.7: Price development FTSE        Figure 3.8: Histogram of monthly log- returns 

Euro Corp. Bond Index                                  vs. normal distribution FTSE Euro Corp. Bond .            

.                                                                        Index 

 

Figure 3.9: Histogram of daily returns vs.          Table 3.3: Descriptive statistics for daily and  

normal distribution FTSE Euro Corp.                monthly returns FTSE Euro Corp. Bond Index 

Bond Index 

 

 

 

 

 

 

 

 

FTSE Euro Corp. Bond Index Descriptive Statistics 

Mean (daily returns) -3.63e-5 

Standard deviation (daily returns) 0.0016 

Skewness (daily  returns) -0.1821 

Kurtosis (daily  returns) 3.7442 

Mean (monthly returns)  -7.74e-4 

Standard deviation (monthly returns)  0.0086 

Skewness (monthly returns)  -0.3872 

Kurtosis (monthly returns)  2.6179 
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JPMorgan Emerging Markets Bonds Index EMBI Global Diversified Composite      

1994-01-03 - 2009-10-06 

Figure 3.10: Price development      Figure 3.11: Histogram of monthly log-returns vs. 

JPMorgan Em. Mark. Bond Index                normal distribution JPMorgan Em. Mark. Bond      

.                                                                      Index  

  

 

Figure 3.12: Histogram of daily returns vs.       Table 3.4: Descriptive statistics for daily 

normal distribution JPMorgan Em. Mark.         and monthly returns JPMorgan Em. Mark.     . 

.                                                                          Bond Index  

 

 

 

 

 

 

 

JPMorgan Em. Mark. Bond Index Descriptive 
Statistics 

Mean (daily returns) 4.01e-4 

Standard deviation (daily returns) 0.0072 

Skewness (daily  returns) -1.6494 

Kurtosis (daily  returns) 32.1203 

Mean (monthly returns)  0.0078 

Standard deviation (monthly returns)  0.0424 

Skewness (monthly returns)  -2.4830 

Kurtosis (monthly returns)  16.5893 
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OMRX-Bond, Swedish Nation Debt Office’s and the mortgage institutions borrowings 

via bonds 1996-09-24 - 2009-09-24 

Figure 3.13: Price development      Figure 3.14: Histogram of monthly log-returns vs. 

OMRX-Bond Index                                       normal distribution OMRX-Bond Index  

 

Figure 3.15: Histogram of daily returns vs.       Table 3.5: Descriptive statistics for daily 

normal distribution OMRX-Bond Index             and monthly returns OMRX-Bond Index 

 

  

OMRX-Bond Index Descriptive Statistics 

Mean (daily returns) 2.34e-4 

Standard deviation (daily returns) 0.0016 

Skewness (daily  returns) -0.1569 

Kurtosis (daily  returns) 5.4544 

Mean (monthly returns)  0.0047 

Standard deviation (monthly returns)  0.0081 

Skewness (monthly returns)  0.1130 

Kurtosis (monthly returns)  3.3465 
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4. Distribution Analysis 

 
In this chapter we do a distribution analysis on the different data sets described in chapter 3. 

The analysis will be conducted on 1 and 20 day (monthly) log-returns and will be based both 

on an IID assumption with a random walk model, and time series analysis to investigate 

autocorrelation and heteroskedasticity. In the case of fitting random walk parameters with 

normal and student-t distributed innovations we use QQ-plots of both 1 and 20 day log-

returns to estimate their respective parameters. We then turn to investigating autocorrelation 

and heteroskedasticity with autocorrelation plots and finally modeling the return data with 

stochastic processes commonly used to model financial returns (AR, GARCH, AR-GARCH). 

The purpose of this chapter is to get a feel for how different classes of fixed income assets 

tend to be distributed, in order to create a framework for scaling their respective value-at-risk. 

 

4.1 Quantile-Quantile Plotting 
We limit ourselves to comparing the quantiles of the data to the quantiles of the normal 

and the student-t distribution with so called qq-plots (quantile-quantile plots) and then 

proceed with estimation of the parameters of these distributions from the plots, in order to 

understand the tail-behavior of our data sets. 

If we define the ordered sample as 

    

then the qq-plot consists of the points 

  

A linear plot implies that the reference distribution is approximately a linear 

transformation of the data distribution, i.e. from the same location-scale family. 

We compared both daily and monthly data to normal distributions as well as student-t 

distributions with degrees of freedom ranging from 2 to 12 for all data sets. 

In figures 4.1-4.10 below shows the most appropriate student-t distribution versus the 

standard normal distribution for the respective data sets. An S-shaped curve, i.e. where 

the top of the curve shifts to the right and the bottom of the curve to the left of the straight 

line, is an implication of the sample distribution (x-axis) having more mass in the tails 

(top and bottom quantiles) than the reference distribution, whereas an inverted S-shape 

where the top of the curve shifts to the left and the bottom to the right implies that the 

sample distribution has lighter tails than the reference distribution. The more linear plot 

the better the different quantiles of the reference distribution fit the data. This is however 

just a rough method to investigate the tail behavior of the data, and the fit will not be 

perfect since there is no account taken for dependence etc. 
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OMRX-Bond Index 

 

Figure 4.1.1: OMRX-Bond Index daily log-return quantiles vs. t(6) (left) and 

normal(0,1) (right).   

 

 

Figure 4.1.2: OMRX-Bond Index monthly log-return quantiles vs. t(4) (left) and 

normal(0,1) (right).   
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FTSE Euro Corp. Bond Index 

 

Figure 4.1.3: FTSE Euro Corp. Bond Index daily log-return quantiles vs. t(8) (left) and  

normal(0,1) (right).   

 

Figure 4.1.4: FTSE Euro Corp. Bond Index monthly log-return quantiles vs. t(4) (left) 

and normal(0,1) (right).   
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Dow Jones Corp. Bond Index 

 

Figure 4.1.5: Dow Jones Corp. Bond Index daily log-return quantiles vs. t(4) (left) 

and normal(0,1) (right).   

 

Figure 4.1.6: Dow Jones Corp. Bond Index monthly log-return quantiles vs. t(4) (left) 

and normal(0,1) (right).   
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JPMorgan Em. Mark. Bond Index 

 

Figure 4.1.7: JPMorgan Em. Mark. Bond Index daily log-return quantiles vs. t(2,5) 

(left) and normal(0,1) (right).   

  

 

Figure 4.1.8: JPMorgan Em. Mark. Bond Index monthly log-return quantiles vs. t(2) 

(left) and normal(0,1) (right).   
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Credit Suisse High Yield Index 

 

Figure 4.1.9: Credit Suisse High Yield Index weekly log-returns quantiles vs. t(2) (left) 

and normal(0,1) (right).   

 

Figure 4.1.10: Credit Suisse High Yield Index monthly log-return quantiles vs. t(2) 

(left) and normal(0,1) (right).   
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Clearly, 1-day log-returns are not normal. Depending on the asset class, they tend to have 

a decent fit with the student-t distribution with 2-8 degrees of freedom. It is a well known 

fact that financial return-data have fat tails, something which we here confirm also for 

fixed income assets. As one would suspect more risky assets such as high-yield bonds 

(Credit Suisse High Yield Index) and emerging market bonds (JPMorgan Em. Mark. 

Bond Index) tend to be very fat-tailed with around 2 degrees of freedom whereas 

Swedish government bonds (OMRX-Bond Index) and European investment-grade 

corporate bonds (FTSE Euro Corp. Bond Index) tend to be closer to a normal distribution 

with 6-8 degrees of freedom. American corporate bonds (Dow Jones Corp. Bond Index) 

however are significantly more fat-tailed than European with approximately 4 degrees of 

freedom, something which is most likely explained by the significant differences in credit 

markets between USA and the Euro-area. European companies are more reliant on bank 

loans for financing, with only the largest companies issuing bonds, whereas American 

companies to a much larger extent use bonds for financing (Hartmann et. al., 2003). 

When looking at the monthly returns the less risky assets, OMRX-Bond Index and FTSE 

Euro Corp. Bond Index, has reasonable fit with the normal distribution, i.e. they do not 

show signs of fat-tailed behavior. In the case of FTSE Euro Corp. Bond Index the data 

actually seem to be less fat-tailed than the normal distribution. This is however not true 

for the other indexes where monthly returns have approximately the same number of 

degrees of freedom as their respective daily returns. 
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4.2 Testing for Autocorrelation and Heteroskedasticity 
To answer the question whether the log-returns of our data sets consists of random shocks 

to the asset price, i.e. the returns are a random walk, or whether there is dependence 

between returns, we plot the sample autocorrelation function for daily and monthly 

returns. To investigate heteroskedasticity, i.e. volatility clustering, we also plot the 

sample autocorrelation function for squared daily and monthly log-returns. 

We compute the sample autocorrelation function in the form proposed by Box, Jenkins 

and Reinsel: 

The autocorrelation of lag k is denoted  , 

 

 

Where  denotes log-returns (squared in the case of heteroskedasticity plot),  the mean, 

K the number of lags to incorporate and N the length of the vector of returns. 

We chose to use a K (number of lags to be plotted) of 250 (1 year) in the case of daily 

log-returns and N-1 in the case of monthly log-returns. Using longer lags is possible for 

daily returns, but would be of limited viability considering that what happens one specific 

day would with all certainty have very limited impact on the return of a day more than 

250 days in the future. 

To see if there is significant autocorrelation or heteroskedasticity an approximate 95% 

confidence interval consisting of +/- 2 standard deviation is plotted in the ACF-graphs. 

More than 5% of points outside this interval hence imply significant autocorrelation or 

heteroskedasticity. 
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OMRX-Bond Index 

 

Figure 4.2.1: Sample autocorrelation function for OMRX-Bond Index daily log-returns 

with approximate 95% confidence interval. To the left, ACF for daily returns. To the 

right, ACF for squared daily returns. 

 

Figure 4.2.2: Sample autocorrelation function for OMRX-Bond Index monthly log-

returns with approximate 95% confidence interval. To the left, ACF for monthly returns. 

To the right, ACF for squared monthly returns. 
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FTSE Euro Corp. Bond Index 

 

Figure 4.2.3: Sample autocorrelation function for FTSE Euro Corp. Bond Index daily 

log-returns with approximate 95% confidence interval. To the left, ACF for daily returns. 

To the right, ACF for squared daily returns. 

 

 

Figure 4.2.4: Sample autocorrelation function for FTSE Euro Corp. Bond Index monthly 

log-returns with approximate 95% confidence interval. To the left, ACF for monthly 

returns. To the right, ACF for squared monthly returns. 
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Dow Jones Corp. Bond Index 

 

Figure 4.2.5: Sample autocorrelation function for Dow Jones Corp. Bond Index daily 

log-returns with approximate 95% confidence interval. To the left, ACF for daily returns. 

To the right, ACF for squared daily returns. 

 

 

Figure 4.2.6: Sample autocorrelation function for Dow Jones Corp. Bond Index monthly 

log-returns with approximate 95% confidence interval. To the left, ACF for monthly 

returns. To the right, ACF for squared monthly returns. 
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JPMorgan Em. Mark. Bond Index 

 

Figure 4.2.7: Sample autocorrelation function for JPMorgan Em. Mark. Bond Index 

daily log-returns with approximate 95% confidence interval. To the left, ACF for daily 

returns. To the right, ACF for squared daily returns. 

 

 

Figure 4.2.8: Sample autocorrelation function for JPMorgan Em. Mark. Bond Index 

monthly log-returns with approximate 95% confidence interval. To the left, ACF for 

monthly returns. To the right, ACF for squared monthly returns. 
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Credit Suisse High Yield Index 

 

 

Figure 4.2.9: Sample autocorrelation function for Credit Suisse High Yield Index weekly 

log-returns with approximate 95% confidence interval. To the left, ACF for weekly 

returns. To the right, ACF for squared weekly returns. 

 

 

Figure 4.2.10: Sample autocorrelation function for Credit Suisse High Yield Index 

monthly log-returns with approximate 95% confidence interval. To the left, ACF for 

monthly returns. To the right, ACF for squared monthly returns. 
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Clearly, there is significant heteroskedasticity in the daily log-returns of our data sets. All 

data show signs of this, perhaps most pronounced in JPMorgan Em. Mark. Bond Index. 

The daily returns of JPMorgan Em. Mark. Bond Index and Credit Suisse High Yield 

Index also show signs of autocorrelation. Assuming independent daily returns of fixed 

income data hence seem inappropriate. Looking at monthly returns however, our graphs 

suggest that there is little evidence of any autocorrelation or heteroskedasticity, with the 

exception of some heteroskedasticity in the monthly log-returns of Credit Suisse High 

Yield Index. Assuming independence, as in a random walk, might therefore be 

appropriate when modeling monthly returns of fixed income assets. The existence of 

dependence in monthly returns cannot however be excluded, and we will in this study 

therefore include modeling monthly returns with time series that have autocorrelation or 

heteroskedasticity.    
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4.3 Estimating the Parameters of an AR(1)-process 
We estimated the parameters of an AR(1)-process for the daily log-returns of the indices 

described above. When estimating the parameters of the AR-process we start by 

subtracting the mean from the original data, hence ending up with a zero mean process. 

The parameter estimation is straight forward giving us a  (see section 2.3) ranging from 

0.01 for Dow Jones Corp. Bond Index to 0.30 for JPMorgan Em. Mark. Bond Index. All 

data sets had statistically significant parameters. 

 

4.4 Estimating the Parameters of Garch(1,1) and AR(1)-Garch(1,1) 

Processes 

The GARCH and AR-GARCH estimation was made with the same zero mean processes 

used above in the AR estimation. The two most interesting parameters is of course the 

GARCH and the ARCH parameter (we limited ourselves to estimation of GARCH(1,1) 

and AR(1)-GARCH(1,1) processes) who ranged from 0.70 (Credit Suisse High Yield 

Index)  to 0.96 (OMRX-Bond Index) for the GARCH parameter and for the ARCH 

parameter we see range of 0.01 (OMRX-Bond Index) to 0.25 (JPMorgan Em. Mark. 

Bond Index). All data sets had statistically significant parameters. 

 

4.5 Summary and Discussion of Distribution Analysis 
It is a well known fact that financial return data have a tendency for fat tails and volatility 

clustering (i.e. heteroskedasticity). What we have shown in this chapter is that this is 

largely true also for daily log-returns of fixed income data. Monthly returns however are, 

in the case of the less risky OMRX-Bond Index and FTSE Euro Corp. Bond Index, more 

normally distributed, although not so in the other indices in our study. We have also 

shown that monthly returns are reasonably independent for all indices, with low 

autocorrelation and heteroskedasticity. 

The appropriate method of modeling fixed income data hence depends on the time 

horizon of returns as well as the asset class under study. AR, GARCH and AR-GARCH 

methods with fat-tailed innovations might well be appropriate for daily returns 

(statistically significant parameters for all data sets), whereas random walk models with 

less fat-tailed innovations might be more appropriate for the monthly equivalent. 
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5. Scaling of 1-day to 10-day VaR with Simulated Data 

 
This chapter deals with the scaling of 1-day Value-at-Risk to 10-day Value-at-Risk. We 

compare performance of the square-root-of-time rule to a number of empirical methods 

suggested by Roger Kaufmann (Kaufmann, 2004) described below in scaling 1-day VaR of 

simulated data from the distributions fitted in chapter 4. One might argue that using an EVT 

(Extreme Value Theory) scaling method would be appropriate in this comparison, but the 

implementation of these methods demands input from the user in the form of e.g. somewhat 

subjective graphical procedures, making the automated process for a good comparison 

methodology difficult. The scaled VaR‟s are then compared to a “true” 10-day VaR, derived 

either analytically (when possible) or from a very large number of simulations. The 

distributions used to generate simulated data are random walks with standard normal and 

student-t innovations as well as the AR-, GARCH- and AR-GARCH processes. The 

parameters for the distributions are derived from chapter 4, in order to test the procedures on 

data that are similar to real fixed income data. This we believe is crucial for obtaining results 

that have validity in real-world applications.  

The scaling methods: 

 Bootstrap 

Randomly and with repetition 10 values are chosen (  out of the 

sample of 500 values and these 10 values are then summed up: . 

We repeat this procedure 10,000 times and then evaluate the empirical 99% 

quantile of .  

An underlying assumption of Bootstrap is independent data points, and hence it 

should perform well for random walk-like data sets. 

 

 Independent Resampling 

Here we choose 10 weakly dependent daily log-returns: choose  such 

that . These 10 values are then summed up: 

. We repeat this procedure 10,000 times and then the empirical 99% 

quantile is evaluated.  

The procedure can be seen as a counter method to dependent resampling below. 

 

 Dependent Resampling 

In this method 10 strongly dependent values are chosen out of the sample of 500 

values. For n=1,…, 481, we pick , where . These 

then values are summed up:  . We aim have ca 10,000 values to 

work with and therefore we repeat the procedure 22 times. Then the empirical 

99% quantile is evaluated. 

The logic with this procedure is to preserve the dependency structure inherent in 

the data set. Should in theory be good for data with high degree of dependency. 
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 Non-overlapping periods 

We have 50 non-overlapping periods 10-day log-returns: 

. Using these we may then evaluate the 99% 

empirical quantile. 

The theoretically best method given infinite data, however problematic due to 

lack of 10-day return data in real world application.   

 

 Overlapping periods 

We have 491 overlapping 10-day log-returns: 

. Using these we may then evaluate the empirical 99% quantile. 

Simply used as a complement to non-overlapping periods to get more data 

points. Does not take into account the dependence of the overlapping periods. 

   

 Square-root of time 

Using our sample of daily log-returns we evaluate the empirical quantile and 

this daily VaR is then scaled by the factor  to get the 10-day VaR. 

The analytical solution of 10-day VaR for random walk with normal innovations 

data. 

Since the purpose of this chapter is to give a theoretical view on the scaling methods and their 

respective performance for different distributions rather than to come up with actual scaled 

VaR-figures, we limited the study to standard normal, student-t with 3 and 6 degrees of 

freedom and AR ( =0.1), GARCH (a=0.1, b=0.83) and AR-GARCH ( =0.1, a=0.1, b=0.83) 

parameters which are reasonably applicable to all the data sets in chapter 3. These 

distributions we feel give us a good collection of typical fixed income log-return distributions 

to test the different scaling methods on. 

In deciding on which amount of data to use when estimating the 1-day VaR one can either 

take a more realistic approach and simulate a limited number of daily returns (Kaufmann, 

2004) or simulate a very large amount of data to get a more correct 1-day VaR-measure to 

scale (Kristofersen et. al.,1998). Since the purpose of this study is to provide a framework for 

real-world scaling applications, where data is limited, we choose to test the scaling methods 

on 500 (2 years) simulated log-returns. This we feel is a reasonable number considering 

statistical significance for the 1-day VaR as well as mimicking real world data availability.  
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The procedure devised by Roger Kaufmann in detail: 

1. Simulation of  daily log-returns from the different distributions chosen. 

2. The true 10-day VaR is evaluated from this series (given analytically in the case of 

standard-normal random walk). 

3. 10-day VaR on 500 simulated 1-day returns is calculated 1000 times with all the 

different scaling procedures. 

4. The results of the different procedures are compared to the true VaR as well as the 

square-root-of-time method with a graphical procedure as well as the mean.  

The results of the simulations are summarized in figures 5.1.1-9 below. 

The plots show the outcome of the VaR-scaling methods for every simulation of 500 daily 

log-returns, with the square-root-of-time rule on the x-axis and the respective comparison 

method on the y-axis. The vertical and horizontal lines represent the true 99% 10-day VaR for 

the respective distributions. The dotted line goes through ( ) and has slope 1. 

The slope of the solid line is determined by the ratio of the absolute value of the sum of 

deviances from the true VaR for the comparison method to the sum of deviances for the 

square-root-of-time…..rule, 

 

 

 

 A slope S larger than 1 implies that the square-root-of-time is the superior method for the 

distribution at hand. Regarding the clustering of the observations, a majority of points to the 

right (left) of the true VaR means that square-root-of-time overestimates (underestimates) the 

VaR, whereas a majority of points above (below) the true VaR means that the comparison 

method is overestimating (underestimating) the true VaR. 
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5.1 Scaling of Random Walk with Normal Innovations Data 

 
Figure 5.1.1: Random Walk Normal(0,1) innovations  

As expected, the slope of the full-drawn line, indicating the performance of the respective 

scaling-methods relative to the square-root-of-time procedure, is greater than 1 (line is above 

dotted line) for all methods. This result is in line with theory as the square-root-of-time rule is 

the analytical solution to scaling the VaR of a normal random-walk time series. Independent 

resampling as well as bootstrap gives a very good estimation of the true 10-day VaR, with 

slopes very close to 1. 
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Random Walk Normal Innovations 

Method Mean STD 

Bootstrap 0,073529 0,005388 

Dependent resampling 0,070515 0,009659 

Independent resampling 0,072828 0,005346 

Nonoverlapping periods 0,070447 0,014789 

Overlapping periods 0,071748 0,010773 

Square-root-of-time 0,073262 0,005198 

True (analytical) 0,0736 - 
Table 5.1.1, mean and standard deviations of scaled 99%  

10-day VaR for random walk with normal innovations. 

Looking at the mean of 99% 10-day VaR using the different procedures one can see that, as 

expected, the square-root-of-time produces an estimate that is close to the true value in the 

case of random walk-data with normal innovations. The bootstrap method also performs well 

in this aspect, while the other methods tend to underestimate VaR somewhat. 

The standard deviation is in the same region for square-root-of-time, bootstrap and 

independent resampling, while the other methods have about twice that value, indicating that 

they are more unreliable as 10-day VaR estimating procedures. 
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5.2 Scaling of Random Walk with Student-t Data 

 

Figure 5.1.2: Random walk Student-t(6) innovations 

From figure 5.1.2 above we see the satisfactory performance of independent resampling and 

bootstrap as in the case of normal data. The square-root-of-time rule somewhat overestimates 

the VaR, and is here outperformed by bootstrap and independent resampling (full-drawn line 

slope less than 1). The other methods perform poorly on student-t data. 
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Random Walk Student-t(6) Innovations 

Method Mean STD 

Bootstrap 0.075145 0.007963 

Dependent resampling 0.072605 0.012656 

Independent resampling 0.074368 0.007895 

Nonoverlapping periods 0.073659 0.017376 

Overlapping periods 0.073976 0.013256 

Square-root-of-time 0.081602 0.00898 

True (simulated) 0.0754 - 
Table 5.1.2, Mean and standard deviations of scaled 99% 

10-day VaR for random walk with t(6) innovations. 

The results from figure 5.1.2 above are confirmed when looking at the mean of the 99% 10- 

day VaR estimates for random walk-data with t(6) innovations. The bootstrap and 

independent resampling methods have means close to the true value, while the square-root-of-

time and the other methods overestimate respective underestimate the VaR. Looking at the 

standard deviations of the different methods one can conclude that, as in the case with normal 

innovations, bootstrap, independent resampling and square-root-of-time are the most stable 

estimating procedures.  
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. 

  

Figure 5.1.3, Random walk Student-t(3) innovations 

When looking at the graphs in figure 5.1.3 with student-t data with 3 degrees of freedom, 

none of the methods seem to give a better estimate of the 10-day VaR than the square-root-of-

time rule, all full-drawn line slopes being significantly greater than one. Of the other methods 

Bootstrap and independent resampling seem to give the best results as with previous data sets. 
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Random Walk Student-t(3) Innovations 

Method Mean STD 

Bootstrap 0.081586 0.034237 

Dependent resampling 0.074927 0.030168 

Independent resampling 0.08097 0.034427 

Nonoverlapping periods 0.081258 0.040027 

Overlapping periods 0.081969 0.038398 

Square-root-of-time 0.084272 0.013454 

True (simulated) 0.0776   
Table 5.1.3, mean and standard deviations of scaled  

99% 10-day VaR for random walk with t(3) innovations. 

Looking at the means of the different estimation procedures, it is noticeable that all methods 

except for dependent resampling overestimate the 99% VaR for random walk-data with t(3) 

innovations. Independent resampling and dependent resampling comes closest to the true 

value. Noticeable is also the high standard deviation of all methods compared to when using 

t(6) innovations, with the square-root-of-time method being the most stable.   
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5.3 Scaling of AR(1) Data 

 

Figure 5.1.4: AR(1) process, =0.1, student-t(3) innovations 

AR(1)-data with student-t(3) innovations give the same results as with the student-t(3) 

random walk, none of the methods outperform the square-root-of-time rule, bootstrap and 

independent resampling performing slightly better than the others (slope of full-drawn line 

closer to 1). 
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AR(1) Student-t(3) Innovations 

Method Mean STD 

Bootstrap 0.014218 0.007415 

Dependent resampling 0.01294 0.005522 

Independent resampling 0.014103 0.007502 

Nonoverlapping periods 0.014077 0.008171 

Overlapping periods 0.014112 0.007853 

Square-root-of-time 0.014462 0.002284 

True (simulated) 0.0128 - 

              Table 5.1.4, mean and standard deviations of scaled  

              99% 10-day VaR for an AR(1)-process with t(3) 

              innovations. 

Comparing the mean of the different scaling-procedures for 99% VaR with AR(1)-data with 

t(3) innovations, we see that dependent resampling comes closest to the true VaR, the other 

methods overestimating somewhat. This is possibly a consequence of the dependent 

resampling capturing the inherent autocorrelation of the AR(1)-process. Square-root-of-time 

is as with previous data the most stable (i.e. lowest standard deviation) method of scaling 10-

day VaR. 
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Figure 5.1.5: AR(1) process, =0.1, normal innovations 

Given AR(1) data with normal innovations, independent resampling and bootstrap seem to be 

equivalent to the square-root-of time rule (slope of full-drawn line equal to 1). The other 

methods perform poorly. 
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AR(1) Normal Innovations 

Method Mean STD 

Bootstrap 0.012716 0.000873 

Dependent resampling 0.012248 0.001719 

Independent resampling 0.0126 0.000869 

Nonoverlapping periods 0.012444 0.002567 

Overlapping periods 0.012497 0.001826 

Square-root-of-time 0.012748 0.000878 

True (simulated) 0.0127 - 
Table 5.1.5, mean and standard deviations of scaled 99%  

10-day VaR for an AR(1)-process with normal innovations. 

Bootstrap, independent resampling and square-root-of-time all come very close to the true 

VaR when comparing the means, which is congruent with the results in figure 5.1.5 above. 

Noticeable is the weak performance of dependent resampling as compared to when scaling 

AR(1)-data with t(3) innovations.  Comparing standard deviations of the methods bootstrap, 

independent resampling and square-root-of-time are the most stable. 
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5.4 Scaling of GARCH(1,1) Data 

 

Figure 5.1.6: GARCH(1,1) process, a=0.1, b=0.83, normal innovations 

For GARCH(1,1) data with normal innovations bootstrap performs slightly better than the 

square-root-of-time rule, while independent resampling seem to be equivalent to the latter. 
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GARCH(1,1) Normal Innovations 

Method Mean STD 

Bootstrap 0.048184 0.005023 

Dependent resampling 0.047792 0.010461 

Independent resampling 0.047531 0.004944 

Nonoverlapping periods 0.049904 0.013582 

Overlapping periods 0.049724 0.011085 

Square-root-of-time 0.049373 0.00591 

True (simulated) 0.0511 - 
Table 5.1.6, mean and standard deviations of scaled 99%  

10-day VaR for a GARCH(1,1)-process with normal innovations. 

Given the means of the different estimating procedures all methods seem to underestimate the 

10-day VaR for GARCH(1,1)-data with normal innovations. Noticeable is that bootstrap 

differs more from the true VaR than the square-root-of-time method when comparing means 

although it outperformed square-root-of-time in the graphs above (figure 5.1.6), where we 

compare sum of the absolute values of the deviation from the true VaR. 
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Figure 5.1.7: GARCH(1,1) process, a=0.1, b=0.83, student-t(3) innovations 

As with the student-t(3) random walk and AR-process with student-t(3) innovations all 

methods are inferior to the square-root-of-time rule for GARCH(1,1) data with student-t(3) 

innovations given the graphs in figure 5.1.7. 
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GARCH(1,1) Student-t(3) Innovations 

Method Mean STD 

Bootstrap 0.052138 0.031631 

Dependent resampling 0.050469 0.044171 

Independent resampling 0.051486 0.031205 

Nonoverlapping periods 0.056412 0.044356 

Overlapping periods 0.055189 0.042401 

Square-root-of-time 0.054305 0.025256 

True (simulated) 0.0511 - 

Table 5.1.7, mean and standard deviations of scaled 99% 10-day 

 VaR for a GARCH(1,1)-process with student-t(3) innovations. 

Comparing the means of the scaling procedures, boostrap, independent resampling and 

dependent resampling come closest to the true VaR, while the other methods overestimate the 

10-day VaR for GARCH(1,1)-data with t(3)-innovations. The square-root-of-time method 

however has a smaller standard deviation, possibly explaining its superior performance when 

comparing the sum of the absolute values of deviations from the true VaR in figure 5.1.7 

above. 
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5.5 Scaling of AR(1)-GARCH(1,1) Data 

 

Figure 5.1.8: AR(1)-GARCH(1,1) process, =0.1, a=0.1, b=0.83, normal innovations 

As with the other distributions with normal innovations, bootstrap and independent 

resampling perform in line with the square-root-of-time rule (slopes close to 1) for AR(1)-

GARCH(1,1) with normal innovations. 
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AR(1)-GARCH(1,1) Normal Innovations 

Method Mean STD 

Bootstrap 0.048067 0.005207 

Dependent resampling 0.047691 0.010823 

Independent resampling 0.047484 0.005078 

Nonoverlapping periods 0.049498 0.013754 

Overlapping periods 0.049844 0.011138 

Square-root-of-time 0.049511 0.00589 

True (simulated) 0.0511 - 
Table 5.1.8: mean and standard deviations of scaled 99%  

10-day VaR for an AR(1)-GARCH(1,1)-process with normal 

innovations. 

Comparing the means all methods underestimate 10-day VaR for AR(1)-GARCH(1,1)-data 

with normal innovations. Given the standard deviations bootstrap, independent resampling 

and square-root-of-time give the most stable estimations  
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Figure 5.1.9: AR(1)-GARCH(1,1) process, =0.1, a=0.1, b=0.83 Student-t(3) innovations 

As with the other distributions with student-t(3) innovations the square-root-of-time rule seem 

to outperform the other methods for AR(1)-GARCH(1,1) data. 
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AR(1)-GARCH(1,1) Student-t(3) Innovations 

Method Mean STD 

Bootstrap 0.051079 0.032764 

Dependent resampling 0.049101 0.032458 

Independent resampling 0.050462 0.0327 

Nonoverlapping periods 0.055825 0.055453 

Overlapping periods 0.055477 0.055016 

Square-root-of-time 0.054689 0.020394 

True (simulated) 0.0511 - 
Table 5.1.9: mean and standard deviations of scaled  

99% 10-day VaR for an AR(1)-GARCH(1,1)-process  

with student-t(3) innovations. 

Given the means, bootstrap comes closest to the true VaR for AR(1)-GARCH(1,1) with t(3) 

innovations. Square-root-of-time overestimates the 10-day VaR somewhat, its lower standard 

deviation possibly explaining its superior performance over bootstrap when using the 

graphical comparison method in figure 9 above. 
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5.6 Summary of Results and Conclusions 
 

The results per scaling method 

Bootstrap:  

Of the so called empirical methods bootstrap is the best performing for all data sets 

except AR(1) with t(3) innovations. It performs well for all data sets both considering 

our graphical comparison method, where it outperforms square-root-of-time for 

random walk with t(6) innovations and GARCH(1,1) data with normal innovations, 

and with regards to the deviation of the mean from the true VaR as well as when 

considering the stability of the estimations (i.e. relatively low standard deviation).  

 

 Dependent resampling:  

Dependent resampling performs poorly for most data sets, consistently 

underestimating the 10-day VaR. The exception is AR(1) data with t(3) innovations, 

where it is the best performing method. This could be a consequence of the dependent 

resampling capturing the autocorrelation in the AR-process. However, it does not 

perform as well for the AR(1) data with normal innovations. 

 

Independent Resampling:  

Performs in line with bootstrap but slightly less conservative, especially good 

estimates for random walk with t(3) innovations. 

 

Non-overlapping periods: 

As expected, simply using non-overlapping periods to estimate 10-day VaR gives too 

few data points for a reliable estimation, something which is evident in the high 

standard deviation of the VaR estimates (highest of all methods). Performs worse than 

both bootstrap and square-root-of-time for all data sets.  

  

Overlapping periods:  

Slightly better performance than non-overlapping periods with somewhat lower 

standard deviation. 

 

Square-root-of-time:  

Lowest standard deviation (most stable estimate) for all data, outperforms or equal all 

the other methods except for random walk with t(6) innovations, GARCH(1,1) with 

normal innovations and AR(1) with t(3) innovations, especially given the results in the 

from graphical procedure. The good performance relative to the other methods are 

most pronounced when scaling data with t(3) innovations. Good all-round method 

which is on the conservative side, especially relatively to the other methods when 

comparing mean, in a majority of the data. 
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A clear tendency in our analysis is for the square-root-of-time to outperform the other 

methods when looking at fat-tailed data (t(3) innovations) with the graphical procedure. 

Looking at mean, however, square-root-of-time seems to overestimate the VaR, being too 

conservative. The deviating results are consequences of the fact that the graphical procedure 

looks at the absolute value of the sum of deviations from the true VaR. Hence, even though 

the means of the estimations are off, the smaller variance of square-root-of-time compared to 

other methods makes it favorable.  

 

To conclude, square-root-of-time performs surprisingly well in scaling the 99% VaR of our 

different simulated data sets and is easy to implement. Though it overestimates VaR for fat-

tailed data, it is on the conservative side. These results are largely congruent with those of 

Kaufmanns and Embrechts studies. Combined with the Bootstrap and Independent resampling 

methods for GARCH(1,1)-like data with normal innovations and possibly random walk-like 

data with student-t innovations with more than 3 degrees of freedom , one has a good set of 

tools in scaling Value-at-Risk. Applying this framework to the indices described in chapter 4 

and disregarding autocorrelation and heteroskedasticity, square-root-of-time should be 

suitable for the more fat-tailed data sets with around 2 degrees of freedom (JPMorgan Em. 

Mark. Bond Index, Credit Suisse High Yield Index, Dow Jones Corp. Bond Index) in 

obtaining 10-day VaR while bootstrap could be a good alternative for the more normally-

distributed OMRX-Bond Index and FTSE Euro Corp. Bond Index indices. These methods do 

however not take into account dependency between returns. In chapter 4 we saw that there is 

significant heteroskedasticity in the daily log-returns of our data, implying that using 

GARCH-like methods might be a viable alternative in scaling 10-day VaR for these assets.   
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6. Quarterly and Yearly VaR  

 
In this chapter we attempt to estimate quarterly and yearly VaR for the indices described in 

chapter 3 and 4, comparing two of the scaling methods used for 10-day VaR in chapter 5 as 

well as utilizing random walk and AR-processes to obtain quarterly and yearly VaR.  

In scaling the VaR longer time periods we proceed with a method developed by Roger 

Kaufmann (Kaufmann, 2004). The appropriate way of obtaining a K-month VaR estimate is a 

two-step method where one first models h-day returns with 1<h<K and estimate the h-period 

VaR. One then proceeds with an appropriate scaling method to obtain the desired K-month 

VaR measure. In choosing the appropriate h-day period one has to take into consideration 

both the number of data points needed for a reliable estimation of h-day VaR as well as the 

degree of independence between periods (important for random walk scaling procedures).  

For this study we have chosen h=20, i.e. monthly returns. Monthly returns are in general 

approximately independent, while still providing a decent amount of data points (see 

autocorrelation analysis in chapter 4.2). The appropriateness this choice is confirmed by the 

results in Kaufmann‟s study (Kaufmann, 2004).  

In chapter 5 we investigated the performance of a number of empirical methods to scale VaR 

on simulated data. This chapter regards real fixed income log-returns from the data described 

in chapter 3 and 4. We have chosen to use the best performing empirical method (Bootstrap) 

and the square-root-of-time rule from chapter 5 as well as random walks with normal and 

student-t innovations and an AR-process to scale the 20-day VaR to 60 days (3 months) and 

250 days (1 year). Using time series modeling in scaling VaR is a two step method, where one 

first estimate the parameters of the process in question for h-day returns, for example mean 

and standard deviation in the case of a random walk with normal innovations, and then 

simulate (i.e. monte-carlo simulation) a large number of K-day returns. One then obtains the 

scaled K-day VaR by taking the appropriate quantile of these returns.  

In the case of the random walk method using normal innovations the analytical n-day VaR is 

as previously stated equal to the square-root-of-time rule. We also have an analytical solution 

to the n-day VaR of an AR(1)-process with normal innovations: 

 

Lemma: 

For an autoregressive model of order 1, AR(1), with normal innovations, 

  

Both 1-day and n-day log-returns are normally distributed: 
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Hence, utilizing that , where  and  is the -quantile of the 

standard normal distribution, we get  

 

 

Using GARCH and AR-GARCH-processes to scale VaR were not applicable due to 

stationarity issues in certain periods of the data sets.  

 

We proceed with a back-testing method to check the precision of the different methods. These 

results are then compared to those in chapter 5, given the distribution analysis of the index 

data in chapter 4. 

 

6.1 Back-testing procedure 
The difficulty with performing back-testing of quarterly and yearly VaR is the lack of 

sufficient return data for these periods in the indexes used. We therefore employed a method 

where we use rolling 1-month returns (i.e. the 1-month period at hand is moved 1 day forward 

in the next iteration) to estimate 1-month VaR and scale this to 3-month and 1-year VaR, and 

then we compared this VaR to the actual 3-month and 1-year (rolling) return. The number of 

exceedances are then counted and divided by the total number of comparisons to get the 

approximate probability of (in the case of quarterly VaR) the 3-month (future) return 

exceeding the 3-month VaR. In this case with 99% VaR a good result of this number would 

be one close to 0.01, i.e. satisfactory performance of the scaling method would imply that the 

number of exceedances would be close to 1% of the total number of comparisons. 

The procedure in detail for 3-month VaR (analogous to 1-year VaR): 

1. Daily data from day 1 to day i is used to estimate 99% 1-month VaR (i=length of 

data/2) 

2. The VaR figure is scaled to 3-month (60 days) VaR with the respective methods 

3. The 3-month VaR is compared to the actual 3-month return from i to i+60 

4. i=i+1 

This procedure was performed for all indices described in chapter 3, results given below. 
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6.2 Results OMRX-Bond Index 

 

 

                                 Figure 6.2.1: Price development OMRX-Bond Index 

 

Yearly VaR 

 

OMRX-Bond Index yearly VaR 
Scaling method Exceedance ratio 
Bootstrap 5.0% 
Square-root-of-t 1.1% 
Random Walk t innov. 5.6% 
Random Walk norm innov. 6.3% 
AR(1)-process 6.1% 

                                      Table 6.2.1: 99% 1-year VaR Exceedance ratios                               

for OMRX-Bond Index 

Given a good estimation procedure of 1-year VaR, the exceedance ratio, i.e. the percentage of 

yearly (rolling) returns exceeding the (rolling) 99% 1-year VaR, should be around 1%. In this 

case the square-root-of-time rule is clearly the best performing method with 1.1% exceedance 

ratio (see table 6.2.1 above). The other methods give a ratio of about 5-6%, hence 

underestimating the 1-year VaR of OMRX-Bond Index. 
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Figure 6.2.2: Yearly log-returns                Figure 6.2.3: Actual rolling yearly return vs.                                                                                                                                                                                                                                                                                                                                                                             

OMRX-Bond Index.                                      corresponding 99% 1-year VaR estimated with  .                                                                                

.                                                                    square-root-of-time  

 

Figure 6.2.4: 99% 1-year VaR for OMRX-Bond Index with the  

different scaling procedures 

Looking at the yearly log-returns in figure 6.2.2 we see that the return has varied between 

10% and 1.5%, with large annual variations. The rolling (1-day steps) yearly returns in figure 

6.2.3 are as explained in chapter 6.1 obtained from the second half of the total data, 

corresponding to years 2002 and onwards in figure 6.2.2. We see that the yearly VaR, in 

figure 6.2.3, estimated with the square-root-of-time rule, remains fairly constant although new 

data (more rolling years) are added to the estimation procedure. Note that we in these graphs 

and graphs following below plot the negative VaR, i.e. „losses‟. The exceedances, which are 

were the blue line (rolling yearly return) is below the red line (1-year rolling VaR estimate), 

occur around the period 2006-2007. The underestimation of the 1-year VaR by all the 

methods is probably due to the fact that the lowest returns occur at the end of the data set, thus 

these returns are not included in the estimation of VaR corresponding to the period around 

2006-2007. Looking at figure 6.2.4 wee see that all methods behave similarly, square-root-of-

time being slightly more conservative and having less volatile outcomes than the other 

methods, confirming the results of chapter 5. 
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Quarterly VaR 

 

OMRX-Bond Index 3m VaR 

Scaling method Exceedance ratio 

Bootstrap 0.5% 

Square-root-of-t 0.2% 

Random Walk t innov. 0.4% 

Random Walk norm innov. 0.6% 

AR(1)-process 0.6% 
                                      Table 6.2.2: 99% 3-month VaR Exceedance ratios 

                                     for OMRX-Bond Index 

When backtesting the quarterly VaR for OMRX-Bond Index random walk with normal 

innovations and the AR(1)-process scaling procedures came closest to a 1% exceedance ratio, 

both with 0.6%. All methods have exceedance ratios below 1%, indicating that they tend to 

overestimate the 3-month VaR in this case. 

 

Figure 6.2.5: Quarterly log-returns              Figure 6.2.6: Actual rolling quarterly return vs.   

OMRX-Bond Index                                        corresponding 99% 3-month VaR estimated                                                                                                                                                                                                                                                                                                 
.                                                                                 .                                                                                
.                                                                       with random walk (normal innovations)          

                                                              .                                                                          

Looking at the quarterly log-returns for OMRX-Bond Index in figure 6.2.5, we see them 

varying between 5% down to -2% in 1999. Comparing these to figure 6.2.6 (rolling quarterly 

return and corresponding estimated VaR from 2003 and onwards), we see that the 

exceedances, i.e. where the rolling quarterly log-returns is below the 3-month 99% 

corresponding VaR, occur when the return is around -2%. The slight overestimation of the 

VaR by all the methods seen in table 6.2.2 is probably due to the large negative returns in the 

beginning of the data set around 1999. 
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6.3 Results JPMorgan Em. Mark. Bond Index 

 

 

Figure 6.3.1: Price development JPMorgan Em. Mark. Bond Index 

 

Yearly VaR 

 

JPMorgan Em. Mark. Bond Index yearly VaR 

Scaling method Exceedance ratio 

Bootstrap 0.3% 

Square-root-of-t 0.0% 

Random Walk t innov. 0.8% 

Random Walk norm innov. 0.8% 

AR(1)-process 0.8% 
                   Table 6.3.1: 99% 1-year VaR Exceedance  

                                       ratios for JPMorgan Em. Mark. Bond Index 

The random walk-procedures as well as the AR(1)-procedure performs equally well in the 

case of 99% 1-year VaR for JPMorgan Em. Mark. Bond Index as seen in table 6.3.1 above, 

with exceedance ratios of 0.8%, i.e. a slight overestimation of the VaR. Bootstrap and square-

root-of-time overestimates the VaR. 
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Figure 6.3.2: Yearly log-returns                     Figure 6.3.3: Actual rolling yearly return vs.                                                                                                                                                                                                                                                                                                                                                                             

JPMorgan Em. Mark. Bond Index.                   corresponding 99% 1-year VaR estimated with  .                                                                                

.                                                                         random walk (t(3)-innovations) 

Looking at the yearly log-returns in figure 6.3.2, we see a large negative return in 1994 of 

about -20%, with another large dip in 2008 of about -10%. The effect of this on the estimated 

yearly VaR is clear when looking at figure 6.3.3 (returns and VaR from 2001 and onwards); 

the initial dip in the data set around 1994 gives a low VaR of around -30% which then 

steadily increases as additional rolling returns are on the positive side. The post-Lehmann dip 

in 2008, with some rolling yearly returns below -30%, is where the exceedances occur. The 

overestimation of VaR by all methods is most likely due to the large negative returns in the 

very beginning of the data set. 

 

Quarterly VaR 

JPMorgan Em. Mark. Bond Index 3m VaR 

Scaling method Exceedance ratio 

Bootstrap 1.3% 

Square-root-of-t 1.0% 

Random Walk t innov. 2.4% 

Random Walk norm innov. 2.4% 

AR(1)-process 2.4% 
                  Table 6.3.2: 99% 3-month VaR Exceedance  

                                       ratios for JPMorgan Em. Mark. Bond Index 

As opposed to the yearly VaR, Bootstrap and square-root-of-time performs well in scaling 

quarterly VaR for JPMorgan Em. Mark. Bond Index. Square-root-of-time performs excellent 

with 1.0% exceedance ratio, while the other methods underestimate the 3-month VaR. 
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Figure 6.3.4: Quarterly log-returns                Figure 6.3.5: Actual rolling quarterly return vs.                                                                                                                                                                                                                                                                                                                                                                             

. JPMorgan Em. Mark. Bond Index                 corresponding 99% 3-month VaR estimated    .                                                                                

…                                                                                                                                  with an AR(1)-process (normal innovations)   

Given figure 6.3.4 above, we see large negative quarterly returns of around -20% in the 

beginning of the data set around 1994/1995. Following this is a period of relatively low 

volatility, the majority of returns being on the positive side, followed by a large dip in 2008. 

This is reflected in the estimation of quarterly VaR in figure 6.3.5, beginning around 2002. 

The VaR is initially low around -18%, steadily increasing due to following years having 

positive returns. The exceedances occur in the large dip around 2008, due to the fact that this 

dip is larger than the dips used to estimate VaR in the beginning of the data. We also see a 

small downward correction in the VaR after this period of low rolling returns.  
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6.4 Results FTSE Euro Corp. Bond Index 
  

 

Figure 6.4.1: Price development FTSE Euro Corp. Bond Index 

 

Yearly VaR 

 

FTSE Euro Corp. Bond Index yearly VaR 

Scaling method Exceedance ratio 

Bootstrap 0.0% 

Square-root-of-t 0.0% 

Random Walk t innov. 0.0% 

Random Walk norm innov. 0.0% 

AR(1)-process 0.0% 
                 Table 6.4.1: 99% 1-year VaR Exceedance ratios  

                                     for FTSE Euro Corp. Bond Index 

There are no exceedances in the backtesting procedure for FTSE Euro Corp. Bond Index. This 

is an implication of the data set being rather small, only 4 years of returns, as well as the intial 

first half of the data, which is the one used for estimating VaR, having a downward slope (see 

figure  6.4.1 above) followed by an upward slope. The rolling returns of the first half are 

hence to a majority negative, which induces a very negative estimation of the VaR. This low 

VaR is thus never exceeded in the second half of the data where returns are mostly on the 

positive side. 
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Figure 6.4.2: Yearly log-returns                     Figure 6.4.3: Actual rolling yearly return vs.                                                                                                                                                                                                                                                                                                                                                                             

. FTSE Euro Corp. Bond Index                         corresponding 99% 1-year VaR estimated with  .                                                                                

.                                                                              .                                                                                

.                                                                        bootstrap 

The low yearly returns in the first half of the data induce a VaR of around -10%. The 

following years of mostly positive returns thus never exceed the yearly VaR, which we see in 

figure 6.4.3. 

 

Quarterly VaR 

 

FTSE Euro Corp. Bond Index 3m VaR 
Scaling method Exceedance ratio 
Bootstrap 0.1% 
Square-root-of-t 1.0% 
Random Walk t innov. 0.0% 
Random Walk norm innov. 0.0% 
AR(1)-process 0.0% 

                  Table 6.4.2: 99% 3-month VaR Exceedance  

                                       ratios for FTSE Euro Corp. Bond Index 

As we see in table 6.4.2, square-root-of-time performs well for quarterly VaR in the case of 

FTSE Euro Corp. Bond Index, with an exceedance ratio of 1.0%. This is noticeable, given 

that the square-root-of-time often is seen as a conservative measure supposed to overestimate 

the VaR. Here we have the opposite outcome, where the other methods overestimate the 

quarterly VaR. 
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Figure 6.4.4: Quarterly log-returns            Figure 6.4.5: Actual rolling quarterly return vs.                                                                                                                                                                                                                                                                                                                                                                             

. FTSE Euro Corp. Bond Index                     corresponding 99% 3-month VaR estimated    .                                                                                 

.                                                                     with square-root-of-time 

Looking at figures 6.4.4 and 6.4.5, we see that the first half of the data, with two quarterly 

returns around -3%, implies a VaR of around -2.8%. The exceedances occur in the end of 

2008, where rolling returns are down to around -3.5%. The 3-month VaR, incorporating these 

exceedances, is then corrected sharply down to -4.7%. 

 

 

  



62 

 

6.5 Results Dow Jones Corp. Bond Index 
 

 

                                            Figure 6.5.1: Price development Dow Jones  

                                           Corp. Bond Index 

 

Yearly VaR 

 

Dow Jones Corp. Bond Index yearly VaR 

Scaling method Exceedance ratio 

Bootstrap 0.0% 

Square-root-of-t 0.0% 

Random Walk t innov. 0.0% 

Random Walk norm innov. 0.0% 

AR(1)-process 0.0% 
                  Table 6.5.1: 99% 1-year VaR Exceedance ratios  

                                      for Dow Jones Corp. Bond Index 

As in the case of yearly returns for FTSE Euro Corp. Bond Index there are no exceedances 

when backtesting yearly VaR for Dow Jones Corp. Bond Index, also here due to lack of return 

data (only three years) as well as initial rolling returns being low relative to later rolling 

returns.   
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                                        Figure 6.5.2: Actual rolling yearly return vs.                                                                                                                                                                                                                                                                                                                                                                             

.                                         corresponding 99% 1-year VaR estimated with  .                                                                                

.                                                                              .                                                                              

.                                       random walk (normal innovations) 

Yearly returns where +4% in 2007 and -5% in 2008. We end up with a period of about one 

year to utilize for checking whether our rolling estimates of the yearly VaR is exceeded by the 

following actual yearly (rolling) returns. In this case, looking at the price development in 

figure 6.5.1, we have an upward slope in the latter part of the data set, implying, as we see in 

figure 6.5.2, that there are no exceedances. 

 

Quarterly VaR 

 

Dow Jones Corp. Bond Index 3m VaR 

Scaling method Exceedance ratio 

Bootstrap 18.2% 

Square-root-of-t 22.0% 

Random Walk t innov. 17.2% 

Random Walk norm innov. 17.6% 

AR(1)-process 17.6% 
                 Table 6.5.2: 99% 3-month VaR Exceedance ratios  

                                     for Dow Jones Corp. Bond Index 

Table 6.5.2 paints a picture completely different from the 1-year VaR case. Instead of no 

exceedances we have very high exceedance ratios for the quarterly VaR of around 17%, i.e. a 

severe underestimation of the VaR. As in the case of the yearly VaR for Dow Jones Corp. 

Bond Index we have a somewhat limited data set, which makes our predictions unstable.   
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Figure 6.5.4: Quarterly log-returns          Figure 6.5.5: Actual rolling quarterly return         .                                                                               

Dow Jones Corp. Bond Index                    vs. corresponding 99% 3-month VaR .       . .                                                                                

.                                                                   estimated with random walk (t(6))  

Looking at figure 6.5.4, we see that yearly returns of the first half of the data are close to 

zero. We obtain a VaR estimate of around -4%, which is then exceeded in the post-Lehmann 

period in the end of 2008, where quarterly returns drop down to -10%.                                                                                                                                                                                                                                                                                                                                                                             
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6.6 Results Credit Suisse High Yield Index 

 

 

                          Figure 6.6.1: Price development  

                                              Credit Suisse High Yield Index 

 

Yearly VaR 

 

Credit Suisse High Yield Index yearly VaR 

Scaling method Exceedance ratio 

Bootstrap 12.6% 

Square-root-of-t 11.9% 

Random Walk t innov. 12.6% 

Random Walk norm innov. 13.0% 

AR(1)-process 13.0% 
                   Table 6.6.1: 99% 1-year VaR Exceedance ratios  

                                        for Credit Suisse High Yield Index 

Exceedance ratios for the yearly VaR of Credit Suisse High Yield Index are significantly 

higher than 1%, around 12% for all scaling methods, i.e. all methods underestimate the yearly 

VaR. Square-root-of-time performs least worse with a ratio of 11.9%. 
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Figure 6.6.2: Yearly log-returns                       Figure 6.6.3: Actual rolling yearly return vs.                                                                                                                                                                                                                                                                                                                                                                             

. Credit Suisse High Yield Index                         corresponding 99% 1-year VaR estimated with                                                               

.                                                                                .                                                                              

.                                                                          square-root-of-time 

Given figure 6.6.2 we see that yearly returns are highly volatile, ranging from +25% in 2002 

to -5% in 2008. The large post-Lehmann drop in the end of 2008 (seen in the price 

development in figure 6.6.1) is where the exceedances occur. The rolling yearly returns of the 

first half of the data gives us an estimate of the yearly VaR of around -15% (see figure 6.6.3), 

which is then severely exceeded in the end of 2008 with rolling yearly returns being as low as 

-35%. 

 

Quarterly VaR 

 

Credit Suisse High Yield Index 3m VaR 

Scaling method Exceedance ratio 

Bootstrap 5.1% 

Square-root-of-t 4.8% 

Random Walk t innov. 5.1% 

Random Walk norm innov. 5.1% 

AR(1)-process 5.1% 
                                        Table 6.6.2: 99% 3-month VaR Exceedance ratios  

                                       for Credit Suisse High Yield Index 

As in the case for Credit Suisse High Yield Index with yearly VaR, we get an underestimation 

of VaR also in the quarterly estimations with exceedance ratios being close to 5% for all 

scaling methods. As with yearly VaR, square-root-of-time performs best with an exceedance 

ratio of 4.8%, solidifying its reputation as the more conservative measure (although in the 

case with Credit Suisse High Yield Index not conservative enough). 
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Figure 6.6.4: Quarterly log-returns           Figure 6.6.5: Actual rolling quarterly return         .                                                                                 

Credit Suisse High Yield Index                   vs. corresponding 99% 3-month VaR .       . .                                                                                

.                                                                    estimated with square-root-of-time 

Quarterly returns remain relatively stable, varying between -10% and +10% up to the end of 

2008. In figure 6.6.5 this is reflected in the estimation of the quarterly VaR, remaining 

relatively constant during periods corresponding to years 2003 to 2007 with a sharp correction 

after the dip in late 2008. As in the case of yearly VaR, quarterly VaR is underestimated since 

the returns before 2008 are does not contain any period of the same negative magnitude. 
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6.8 Scaling of 1-day to 250-day VaR without Intermediary Step 
Simply scaling 1-day VaR to 60-day or 250-day VaR is not a viable alternative since it 

produces too uncertain results. This is partly due to a significant dependence between daily 

returns (see chapter 4.2) in the case of random-walk methods. Also, other characteristics (e.g. 

leptokurtosis) of 1-day return distributions might not be the same as in say 250-day return 

distributions. 1-day and 250-day returns are simply not comparable; their parameters depend 

on completely different factors. For example, daily returns are highly dependent of the 

behavior of investors, and hence to a large part affected by the psychology of the individual. 

Yearly returns on the other hand should be more correlated to macroeconomic factors.  We 

illustrate this by examining the effects of scaling 1-day VaR directly to 250-day VaR for 

OMRX-Bond Index below. 

 

Yearly VaR with 1-day to 250-day scaling 

OMRX-Bond Index yearly VaR (scaled from 1-
day returns) 

Scaling method Exceedance ratio 

Bootstrap 9.4% 

Square-root-of-t 2.5% 

Random Walk t innov. 9.4% 

Random Walk norm innov. 9.4% 

AR(1)-process 9.5% 
 Table 6.8.1: 99% 1-year VaR Exceedance ratios for OMRX-Bond Index, 

 using 1-day to 250-day scaling 

Clearly, scaling 1-day VaR directly to 250-day VaR, skipping the intermediate step of using 

estimated 1-month VaR, produces more unreliable results. Square-root-of-time performs less 

worse than the other methods with an exceedance ratio of 2.5%, however significantly worse 

than with the intermediate step in table 6.2.2 (exceedance ratio 1.1%). This is as discussed 

earlier most likely a function of the daily and yearly return distributions being too different, 

i.e. they do not share basic distribution characteristics, thereby making scaling of the quantiles 

difficult. 
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Figure 6.8.1: Actual rolling yearly return vs. corresponding 99%  .                                                                                           

1-year VaR estimated with square-root-of-time and bootstrap 

In figure 6.8.1 one we see why square-root-of-time outperforms bootstrap so significantly, 

when comparing exceedances in table 6.8.1 above. Since square-root-of-time is slightly more 

conservative than bootstrap and the other methods, as we showed in chapter 5 on simulated 

data as well, we get several times more exceedances. This is of course dependent of the data 

set in question and not a statistical truth regarding the relative performance of square-root-of-

time and the other methods. The conclusion that can be drawn here is that square-root-of-time 

is a conservative measure relative to the other methods. 

.                                                               
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6.3 Summary of Results and Discussion 
 

Results per scaling method 

Bootstrap: 

For the more stationary series OMRX-Bond Index, JPMorgan Em. Mark. Bond Index and 

FTSE Euro Corp. Bond Index the bootstrap scaling method has more exceedances than the 

square-root-of-time rule but less than the remaining methods, i.e. it is less conservative than 

square-root-of-time and slightly more than the time series methods, for these indicies. 

Inconclusive results for Dow Jones Corp. Bond Index and Credit Suisse High Yield Index. 

Performance is not significantly different from the random walk and AR methods. 

Square-root-of-time: 

Excellent performance for yearly VaR in the case of OMRX-Bond Index and quarterly VaR 

for JPMorgan Em. Mark. Bond Index and FTSE Euro Corp. Bond Index with exceedances 

very close to the desired 1%. On the conservative side relative to the other methods in the 

majority of cases with the exception of quarterly VaR for FTSE Euro Corp. Bond Index and 

Dow Jones Corp. Bond Index, where it actually is the least conservative method. This 

unexpected effect could well be an implication of the lack of data in these indices. 

Random Walk student-t innovations: 

Best relative performance for quarterly VaR in Dow Jones Corp. Bond Index, although still 

severely underestimating the VaR like the other methods. Performance is otherwise on the 

less conservative side like the other time series-model methods. 

Random Walk normal innovations: 

Good performance for quarterly VaR in OMRX-Bond Index with a slightly conservative 

exceedance ratio of 0.6%. Performance is otherwise on the less conservative side like the 

other time series-model methods. 

AR(1) : 

Like random walk with normal innovations 0.6% exceedance ration for quarterly VaR in 

OMRX-Bond Index, otherwise on the less conservative side like the other time series-model 

methods. 

 

When observing the results of the different scaling procedures, the square-root-of-time rule 

performs extraordinary well in the case of yearly VaR in OMRX-Bond Index, quarterly VaR 

for JPMorgan Em. Mark. Bond Index and quarterly VaR for FTSE Euro Corp. Bond Index. 

The other methods are roughly equal. All methods have a tendency to overestimate VaR with 

an exceedance ratio below 1% for the more stationary OMRX-Bond Index, JPMorgan Em. 

Mark. Bond Index and FTSE Euro Corp. Bond Index, while severely underestimating it for 

Dow Jones Corp. Bond Index and Credit Suisse High Yield Index. 

Comparing these results to those in chapter 5 is difficult, but one clear tendency which we 

saw in chapter 5 is that of good performance relative to the other methods in the case of the 
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square-root-of-time rule with simulated data. This is also confirmed in this chapter for real 

fixed income data. As we saw in the distribution analysis of chapter 4, monthly returns for 

OMRX-Bond Index and FTSE Euro Corp. Bond Index are closer to the normal distribution, 

without the pronounced fat-tails of the other indices. Considering this and the high degree of 

independence between monthly returns seen in the autocorrelation analysis of chapter 4.2, and 

the fact that the square-root-of-time rule is the analytical solution to scaling quantiles of a 

random walk with normal innovations, the satisfactory results of square-root-of-time are not 

surprising. The relatively good results for the more fat-tailed indices JPMorgan Em. Mark. 

Bond Index is probably due to the conservative nature of the square-root-of-time rule. 

Given our backtesting analysis, scaling 99% VaR works well for the less volatile indices 

OMRX-Bond Index and FTSE Euro Corp. Bond Index as well as well as the fat-tailed 

JPMorgan Em. Mark. Bond Index. Exceedances are reasonably close to 1% both in the case 

of yearly and quarterly VaR. For Dow Jones Corp. Bond Index we have the contradictory 

results of zero exceedances in the case of yearly VaR, i.e. overestimation of the VaR, and 

severe underestimation of the VaR in the quarterly dito with exceedances around 20%. For 

Credit Suisse High Yield Index we have significant underestimation of the VaR for both 

yearly and quarterly estimations. Looking at the price development of the data, one can see 

that OMRX-Bond Index, FTSE Euro Corp. Bond Index and JPMorgan Em. Mark. Bond 

Index have a relatively smooth development without the sudden large drops in the other 

indices, implying a more stationary process. This is likely why scaling of the quantiles works 

better for these data sets. The limited number of return data for FTSE Euro Corp. Bond Index 

and Dow Jones Corp. Bond Index also gives somewhat unreliable results, possibly explaining 

the deviances. 

The worst possible scenario has not happened yet. This simple fact is evident when 

backtesting the VaR of these fixed income indices. What we see in the majority of cases is 

that the 99% VaR estimated from previous data is exceeded during the period after the 

investment bank Lehmann Brothers went bankrupt in October 2008. For the more credit 

worthy assets OMRX-Bond Index and FTSE Euro Corp. Bond Index the sharp decline in 

asset price is not as pronounced as for the more high-yielding indices; the low yearly and 

quarterly rolling returns exceeding the 99% scaled VaR of these periods roughly equal a one 

in a hundred event given the length of our data sets, enabling us to get a good estimate of the 

VaR. However, the post-Lehmann crisis affected more risky fixed income assets such as Dow 

Jones Corp. Bond Index and Credit Suisse High Yield Index very negatively, giving us yearly 

and quarterly returns far below what was seen in the earlier parts of the data. Because of this 

the VaR for the post-Lehmann period is underestimated. One can conclude that when 

estimating longer period VaR for risky assets with significant credit risk such as high-yielding 

bonds, one should be well on the conservative side. The square-root-of-time rule is 

conservative in most cases as we have shown, yet not enough and not always. Using the 

scaling procedure presented in this chapter, with carefully chosen scaling method and 

respective parameters depending on asset class, is however a good alternative for fixed 

income assets with limited credit risk such as government bonds and European investment 

grade bonds. 
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7. Measuring Risk in a Non-Stationary Portfolio 

 
In this chapter we investigate the implications of a non-fixed portfolio allocation to risk 

management. The results from chapters 5 and 6 are based on the presumption that the 

portfolio allocation remains constant over the investment horizon. Though a reasonable 

assumption in the case of scaling 1-day VaR to 10-day VaR, this is clearly not the case when 

looking at time horizons of one month and more in actively managed portfolios. The portfolio 

managers will during the period of risk measuring react to market events, thus changing the 

portfolio allocation and hence the distribution of returns. Incorporating this behavior into a 

quantitative model for obtaining risk measures such as VaR is of course very difficult, 

considering that the portfolio managers investment decisions are subject to the psychology of 

the individual. However, when portfolio allocation decisions (i.e. the weights of the different 

asset classes) are directed completely by rules set up in the investment policy this becomes 

possible. One example of such a strategy is CPPI (Constant Proportion Portfolio Insurance), a 

way of guaranteeing a certain percentage of the total portfolio value by changing the weights 

between risky and risk-free assets in response to market movements. 

CPPI is widely used in portfolio hedging, its main benefits versus e.g. option hedging being 

its low cost and ease of implementation, the drawback being an event risk as in the case of 

sudden large price movements in the market.  

We will use a model for determining 3-month VaR of this portfolio which uses the bootstrap 

scaling method described in chapter 5 to scale 1-month VaR to 3-month VaR. Scenarios for 

the returns of the different assets are derived from appropriate risk-factors such as various 

indices. This model provided us with a practical way to implement and test the effect of CPPI 

on the VaR of the portfolio, allowing us to compare the risk before and after using CPPI. 

 

7.1 Constant Proportion Portfolio Insurance (CPPI) 
All of the scaling methods in the previous chapters assume that the portfolio allocations 

remain constant over the relevant time horizon. This is seldom a realistic assumption, for 

instance when looking at a time horizon of three months. When relaxing the constraint of a 

fixed portfolio allocation one need to have a set of predetermined allocation rules or 

management actions, i.e. reactions to market performance. In the light of new regulations in 

the insurance business where companies‟ internal models might be allowed to incorporate 

management actions (CEIOPS‟ Advice for level 2 Implementing Measures on Solvency II: 

Technical Provisions – Assumptions about Future Management Actions, 2009) we implement 

such a structure in the model; CPPI.  

The CPPI was first introduced for fixed income instruments by Perold (1986) and for equities 

by Black and Jones (1987). It is a quite simple strategy allowing its user to dynamically 

allocate assets over time. Two parameters are exogenous to CPPI, a floor and a multiple. The 

floor is the minimum amount that you do not want the portfolio performing below, e.g. 90 per 
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cent of the portfolios start value. The multiple is chosen as the inverse of the assumed gap risk 

where the gap risk is the assumed maximum drop one might experience in the risky asset in 

your portfolio during an intra-period. Handelsbankens Asset Management division has for 

instance modeled the intraday gap risk to be ca -12% for a risky asset such an ETF with an 

equity index as the underlying. In this case we would therefore get a multiple of ca 8 (

. In the literature one often uses slightly smaller multiples, such as 4 or 5 (Black & 

Perold p. 409 1992, Ameur & Prigent p. 3 2006).  

Once a floor and multiple are chosen the allocations can be determined by first calculating the 

so called cushion as the difference of the current portfolio value (risky and riskless assets) and 

the floor. The amount allocated to the risky asset is then simply the cushion multiplied by the 

multiple and the amount allocated to the riskless asset is what is left of the portfolio. After one 

period a new cushion is calculated. The new cushion will be larger if the risky asset has had a 

positive return and it will be smaller if it has performed a negative return and since the 

multiple (in our case) does not change over time, the allocation to the risky asset will increase 

or decrease accordingly. As long as the intra-period performance is not worse than the 

assumed gap risk, the portfolio will never fall below its floor value. Of course, several 

possible extensions to CPPI comes to mind, for instance that the floor grows with the rate of 

the risk free interest rate (this is actually the original structure), where the floor may be 

adjusted to lock-in good performance, where the multiple varies over time (Ameur & Prigent, 

2006), where the exposure to risky asset is not allowed to exceed a certain proportion of the 

portfolio or where you are not allowed to short the riskless asset.  

The CPPI is well suited to be implemented as a management action strategy in an internal risk 

model since all allocations are known given a market performance and since the 

implementation is not computationally heavy.   

 

7.2 Implementation of CPPI  
We have chosen eleven portfolios that will have a CPPI structure implemented for a portion 

of their equity holdings. The CPPI model will have a fixed floor (i.e. not growing with the 

riskless interest rate) that is 90 per cent of the NAV at a certain time, but the floor may be 

changed discretionary, for instance if you want to lock in a good performance. Models, which 

will not be dealt with here, have given a gap risk of 12 per cent per day and thus a multiplier 

of ca 8. All portfolios have a maximum proportion that equities may have of the entire 

portfolio, ranging from 3 per cent to 23 per cent.  

The original (stationary) model is based on historical data with a period of one month. The 

allocations have been mapped to 33 risk factors for which we have ca 300 months of 

historical data. Bootstrap is then used and for the stationary model we get a three month return 

by aggregating three bootstrapped months, thus the independence structure is preserved 

within a month. The most desirable would be to change this to a period of one day since this 

is the rebalancing period available. However such a drastic change to the existing model lies 

beyond the scope of this paper and hence we will keep the one month period. This means that 
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the portfolios will be re-allocated two times, i.e. between the first and the second month and 

between the second month and the third month to give a corresponding risk measure.  

The change from one day periods to one month periods means that the gap risk assumption of 

12 per cent is no longer valid. We will use a set of gap risks giving multiplies ranging from 3 

to 8. Please also note that only a proportion of the portfolios are allocated to the CPPI 

structure, hence not all risky assets are protected by the CPPI structure (nor are all equity 

holding). This means that non-favorable moves in interest rates that dominate the portfolios 

might also dominate the CPPI structure.   

 

7.3 Results and discussion 
Here we present the results from an implementation of the CPPI in the existing stationary 

model. First we present two tables where equities either increase by five per cent each month 

or decreases by five per cent while all other assets have a zero return. These two tables are 

meant to show the reader the behavior and characteristics of CPPI in a more tidily manner 

than when including a varying performance of the other risky assets.   

3-month returns (Stock return = -5 % per month, all else zero return) 

Portfolio 
Ceiling (of 
entire sub-
portfolio) 

Proportion 
Allocated to 

CPPI 

without 
CPPI 

CPPI, 
multiplier=8 

CPPI, 
multiplier=3 

1 6% 4.03% -1.1021% -0.9382% -0.8263% 

2 6% 3.72% -1.1606% -0.9985% -0.8883% 

3 5% 3.24% -0.9294% -0.7976% -0.7077% 

4 3% 2.18% -0.8248% -0.7257% -0.6579% 

5 12% 8.82% -2.5464% -2.2167% -1.9914% 

6 12% 7.72% -2.6166% -2.2808% -2.0508% 

7 11% 8.05% -2.3058% -2.0187% -1.8230% 

8 8% 5.40% -1.8272% -1.5899% -1.4276% 

9 6% 4.13% -1.2398% -1.0759% -0.9638% 

10 12% 8.21% -2.6856% -2.3470% -2.1148% 

11 23% 16.91% -3.9818% -3.3538% -2.9261% 

Table 7.3.1: 3-month portfolio returns when equities value declines five per cent per month 

and all other assets have a zero return each month 
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Table 7.3.2: 3-month portfolio returns when equities value increases five per cent per month 

and all other assets have a zero return each month 

  

3-month returns (Stock return = +5 % per month, all else zero return) 

Portfolio 
Ceiling (of 
entire sub-
portfolio) 

Proportion 
Allocated 

to CPPI 

without 
CPPI 

CPPI, 
multiplier=8 

CPPI, 
multiplier=3 

1 6% 4.03% 1.2180% 1.3596% 1.0234% 

2 6% 3.72% 1.2826% 1.4231% 1.0904% 

3 5% 3.24% 1.0272% 1.1408% 0.8707% 

4 3% 2.18% 0.9116% 0.9979% 0.7938% 

5 12% 8.82% 2.8142% 3.1002% 2.4226% 

6 12% 7.72% 2.8918% 3.1832% 2.4927% 

7 11% 8.05% 2.5483% 2.7842% 2.2076% 

8 8% 5.40% 2.0194% 2.2255% 1.7375% 

9 6% 4.13% 1.3701% 1.5122% 1.1754% 

10 12% 8.21% 2.9680% 3.2634% 2.5654% 

11 23% 16.91% 4.4006% 4.9364% 3.6555% 
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3-month returns (bootstrap) 

Portfolio 

Ceiling 
(of entire 

sub-
portfolio) 

Proport
ion 

Allocat
ed to 
CPPI 

without 
CPPI 

CPPI 
multiplier=8 

CPPI 
multiplier=3 

without 
CPPI 99,5-
quantile of 

returns 

99,5-
quantile of 

returns, 
CPPI 

multiplier=8 

99,5-
quantile of 

returns, 
CPPI 

multiplier=3 

1 6% 4.03% 0.2750% 0.2786% 0.2371% -2.6738% -2.2596% -2.1768% 

2 6% 3.72% 0.2887% 0.2922% 0.2512% -2.8021% -2.3845% -2.2964% 

3 5% 3.24% 0.2615% 0.2643% 0.2311% -2.2426% -1.9367% -1.8818% 

4 3% 2.18% 0.2481% 0.2503% 0.2255% -2.1073% -1.9151% -1.8646% 

5 12% 8.82% 0.7337% 0.7390% 0.6462% -7.1138% -6.4199% -6.3481% 

6 12% 7.72% 0.7938% 0.7992% 0.7045% -7.8080% -7.4234% -7.3567% 

7 11% 8.05% 0.7120% 0.7158% 0.6359% -6.6597% -6.3041% -6.2481% 

8 8% 5.40% 0.4850% 0.4888% 0.4220% -4.8247% -3.8358% -3.8089% 

9 6% 4.13% 0.3089% 0.3125% 0.2709% -2.9685% -2.5415% -2.4583% 

10 12% 8.21% 0.7427% 0.7482% 0.6525% -7.3175% -6.4484% -6.4247% 

11 23% 16.91% 0.9957% 1.0066% 0.8352% -10.2634% -8.7598% -8.2689% 

Table 7.3.3: 3-month portfolio returns with bootstrapped returns for all assets. The three 

middle columns contain the mean returns and the three columns farthest to the right contain 

the 99.5-quantile of the returns.  

standard deviation of 3-month returns (bootstrap) 

Portfolio 
Ceiling (of 
entire sub-
portfolio) 

Proportion 
Allocated to 

CPPI 

without 
CPPI 

CPPI, 
multiplier=8 

CPPI, 
multiplier=3 

1 6% 4.03% 0.7035% 0.7345% 0.6052% 

2 6% 3.72% 0.7405% 0.7709% 0.6426% 

3 5% 3.24% 0.6406% 0.6640% 0.5650% 

4 3% 2.18% 0.5954% 0.6119% 0.5404% 

5 12% 8.82% 2.0424% 2.1094% 1.8231% 

6 12% 7.72% 2.2227% 2.2873% 2.0125% 

7 11% 8.05% 1.9212% 1.9747% 1.7343% 

8 8% 5.40% 1.3435% 1.3965% 1.1670% 

9 6% 4.13% 0.7927% 0.8234% 0.6932% 

10 12% 8.21% 2.0965% 2.1678% 1.8624% 

11 23% 16.91% 2.8432% 2.9734% 2.4341% 

Table 7.3.4: The standard deviation of 3-month returns with bootstrapped scenarios 
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Figure 7.3.1: Histograms of portfolio returns without CPPI (left) and with CPPI (right) 

We see the expected behavior of the returns and their standard deviation in respect to changes 

in the multiplier, i.e. a higher multiplier leads to a higher standard deviation and expected 

return (p. 211, Balder, 2009). We may also note that when the multiplier is eight (which is a 

quite unreasonably large multiplier) the expected return actually increases relative to a non-

CPPI portfolio, however so does also the standard deviation. This may be a result of the CPPI 

structure allocating more to the risky asset resulting in a slightly higher return, a higher 

standard deviation and a higher probability of exceeding the gap. However, when using a 

more reasonable multiplier of 3 we get the results congruent with those of a constrained CPPI 

(p 1108, Boulier Kanniganti 1995). These results are also congruent with those of Clark and 

Arnott for portfolios where, as in our case, only a part of the portfolio is insured using CPPI 

(p 41, Clark, Arnott, 1987).  

We can also see that portfolio four that has the smallest proportion allocated to the CPPI also 

has the smallest change in the mean return and the smallest change in the standard deviation 

(using the figures with the more reasonable multiplier three).  

The histograms above shows, albeit minuscule, changes in the distributions of returns. The 

distributions changes from a normal distribution-like distribution to more of a log-normal 

appearance, where we get fewer worst cases but we also lose the greatest (positive) returns as 

well. The reasoning for only showing the histograms for portfolio one and eleven is that 

portfolio eleven has the largest proportion of its portfolio allocated to the CPPI and hence 
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portrays the largest change in distribution where as the first portfolio has a CPPI allocation 

more representative of the majority of portfolios.  

In table 7.3.3 we see a quite large change in the 99.5-quantiles when using CPPI, at least in 

the light of a smaller proportion of each portfolio being allocated to the CPPI structure and in 

table 7.3.1 we see how negative returns portray the strengths of CPPI in how smaller the 

returns become when not using CPPI.   

We can therefore conclude that in the case were a management actions structure, such as 

CPPI, is in use it may be prudent to examine its implications on the risk measures as its 

implications might be large. However one must also keep in mind that the extension of a risk 

model to incorporate management actions may increase the models complexity and perhaps 

more importantly, the number of assumptions. As in this particular case where we needed to 

assume a gap risk for one month periods, i.e. it is may be hard to connect the actual one day-

multiplier used in capital management to the one used in the risk model.   
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8. Conclusions 
 

Regarding scaling of the 99% Value-at-Risk to time horizons of periods of ten days up to one 

year we find that the square-root-of-time rule performs well compared to the other methods 

investigated in this study. In the case of quarterly and yearly VaR for the fixed income indices 

used here it has satisfactory performance for the less volatile assets, Swedish government 

bonds (OMRX-Bond Index) and European investment grade bonds (FTSE Euro Corp. Bond 

Index). It also performs well for emerging market bonds (JPMorgan Em. Mark. Bond Index). 

The sharp drops in price levels in late 2008 for American corporate  

bonds (Dow Jones Corp. Bond Index) and high yielding bonds (Credit Suisse High Yield 

Index) combined with short price history makes scaling VaR for these assets difficult. 

 

Considering the ease of implementation and the conservative nature of the square-root-of-time 

rule it is appropriate for practical implementation. This implementation should be carried out 

in the two-step method described here for longer time horizons, where one first estimate an 

intermediate VaR, e.g. one month, and then us the scaling procedure to obtain the VaR of 

choice. 

While implementations of management action models are attractive in the way they may give 

a more accurate picture of the world they try to model, one must also keep in mind that they 

can increase the complexity and number of assumptions in the model. However, CPPI is a 

fairly simple and stringent model quite suitable for implementations in the light of regulators 

allowing management actions in internal risk models. 

An interesting area of future research is the effects of CPPI implemented on a more realistic 

daily return basis on portfolio risk, as well as considering other management actions.   

 

 

 

 

 

 

 

 

 

 

 

  



82 

 

  



83 

 

9. Bibliography 
 

Ameur, H, Ben, Prigent, J,L,, Portfolio Insurance: determination of a dynamic CPPI multiple 

as function of state variables (2006) THEMA working paper, University of Cergy-Pontoise 

 

Balder, S. M. Brandl, A. Mahayni, Effectiveness of CPPI Strategies under Discrete Time 

Trading (2009) Journal of Economic Dynamics and Control Volume 33, Issue 1 

Basel Committee of Banking Supervision (2008), Guidelines for Computing Capital for 

Incremental Risk in the Trading Book, Basel Committee of Banking Supervision consultative 

document, 

Black, F, and Jones, R, Simplifying portfolio insurance, (1987) The Journal 

of Portfolio Management, 48-51, 

Black, F,,  Perold, A,, Theory of constant proportion portfolio insurance, Journal of 

Economic Dynamics and Control 16 (1992) 403-426, North-Holland 

 

Boulier, JF., Kanniganti, A Expected performance and risks of various portfolio insurance 

strategies 5th AFIR International Colloquium, 1995 

Brummelhuis, R,, Kaufmann, R, (2004), Time Scaling for GARCH(1,1) and AR(1)-

GARCH(1,1) Processes, University of London and ETH Zurich, 

CEIOPS‟ Advice for level 2 Implementing Measures on Solvency II: Technical Provisions – 

Assumptions about Future Management Actions, CEIOPS-DOC-27/09, October 2009 

Clark, R., Arnott, R., The Cost of Portfolio Insurance: Tradeoffs and Choices (Nov-Dec 

1987) Financial Analyst Journal  

Darbha, G, (2001), Value-at-Risk for Fixed Income portfolios, National Stock Exchange 

Mumbai India 

Embrechts, P,, Kaufmann, R,, Patie, P, (2004), Strategic Long-Term Financial Risks: Single 

Risk Factors, ETH Zurich, 

Kaufmann, R, (2004), Long-Term Risk Management, PhD Thesis ETH Zurich, 

Kaufmann, R, (2005), Long-Term Risk Management, Swiss Life 

Kristofersen, P,F,, Diebold, F,X,, Schurmann, T, (1998), Horizon Problems and Extreme 

Events in Financial Risk Management, Federal Reserve Bank of New York 

Perold, A, (1986), Constant portfolio insurance, Harvard Business School, Unpublished 

manuscript,     

 

Hartmann, P,, Maddaloni, A,, Manganelli, S, (2003), The Euro-area Financial System: 

Structure, Integration, and Policy Initiatives, Oxford University press 

http://www.sciencedirect.com/science/journal/01651889
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235861%232009%23999669998%23739061%23FLA%23&_cdi=5861&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7142e98ac736b08d9b2f87d0dc407044
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.9224&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.9224&rep=rep1&type=pdf
http://www.jstor.org/stable/4479074

