Tid: 13 januari 2003 kl 1515-
Vid seminariet måndagen den 13 januari 2003 kl. 15.15 diskuteras Per Hallbergs avhandling för tekn.-lic.-examen:
On Phase Transition and Percolation in the Beach Model.
Inbjuden diskutant är professor Anders Martin-Löf, Matematisk statistik, Stockholms universitet.
Plats : Seminarierummet 3733, Institutionen för matematik, KTH, Lindstedts väg 25, plan 7. Karta!
Sammanfattning: The beach model, which was introduced by Burton and Steif, has many features in common with the Ising model. We generalize some results for the Ising model to the beach model, such as the connection between phase transition and a certain percolation event. The Potts model extends the Ising model to more than two spin states, and we go on to study the corresponding extension of the beach model. Using random-cluster model methods we obtain some results on where in the parameter space this model exhibits phase transition. Finally we study the beach model on regular trees. Critical values are estimated with iterative numerical methods. In different parameter regions we will see indications of both first and second order phase transition.