Foundations of Data Science*

Avrim Blum, John Hopcroft and Ravindran Kannan

Monday 25™ January, 2016

*Copyright 2015. All rights reserved

Contents
1 Introduction

2 High-Dimensional Space

2.1 Introduction
2.2 The Law of Large Numbers
2.3 The Geometry of High Dimensions
2.4 Properties of the Unit Ball

2.4.1 Volume of the Unit Ball

2.4.2 Most of the Volume is Near the Equator
2.5 Generating Points Uniformly at Random from a Ball
2.6 Gaussians in High Dimension
2.7 Random Projection and Johnson-Lindenstrauss Lemma
2.8 Separating Gaussianso
2.9 Fitting a Single Spherical Gaussian to Data
2.10 Bibliographic Notes
2.11 Exercises

Best-Fit Subspaces and Singular Value Decomposition (SVD)
3.1 Introduction and Overview
3.2 Preliminaries
3.3 Centering Data
3.4 Singular Vectorso
3.5 Singular Value Decomposition (SVD)
3.6 Best Rank-k Approximations
3.7 Left Singular Vectors
3.8 Power Method for Computing the Singular Value Decomposition
3.8.1 A Faster Method
3.9 Singular Vectors and Figenvectors L.
3.10 Applications of Singular Value Decomposition
3.10.1 Principal Component Analysis
3.10.2 Clustering a Mixture of Spherical Gaussians
3.10.3 Singular Vectors and Ranking Documents
3.10.4 An Application of SVD to a Discrete Optimization Problem
3.11 Bibliographic Notes
3.12 Exerciseso

Random Graphs

4.1 The G(n,p) Model
4.1.1 Degree Distribution L
4.1.2 Existence of Triangles in G(n,d/n)

4.2 Phase Transitions

4.3 The Giant Component

11
11
11
13
14
14
16
18
20
22
23
26
27
28

35
35
36
37
39
42
43
45
47
48
50
50
50
51
o6
57
60
61

4.4 Branching Processeso o 93

4.5 Cycles and Full Connectivity, 99
4.5.1 Emergence of Cycles 99
4.5.2 Full Connectivity 100
4.5.3 Threshold for O(lnn) Diameter 102

4.6 Phase Transitions for Increasing Properties 103

4.7 Phase Transitions for CNF-sat 105

4.8 Nonuniform and Growth Models of Random Graphs 110
4.8.1 Nonuniform Models 110
4.8.2 Giant Component in Random Graphs with Given Degree Distribution111

4.9 Growth Models 112
4.9.1 Growth Model Without Preferential Attachment 112
4.9.2 Growth Model With Preferential Attachment 119

4.10 Small World Graphs 120

4.11 Bibliographic Notes 125

412 EXErciSeso 126

Random Walks and Markov Chains 136

5.1 Stationary Distribution oo 139

5.2 Markov Chain Monte Carlo 141
5.2.1 Metropolis-Hasting Algorithm 143
5.2.2 Gibbs Samplingo 143

5.3 Areasand Volumes 146

5.4 Convergence of Random Walks on Undirected Graphs 147
5.4.1 Using Normalized Conductance to Prove Convergence 152

5.5 Electrical Networks and Random Walks 155

5.6 Random Walks on Undirected Graphs with Unit Edge Weights 159

5.7 Random Walks in Euclidean Space 167

5.8 The Web as a Markov Chain 170

5.9 Bibliographic Notes 174

5.10 Exercises 175

Machine Learning 185

6.1 Introduction 185

6.2 Overfitting and Uniform Convergence 187

6.3 Illustrative Examples and Occam’s Razor 189
6.3.1 Learning disjunctions L L 0oL 189
6.3.2 Occam’srazor 190
6.3.3 Application: learning decision trees 191

6.4 Regularization: penalizing complexity 192

6.5 Online learning and the Perceptron algorithm 192
6.5.1 An example: learning disjunctions L. 193
6.5.2 The Halving algorithm 194

6.5.3 The Perceptron algorithm 194

6.5.4 Extensions: inseparable data and hinge-loss 196
6.6 Kernel functions 197
6.7 Online to Batch Conversion 199
6.8 Support-Vector Machines 200
6.9 VC-Dimension e 200
6.9.1 Definitions and Key Theorems 201
6.9.2 Examples: VC-Dimension and Growth Function 204
6.9.3 Proof of Main Theorems 206
6.9.4 VC-dimension of combinations of concepts 209
6.9.5 Other measures of complexity 209
6.10 Strong and Weak Learning - Boosting 210
6.11 Stochastic Gradient Descent L. 213
6.12 Combining (Sleeping) Expert Advice 214
6.13 Deep learningo 217
6.14 Further Current directions 221
6.14.1 Semi-supervised learning L. 222
6.14.2 Active learning 224
6.14.3 Multi-task learning oo 225
6.15 Bibliographic Notes 225
6.16 Exercises 226

Algorithms for Massive Data Problems: Streaming, Sketching, and

Sampling 229
7.1 Introduction 229
7.2 Frequency Moments of Data Streams 230
7.2.1 Number of Distinct Elements in a Data Stream 230
7.2.2 Counting the Number of Occurrences of a Given Element. 234
7.2.3 Counting Frequent Elements 234
7.2.4 The Second Moment 236
7.3 Matrix Algorithms using Sampling 239
7.3.1 Matrix Multiplication Using Sampling 240
7.3.2 Implementing Length Squared Sampling in two passes 244
7.3.3 Sketch of a Large Matrix 244
7.4 Sketches of Documents 248
7.5 Bibliography 250
7.6 EXErcises 251
Clustering 255
8.1 Introduction 255
8.1.1 Two general assumptions on the form of clusters 256
8.2 k-means Clustering 258
8.2.1 A maximum-likeihood motivation for k-means 258

8.2.2 Structural properties of the k-means objective 259

8.2.3 Lloyd’s k-means clustering algorithm 259
8.2.4 Ward’s algorithm oo 261
8.2.5 k-means clustering on the line 262
8.3 k-Center Clustering 262
8.4 Finding Low-Error Clusterings, 263
8.5 Approximation Stability 263
8.6 Spectral Clustering 266
8.6.1 Stochastic Block Model 266
8.6.2 Gaussian Mixture Modelo oo 267
8.6.3 Standard Deviation without a stochastic model 268
8.6.4 Spectral Clustering Algorithm 268
8.7 High-Density Clusters 271
8.7.1 Single-linkage 271
8.7.2 Robust linkage 272
8.8 Kernel Methods 272
8.9 Recursive Clustering based on Sparse cuts 273
8.10 Dense Submatrices and Communities 274
8.11 Community Finding and Graph Partitioning 277
8.11.1 Flow Methods 277
8.12 Axioms for Clustering 280
8.12.1 An Impossibility Result 280
8.12.2 Satisfying two of three oL 281
8.12.3 Relaxing the axioms 283
8.12.4 A Satisfiable Set of Axioms 283
8.13 Exercises 285
Topic Models, Hidden Markov Process, Graphical Models, and Belief
Propagation 289
9.1 Topic Models 289
9.2 Hidden Markov Model 293
9.3 Graphical Models, and Belief Propagation 298
9.4 Bayesian or Belief Networks 299
9.5 Markov Random Fields 300
9.6 Factor Graphs 301
9.7 Tree Algorithms 302
9.8 Message Passing in general Graphs 303
9.9 Graphs with a Single Cycle 0L 305
9.10 Belief Update in Networks with a Single Loop 307
9.11 Maximum Weight Matching 308
9.12 Warning Propagation Lo Lo 312
9.13 Correlation Between Variables 313
9.14 ExXercises 318

10 Other Topics 320

10.1 Rankings 320
10.2 Hare System for Voting oo 322
10.3 Compressed Sensing and Sparse Vectors 323
10.3.1 Unique Reconstruction of a Sparse Vector 324
10.3.2 The Exact Reconstruction Property 327
10.3.3 Restricted Isometry Property 328
10.4 Applications 330
10.4.1 Sparse Vector in Some Coordinate Basis 330
10.4.2 A Representation Cannot be Sparse in Both Time and Frequency
Domains 330
10.4.3 Biological 333
10.4.4 Finding Overlapping Cliques or Communities 333
10.4.5 Low Rank Matrices 334
10.5 Gradient 335
10.6 Linear Programming oo 336
10.6.1 The Ellipsoid Algorithm 338
10.7 Integer Optimization 339
10.8 Semi-Definite Programmingo 340
10.9 Exercises 342
11 Wavelets 344
11.1 Dilation e 344
11.2 The Haar Wavelet 346
11.3 Wavelet Systems 349
11.4 Solving the Dilation Equation 350
11.5 Conditions on the Dilation Equation 351
11.6 Derivation of the Wavelets from the Scaling Function 354
11.7 Sufficient Conditions for the Wavelets to be Orthogonal 357
11.8 Expressing a Function in Terms of Wavelets 360
11.9 Designing a Wavelet System 361
12 Appendix 366
12.1 Asymptotic Notation 366
12.2 Useful relations 367
12.3 Useful Inequalities 371
12.4 Probabilityo 378
12.4.1 Sample Space, Events, Independence 379
12.4.2 Linearity of Expectation 380
12.4.3 Union Bound 380
12.4.4 Indicator Variables 380
12.4.5 Variance e 381
12.4.6 Variance of the Sum of Independent Random Variables 381

12.4.7 Median Lo 382

12.4.8 The Central Limit Theorem 382
12.4.9 Probability Distributions oL 382
12.4.10 Bayes Rule and Estimators 386
12.4.11 Tail Bounds and Chernoff inequalities 388
12.5 Bounds on Tail Probability o000 392
12.6 Eigenvalues and Eigenvectors 393
12.6.1 Eigenvalues and Eigenvectors 393
12.6.2 Symmetric Matriceso 395
12.6.3 Relationship between SVD and Eigen Decomposition 396
12.6.4 Extremal Properties of FEigenvalues 397
12.6.5 FEigenvalues of the Sum of Two Symmetric Matrices 399
12.6.6 Norms 400
12.6.7 Important Norms and Their Properties 401
12.6.8 Linear Algebra 403
12.6.9 Distance between subspaces 405
12.7 Generating Functions Lo 406

12.7.1 Generating Functions for Sequences Defined by Recurrence Rela-
tionships L 407

12.7.2 The Exponential Generating Function and the Moment Generating
Function o 409
12.8 Miscellaneous 411
12.8.1 Lagrange multipliers 411
12.8.2 Finite Fields oo 411
12.8.3 Hash Functions 412
12.8.4 Application of Mean Value Theorem 412
12.8.5 Sperner’s Lemmao 414
12.8.6 Prifer 414
12.9 Exerciseso 415
Index 421

1 Introduction

Computer science as an academic discipline began in the 60’s. Emphasis was on pro-
gramming languages, compilers, operating systems, and the mathematical theory that
supported these areas. Courses in theoretical computer science covered finite automata,
regular expressions, context free languages, and computability. In the 70’s, algorithms
was added as an important component of theory. The emphasis was on making computers
useful. Today, a fundamental change is taking place and the focus is more on applications.
There are many reasons for this change. The merging of computing and communications
has played an important role. The enhanced ability to observe, collect and store data in
the natural sciences, in commerce, and in other fields calls for a change in our understand-
ing of data and how to handle it in the modern setting. The emergence of the web and
social networks, which are by far the largest such structures, presents both opportunities
and challenges for theory.

While traditional areas of computer science are still important and highly skilled indi-
viduals are needed in these areas, the majority of researchers will be involved with using
computers to understand and make usable massive data arising in applications, not just
how to make computers useful on specific well-defined problems. With this in mind we
have written this book to cover the theory likely to be useful in the next 40 years, just as
automata theory, algorithms and related topics gave students an advantage in the last 40
years. One of the major changes is the switch from discrete mathematics to more of an
emphasis on probability, statistics, and numerical methods.

Early drafts of the book have been used for both undergraduate and graduate courses.
Background material needed for an undergraduate course has been put in the appendix.
For this reason, the appendix has homework problems.

This book starts with the treatment of high dimensional geometry. Modern data in
diverse fields such as Information Processing, Search, Machine Learning, etc., is often
represented advantageously as vectors with a large number of components. This is so
even in cases when the vector representation is not the natural first choice. Our intuition
from two or three dimensional space can be surprisingly off the mark when it comes to
high dimensional space. Chapter 2 works out the fundamentals needed to understand the
differences. The emphasis of the chapter, as well as the book in general, is to get across

the mathematical foundations rather than dwell on particular applications that are only
briefly described.

The mathematical areas most relevant to dealing with high-dimensional data are ma-
trix algebra and algorithms. We focus on singular value decomposition, a central tool in
this area. Chapter 4 gives a from-first-principles description of this. Applications of sin-
gular value decomposition include principal component analysis, a widely used technique
which we touch upon, as well as modern applications to statistical mixtures of probability

densities, discrete optimization, etc., which are described in more detail.

Central to our understanding of large structures, like the web and social networks, is
building models to capture essential properties of these structures. The simplest model is
that of a random graph formulated by Erdos and Renyi, which we study in detail proving
that certain global phenomena, like a giant connected component, arise in such structures
with only local choices. We also describe other models of random graphs.

One of the surprises of computer science over the last two decades is that some domain-
independent methods have been immensely successful in tackling problems from diverse
areas. Machine learning is a striking example. We describe the foundations of machine
learning, both learning from given training examples, as well as the theory of Vapnik-
Chervonenkis dimension, which tells us how many training examples suffice for learning.
Another important domain-independent technique is based on Markov chains. The un-
derlying mathematical theory, as well as the connections to electrical networks, forms the
core of our chapter on Markov chains.

The field of algorithms has traditionally assumed that the input data to a problem
is presented in random access memory, which the algorithm can repeatedly access. This
is not feasible for modern problems. The streaming model and other models have been
formulated to better reflect this. In this setting, sampling plays a crucial role and, indeed,
we have to sample on the fly. in Chapter 7 we study how to draw good samples efficiently
and how to estimate statistical, as well as linear algebra quantities, with such samples.

One of the most important tools in the modern toolkit is clustering, dividing data into
groups of similar objects. After describing some of the basic methods for clustering, such
as the k-means algorithm, we focus on modern developments in understanding these, as
well as newer algorithms. The chapter ends with a study of clustering criteria.

This book also covers graphical models and belief propagation, ranking and voting,
sparse vectors, and compressed sensing. The appendix includes a wealth of background
material.

A word about notation in the book. To help the student, we have adopted certain
notations, and with a few exceptions, adhered to them. We use lower case letters for
scaler variables and functions, bold face lower case for vectors, and upper case letters
for matrices. Lower case near the beginning of the alphabet tend to be constants, in the
middle of the alphabet, such as i, j, and k, are indices in summations, n and m for integer
sizes, and x, y and z for variables. Where the literature traditionally uses a symbol for
a quantity, we also used that symbol, even if it meant abandoning our convention. If we
have a set of points in some vector space, and work with a subspace, we use n for the
number of points, d for the dimension of the space, and k for the dimension of the subspace.

The term "almost surely” means with probability one. We use Inn for the natural
logarithm and logn for the base two logarithm. If we want base ten, we will use log, .

To simplify notation and to make it easier to read we use E*(1 — z) for (E(l — x))2 and
E(l —z)*for E((1—x)?).

10

2 High-Dimensional Space

2.1 Introduction

High dimensional data has become very important. However, high dimensional space
is very different from the two and three dimensional spaces we are familiar with. For
example, consider the unit ball: the set of all points = such that |x| < 1. If one gen-
erates n points at random in the unit d-dimensional ball, for sufficiently large d, with
high probability the distances between all pairs of points will be essentially the same.
Also the volume of the unit ball in d-dimensions goes to zero as the dimension goes to
infinity. In addition, the volume of the unit ball is concentrated near its surface and is
also concentrated at its equator. These properties have important consequences which we
will consider.

2.2 The Law of Large Numbers

If one generates random points in d-dimensional space using a Gaussian to generate
coordinates, the distance between all pairs of points will be essentially the same. The
reason is that the square of the distance between two points x and y,

d

x -y = Z(ﬂfi —)%

i=1

is the sum of d independent random variables. If one averages n independent samples of
a random variable x of bounded variance, the result will be close to the expected value
of x. In our case, the samples are the squared distances between the two points in each
coordinate 7, and n equals d, so that the sum is the overall squared distance between the
two points. Theorem 2.9 will give a tight concentration bound of this form. For now, we
give a less tight but more general bound called the Law of Large Numbers. Specifically,
the Law of Large Numbers states that

Prob (

The larger the variance of the random variable, the greater the probability that the error
will exceed €. The number of points n is in the denominator since the more values that
are averaged, the smaller the probability that the difference will exceed e. Similarly the
larger € is, the smaller the probability that the difference will exceed ¢ and hence € is in
the denominator. Notice that squaring ¢ makes the fraction a dimensionalless quantity.

l‘1+$2+"‘+$n
n

— E(x)

> e) Vartz), (2.1)

ne2

We use two inequalities to prove the Law of Large Numbers. The first is Markov’s
inequality which bounds the probability that a nonnegative random variable exceeds a by
the expected value of the variable divided by a.

11

Theorem 2.1 (Markov’s inequality) Let x be a nonnegative random variable. Then
fora >0,
E(x)

Prob(z > a) <
a

Proof: For a continuous random variable x with probability density p,

E(x) =]Oxp(x)dx >]Omp(x)dx > a7p(x)dx — aProb(z > a).

Thus Prob(z > a) < £,

a

The same proof works for discrete random variables with sums instead of integrals.
|

Corollary 2.2 Prob(z > cE(z)) <1

Markov’s inequality bounds the tail of a distribution using only information about the
mean. A tighter bound can be obtained by also using the variance of the random variable.

Theorem 2.3 (Chebyshev’s inequality) Let x be a random variable. Then for b > 0,
Var(zx)

b2

Prob(|z — E(x)| > b) <

Proof: Prob(|z — E(z)| > b) = Prob((z — E(z))? > b*). Let y = (z — E(z))?. Note that
y is a nonnegative random variable, and E(y) = Var(z), so Markov’s inequality can be
applied giving:

Prob(|z — E(z)| > b) = Prob (y > b*) < Eb(Qy) = Va[;(:v).
|

The Law of Large Numbers follows from Chebyshev’s inequality together with facts
about independent random variables. Recall that:

Bz +y) = B(x) + E(y),
Var(cz) = c*Var(z),
Var(x —¢) = Var(z).

and if x and y are independent, then E(xy) = E(z)E(y). These facts imply that if = and
y are independent then Var(z +vy) = Var(xz) + Var(y), which we can see as follows:

Var(z +y) = E ((x+y)°) — (BE(z + 3/))2
= B(? + 22y +1?) — (E(2)? + 2E(x)E(y) + E(y)?)
= E(2%) — E(x)* + E(y*) — E(y)* = Var(z) + Var(y),

where we used independence to replace E(2xy) with 2E(z)E(y).

12

Theorem 2.4 (Law of large numbers) Let x1,2s,...,x, be n samples of a random

variable x. Then
Prob (> 6) < Var(z)

ne?
Proof: By Chebychev’s inequality

Prob (

Ty +To+ -+ T,
n

— E(x)

Tttt T
n

— E(z)

Var (:E1+x2+---+xn)
> 6) < n
62

1
< W‘/ar(azl + T4 Ty)
1
= e (Var(z)) + Var(zs) + - - 4 Var(z,))

< Var(zx) '

ne?

The Law of Large Numbers is quite general. Later we will look at tighter concentration
bounds for spherical Gaussians and sums of 0-1 valued random variables.

As an application of the Law of Large Numbers, let x and y be d-dimensional random
points whose coordinates are unit variance Gaussians. The square of the distance of x
from the origin is approximately d. Since the square of the distance of random points
are concentrated at distance d from the origin, there is no probability mass close to the
origin even though the probability density has its maximum at the origin. This implies
that a unit radius ball has zero volume, which explains why the integral of the probability
density over the unit radius ball is zero. Similarly |x —y|? &~ 2d and thus by Pythagoras’s
theorem, random d-dimensional x and y must be approximately orthogonal. This implies
that if we scale these random points to be unit length and call x the North Pole, much
of the surface area of the unit ball must lie near the equator. We will formalize these and
related arguments shortly.

2.3 The Geometry of High Dimensions

An important property of high-dimensional objects is that most of their volume is near
the surface. Consider any object A in R?. Shrink each dimension by a factor v to produce
a new object YA (formally, yA = {yz : ¥ € A}), then volume(yA) = y¥volume(A). To
see that this is true, partition A into infinitesimal cubes of side-length dz, and notice that
this fact holds true both for a cube and for a union of disjoint cubes. Set v =1 — ¢ for
some small value €. Using the fact that 1 —z < e™®, for any object A in RY,

volume((1 —€)A)

- (1— d ~ —€d.
volume(A) (1=ef = e

13

" Annulus of
Pl

Figure 2.1: Most of the volume of the d-dimensional ball of radius r is contained in an
annulus of width O(r/d) near the boundary.

Fixing € and letting d — oo, the above quantity rapidly approaches zero. This means
that nearly all of the volume of A must be in the portion of A that does not belong to
the inner region (1 — €)A.

Let S denote the unit ball in d dimensions, that is, the set of points within distance
one of the origin. An immediate implication of the above is that at least a 1 —e~“? fraction
of the volume of the unit ball is concentrated in S\ (1 — €)S, namely in a small annulus
of width € at the boundary. In particular, most of the volume of the d-dimensional unit
ball is contained in an annulus of width O(1/d) near the boundary. If the ball is of radius
r, then the annulus width is O (5) :

2.4 Properties of the Unit Ball

We now focus more specifically on properties of the unit ball in d-dimensional space.
We just saw that most of its volume is concentrated in a small annulus of width O(1/d)
near the boundary. Next we will show that in the limit as d goes to infinity, the volume
of the ball goes to zero. The Law of Large Numbers suggested this and the result can be
proved in several ways. Here we use integration.

2.4.1 Volume of the Unit Ball

To calculate the volume V (d) of the unit ball in R?, one can integrate in either Cartesian
or polar coordinates. In Cartesian coordinates the volume is given by

o1=1 T2=y/1-z} zg=y/1-22——22_,
v= [[[dneduan,
xr1= 13/,2:_ 1—33% Tg=— 1—2%—~-~—$371

14

Since the limits of the integrals are complicated, it is easier to integrate using polar
coordinates. In polar coordinates, V' (d) is given by

V(d) = / /1 r?tdrdS.

Sd r=0

Since the variables €2 and r do not interact,

V<d>:5[d92/0rd—1dr:§/d9:$

r Sd

where A(d) is the surface area of the d-dimensional unit ball. For instance, for d = 3 the
surface area is 47 and the volume is %71 The question remains, how to determine the

surface area A (d) = [dQ for general d.
Sd

Consider a different integral

I(d) = / / / €_<m%+xg+m$3)d$d'"d$2d$1-

—0o0 —00

Including the exponential allows integration to infinity rather than stopping at the surface
of the sphere. Thus, I(d) can be computed by integrating in both Cartesian and polar
coordinates. Integrating in polar coordinates will relate I(d) to the surface area A(d).
Equating the two results for I(d) allows one to solve for A(d).

First, calculate I(d) by integration in Cartesian coordinates.

0o d

I(d) = /e‘xde = (Va)' = xd.

— 00

Here, we have used the fact that ffooo e dy = /7. For a proof of this, see Section 7?7
of the appendix. Next, calculate I(d) by integrating in polar coordinates. The volume of
the differential element is r?~'dQdr. Thus,

1(d) = / 9 / e
Sd 0

The integral [dS) is the integral over the entire solid angle and gives the surface area,
Sd

A(d), of a unit sphere. Thus, I(d) = A(d) [e " r?'dr. Evaluating the remaining

15

integral gives
o o0

1 d _ 1. /d
/e’"zrdldr =5 /ettQ 1dt = §F <§>
0 0

and hence, I(d) = A(d)iT (£) where the gamma function I (z) is a generalization of the

factorial function for noninteger values of . I'(z) = (x — 1) ' (xz — 1), I'(1) =T'(2) =1,
and T' (3) = /7. For integer z, I’ (z) = (z — 1)I.

d
Combining I (d) = 72 with I (d) = A(d) 3T () yields

2

A(d) =

establishing the following lemma.

Lemma 2.5 The surface area A(d) and the volume V(d) of a unit-radius sphere in d
dimensions are given by

22 2 7
T T
A(d) = and V(d) = - :
(s dr (3)
To check the formula for the volume of a unit sphere, note that V (2) = 7 and
3
V (3) = 222- = ix which are the correct volumes for the unit spheres in two and

SE(p 78
three dimensions. To check the formula for the surface area of a unit sphere, note that

3
A(2) =2 and A(3) = EWTQE = 4m, which are the correct surface areas for the unit sphere
2
in two and three dimensions. Note that 7% is an exponential in %l and I’ (g) grows as the
factorial of 4. This implies that dlim V(d) = 0, as claimed.
—r 00

2.4.2 Most of the Volume is Near the Equator

An interesting fact about the unit ball in high dimensions is that most of its volume
is concentrated near its equator (no matter what direction one uses to define the “equa-
tor”). Arbitrarily letting z; denote “north”, most of the volume of the unit ball has
|z1| = O(1/+/d). Using this fact, we will show that two random points in the unit ball
are with high probability nearly orthogonal, and also give an alternative proof from the
one in Section 2.4.1 that the volume of the unit ball goes to zero as d — oc.

Theorem 2.6 Forc>1 and d > 3, at least a 1 — %6_02/2 fraction of the volume of the

d-dimensional unit ball has |z1| < T

16

Figure 2.2: Most of the volume of the upper hemisphere of the d-dimensional ball is below
the plane z; = \/%—1

Proof: By symmetry we just need to prove that at most an %e_CQ/ 2 fraction of the half
of the ball with 2y > O has z; > \/dch. Let A denote the portion of the ball with z; > \/%.

To calculate the volume of A, integrate an incremental volume that is a disk of width

dry and whose face is a sphere of dimension d — 1 and radius /1 — z%. The surface area
of the disk is (1 — :cf)%‘/(d — 1) and the volume above the slice is
1
volume(A) = (1-— x%)d%\/(d — 1)dz,

c
d—1

To get an upper bound on the above integral, use 1 — z < e™* and integrate to infinity.
To integrate, insert “9=1 which is greater than one in the range of integration, into the
integral. Then

> T d—1 d—1_2

\/_

volume(A) < ——e¢ z AV(d—1)dx; =V (d — e T,
= I
Now
/°° — L —tta | L4
T1€ Tr1 — — € = €
o d—1 = d—1
Th bound on volume(A) is Y=L e=%
us, an upper bound on volume(A) is e 2
The volume of the hemisphere below the plane z; = ﬁ is a lower bound on the
entire Volume of the upper hemisphere and this volume is at least that of a cylinder of
—— and radius | /1 — 715. The volume of the cylinder is V(d—1)(1— A5 .
Using the fact that (1 — x)* > 1 — ax for a > 1, the volume of the cylinder is at least
st ford > 3.
Thus,
V(d-1) _<
tio < upper bound above plane C(d_l)e 2 2 2
ratio = = —e
~ lower bound total hemisphere ‘Q/(dd_ll) c
|

Near orthogonality. One immediate implication of the above analysis is that if we
draw two points at random from the unit ball, with high probability their vectors will be
nearly orthogonal to each other. Specifically, from our previous analysis in Section 2.3,
with high probability both will have length 1 — O(1/d). From our analysis above, if we
define the vector in the direction of the first point as “north”, with high probability the
second will have a projection of only £0(1/+/d) in this direction. This implies that with
high probability, the angle between the two vectors will be 7/24 O(1/+/d). In particular,
we have the theorem:

Theorem 2.7 Consider drawing n points X1,Xa,...,X, at random from the unit ball.
With probability 1 — O(1/n)

1. |x;| > 1— 282 for all i, and

2. |xi-x5] < Vfg for all i # j.

Proof: For the first part, for any fixed i, by the analysis of Section 2.3 Prob(|x;| <
1 - 212”) < e~ (M = 1/n?. So, by the union bound, the probability there exists i
such that |x;| < 1 — m is at most 1/n. For the second part, (Z) pairs 7 and j, and for

each such pair, if we deﬁne x; as ‘north”, the probability that the projection of x; onto

that direction is more than ”\/GM (a necessary condition for the dot-product to be large)

is at most O(e="2") = O(n™3) by Theorem 2.6. Thus, this condition is violated with
probability at most O ((3)n™*) = O(1/n) as well. m

Alternative proof that volume goes to zero. Another immediate implication of
Theorem 2.6 is that as d — oo, the volume of the ball approaches zero. Specifically,
setting ¢ = 2\/ Ind in Theorem 2.6 at most an O(1/d?) fraction of the volume of the ball

has]:c1| > —%—. Since this is true for each of the d dlmensmns at least al—0(3)>1
2mdyd/2 and this quantity goes to zero as d — oo. Since the ball has volume at mos
16Ind)d/2 "and this quantity goes t d Si th b 1l h 1 t most

twice that of this cube, its volume goes to zero as well.

Discussion. One might wonder how can it be that nearly all the points in the unit ball
are very close to the surface and yet at the same time nearly all points are in a box of
side-length O (lnd)7 The answer is to remember that for points on the surface of the

ball, x3 + 23 + ...+ x4 = 1, so for each coordinate i, a typical value will be +O (\%) In
fact, it is often helpful to think of picking a random point on the sphere as very similar
to picking a random point of the form (i\lf i\lf j:\} R \/ia)

2.5 Generating Points Uniformly at Random from a Ball

How can one select points uniformly at random from the unit ball? First, let’s con-
sider generating points uniformly at random on the surface of the unit ball. For the

18

N[

Nearly all the volume

<— Vertex of hypercube

Figure 2.3: Illustration of the relationship between the sphere and the cube in 2, 4, and
d-dimensions.

2-dimensional version of generating points on the circumference of a unit-radius circle,
independently generate each coordinate uniformly at random from the interval [—1,1].
This produces points distributed over a square that is large enough to completely contain
the unit circle. Project each point onto the unit circle. The distribution is not uniform
since more points fall on a line from the origin to a vertex of the square than fall on a line
from the origin to the midpoint of an edge of the square due to the difference in length.
To solve this problem, discard all points outside the unit circle and project the remaining
points onto the circle.

In higher dimensions, this method does not work since the fraction of points that fall
inside the ball drops to zero and all of the points would be thrown away. The solution is to
generate a point each of whose coordinates is an independent Gaussian variable. Generate
X1, To, ..., Ty, USING a zero mean, unit variance Gaussian, namely, \/%7 exp(—?/2) on the

real line.! Thus the probability density of x is

1 _ witadtetad
p (X) = € 2
(2m)2
and is spherically symmetric. Normalizing the vector x = (x1, z9, ..., x4) to a unit vector,

namely ﬁ, gives a distribution that is uniform over the surface of the sphere. Note that
once the vector is normalized, its coordinates are no longer statistically independent.

To generate a point y uniformly over the ball (surface and interior), scale the point
ﬁ generated on the surface by a scalar p € [0,1]. What is the distribution of p as a

1One might naturally ask: “how do you generate a random number from a 1-dimensional Gaussian?”
To generate a number from any distribution given its cumulative distribution function P, first select a
uniform random number u € [0, 1] and then choose x = P~!(u). This generates a number between x and

x+6 with probability P(z+§) — P(z) = [o p(2)dz as desired. For the 2-dimensional Gaussian, one can

x
generate a point in polar coordinates by choosing angle 6 uniform in [0,27] and radius r = \/—21n(u)

where u is uniform random in [0, 1]. This is called the Box-Muller transform.

19

function of r? It is certainly not uniform, even in 2 dimensions. Indeed, the density of
p at r is proportional to r for d = 2. For d = 3, it is proportional to r2. By similar
reasoning, the density of p at distance r is proportional to r?~! in d dimensions. Solving

::01 crd=ldr = 1 (the integral of density must equal 1) we should set ¢ = d. Another way
to see this formally is that the volume of the radius 7 ball in d dimensions is 7%V}, where
V is the volume of the unit ball. The density at radius r is exactly < (r?Vy) = dr?=V.

So, pick p(r) with density equal to dré=1 for r over [0,1].

We have succeeded in generating a point

X
Y =P

x|
uniformly at random from the unit ball S by using the convenient spherical Gaussian
distribution. In the next sections, we will analyze the spherical Gaussian in more detail.

2.6 Gaussians in High Dimension

A 1-dimensional Gaussian has its mass close to the origin. However, as the dimension
is increased something different happens. The d-dimensional spherical Gaussian with zero
mean and variance o2 in each coordinate has density function

(x) = ! ex < |x‘2>
p (27T)d/2 o p 292) -
The value of the density is maximum at the origin, but there is very little volume there.
When o = 1, integrating the probability density over a unit ball centered at the origin
yields nearly zero mass since the volume of such a ball is negligible. In fact, one needs to
increase the radius of the ball to nearly v/d before there is a significant nonzero volume
and hence significant probability mass. If one increases the radius much beyond v/d, the
integral barely increases even though the volume increases since the probability density
is dropping off at a much higher rate. The following theorem states this formally that
nearly all the probability is concentrated in a thin annulus of width O(1) at radius v/d.

Theorem 2.8 (Gaussian Annulus Theorem) For a d-dimensional spherical Gaussian
with unit variance in each direction, for any 8 < V/d, all but at most 3e—¢h? of the prob-
ability mass lies within the annulus Vd — B < x| < Vd + B, where ¢ is a fized positive
constant.

For a high-level intuition, note that E(|x|?) = S.¢ | E(z?) = dE(23) = d, so the mean
squared distance of a point from the center is d. The Gaussian Annulus Theorem says
that the points are tightly concentrated. We call the square root of the mean squared
distance, namely v/d, the radius of the Gaussian.

To prove the Gaussian Annulus Theorem we make use of a tail inequality for sums of
independent random variables of bounded moments.

20

Theorem 2.9 Let x =z +x9+ -+ x,, where x1,2o, ..., x, are mutually independent

random variables with zero mean and variance at most 0. Assume that |E(x3)| < o?s!
for s =3,4,...,[(a®/4nc?)|. Then for 0 < a < /2 no? or |(a®/4no?)| < no?,

Prob(|z| > a) < 3¢~¢*/(1209%)

Theorem 2.9 is proved in the appendix. For a brief intuition, consider applying
Markov’s inequality to the random variable " where r is a large even number. Since
r is even, x” is non-negative, and thus Prob(|z| > a) = Prob(z" > a") < E(z")/a”. So
if E(z") is not too large, we will get a good bound. To compute E(x"), write E(x) as
E((z1 + ...+ x,)") and distribute the polynomial into its terms. Use the fact that by
independence E(zj'z}) = E(z}")E(x}) to get a collection of simpler expectations that

can be bounded using our assumption that |E(zf)| < o%s!. For the full proof, see the
appendix. We now prove the Gaussian Annulus Theorem using Theorem 2.9.

Proof (Gaussian Annulus Theorem): Let y = (y1,¥2,...,%4) be a point selected
from a unit variance Gaussian centered at the origin, and let r = |y|. If |r — Vd| > f8
then multiplying both sides by r 4+ v/d gives |r? — d| > B(r +V/d) > $+/d. So, it suffices
to bound the probability that [r? — d| > £v/d.

Rewrite r? —d = (yi+...+42) —d = (y? — 1)+ ...+ (y> — 1) and perform a change
of variables: x; = y? — 1. We want to bound the probability that |z, + ... + x4 > £V,
and notice that E(z;) = E(y?) — 1 = 0. To apply Theorem 2.9, we need then to bound
the s moments of x;.

For |y;| <1, |z;]* <1 and for |y;| > 1, |z]* < |y;|**. Thus

|E(2)] = E(|lzi]*) < E(1+y7") =1+ E(y")

_ 1+\/>/ 2507Y"/2(y

Using the substitution 2z = y?,

|E(xf)| =14+ —= /2851/2 *dz
< 2°sl.
The last inequality is from the Gamma integral.
Since E(z;) = 0, Var(z;) = E(z?) < 2?2 = 8. Unfortunately, we do not have
|E(z%)] < 8s! as required in Theorem 2.9. To fix this problem, perform one more change

of variables, using w; = x;/2. Then, Var(w;) <2 and |E(w{)| < 2s!, and our goal is now
to bound the probability that |w; + ...+ wy| > %g' Applying Theorem 2.9 where o2 = 2

2
and n = d, this occurs with probability less than or equal to 3¢ 5.]

In the next sections we will see several uses of the Gaussian Annulus Theorem.

21

2.7 Random Projection and Johnson-Lindenstrauss Lemma

One of the most frequently used subroutines for high dimensional data is the Nearest
Neighbor Search (NNS) problem. The nearest neighbor search has a database of n points
in R? where n and d are usually large. The database can be preprocessed and stored in
an efficient data structure. Thereafter, we are presented “query” points in R? and are to
find the nearest or approximately nearest database point to the query point. Since the
number of queries is often large, query time (time to answer a single query) should be
very small (ideally a small function of logn and log d), whereas preprocessing time could
be larger (a polynomial function of n and d). For this and other problems, dimension
reduction, where one projects the database points to a k dimensional space with k£ < d
(usually dependent on logd) can be very useful so long as the relative distances between
points are approximately preserved. We will see using the Gaussian Annulus theorem
that such a projection indeed exists and is simple.

The projection f : R — R* that we will examine (in fact, many related projections are

known to work as well) is the following. Pick k vectors uy, ug, ..., uy, independently from
the Gaussian distribution WGXP(_|X|2 /2). For any vector v, define the projection
f(v) by:

f(V) = (ul'V,U2'V,...,Uk'V>-

The projection f(v) is the vector of dot products of v with the u;. We will show that
with high probability, |f(v)| ~ vk|v|. For any two vectors vy and va, f(vi — va) =
f(v1) — f(vs). Thus, to find the distance |vq — va| between two vectors v; and vo in R,
it suffices to compute |f(vy) — f(v2)| = |f(v1 — v2)| in the k& dimensional space since the
factor of vk is known and one can divide by it. The reason distances increase when we
project to a lower dimensional space is that the basis vectors u; are not unit length. Also
notice that the basis vectors are not orthogonal. If we had an orthogonal basis, we would
have lost statistical independence.

Theorem 2.10 (The Random Projection Theorem) Let v be a fized vector in R?
and let f be defined as above. Then, for e € (0,1),

Prob <’|f(v)| - \/E\V|‘ > Vv) < 3ok,
where the probability is taken over the random draws of vectors u; used to construct f.

Proof: By scaling both sides by |v|, we may assume that |v| = 1. The sum of indepen-
dent normally distributed real variables is also normally distributed where the mean and
variance are the sums of the individual means and variances. Since u; - v = Z;l:l UV,
the random variable u; - v has Gaussian density with zero mean and variance equal to
Z?Zl v} = |v[> = 1. (Since u;; has variance one and the v; is a constant, the variance of
u;;v; is v?) Since up - v,us - v, ..., uyx - v are independent, the theorem follows from the
Gaussian Annulus Theorem (Theorem 2.8) with k = d. B

22

The random projection theorem establishes that the probability of the length of the
projection of a single vector differing significantly from its expected value is exponentially
small in £, the dimension of the target subspace. By a union bound, the probability that
any of O(n?) pairwise differences |v; — vj| among n vectors vy, ..., v, differs significantly
from their expected values is small, provided k > Cg%ln n. Thus, the projection to a
random subspace preserves all relative pairwise distances between points in a set of n
points with high probability. This is the content of the Johnson-Lindenstrauss Lemma.

Theorem 2.11 (Johnson-Lindenstrauss Lemma) For any 0 < € < 1 and any integer
n, let k > CE% Inn for ¢ as in Theorem 2.8. For any set P of n points in R%, the random
projection f : R* — R* defined above has the property that for all vi and v; in P, with
probability at least 1 — 1.5/n,

(1 —eWVkl|vi — v < [f(vi) = f(vj)] < (L +e)VE |vi — vjl.

Proof: Applying the random projection theorem (Theorem 2.10), for any fixed v; and
vj, the probability that |f(v; — v;)| is outside the range

(1 —e)VElvi — vs|, (1 +&)VE|vi — Vj’]

is at most 3e~*e” < 3/n3 for k > % Since there are (g) < n?/2 pairs, by the union
bound, the probability that any pair has a large distortion is less than %]

Remark: It is important to note that the conclusion of Theorem 2.11 asserts for all v;
and v; in P, not just for most of them. The weaker assertion for most v; and vj is
typically less useful, since our algorithm for a problem such as nearest-neighbor search
might return one of the bad points. A remarkable aspect of the theorem is that the
number of dimensions in the projection is only dependent logarithmically on n. Since k
is often much less than d, this is called a dimension reduction technique.

For the nearest neighbor problem, if the database has n; points and ny queries are
expected during the lifetime, take n = n; 4+ ny and project the database to a random
k-dimensional space, for k as in Theorem 2.11. On receiving a query, project the query
to the same subspace and compute nearby database points. The Johnson Lindenstrauss
theorem says that with high probability this will yield the right answer whatever the
query. Note that the exponentially small in k probability was useful here in making k
only dependent on Inn, rather than n.

2.8 Separating Gaussians

Mixtures of Gaussians are often used to model heterogeneous data coming from multiple
sources. For example, suppose we are recording the heights of individuals age 20-30 in a
city. We know that on average, men tend to be taller than women, so a natural model
would be a Gaussian mixture model p(x) = w;p; (X) + wapa(x), where p;(x) is a Gaussian

23

density representing the typical heights of women, p,(x) is a Gaussian density represent-
ing the typical heights of men, and w; and ws are the mizture weights representing the
proportion of women and men in the city. The parameter estimation problem for a mixture
model is the problem: given access to samples from the overall density p (e.g., heights of
people in the city, but without being told whether the person with that height is male
or female), reconstruct the parameters for the distribution (e.g., good approximations to
the means and variances of p; and ps, as well as the mixture weights).

Now of course there are taller women and shorter men, so even if one solved the param-
eter estimation problem for heights perfectly, given a data point (a height) one couldn’t
necessarily tell which population it came from (male or female). In this section, we will
look at a problem that is in some ways easier and some ways harder than this problem of
heights. It will be harder in that we will be interested in a mixture of two Gaussians in
high-dimensions (as opposed to the d = 1 case of heights). But it will be easier in that we
will assume the means are quite well-separated compared to the variances. Specifically,
our focus will be on a mixture of two spherical unit-variance Gaussians whose means are
separated by a distance Q(d'/*). We will show that at this level of separation, we can with
high probability in fact uniquely determine which Gaussian each data point came from.
The algorithm to do so will actually be quite simple. Calculate the distance between
all pairs of points. Points whose distance apart is smaller are from the same Gaussian,
whereas points whose distance is larger are from different Gaussians. Later, we will see
that with more sophisticated algorithms, even a separation of Q(1) suffices.

Consider two spherical unit-variance Gaussians. From Theorem 2.8, most of the prob-
ability mass of each Gaussian lies on an annulus of width O(1) at radius v/d. Also
e~ X/2 = T, e=*/? and almost all of the mass is within the slab { x | —¢ < z; < ¢}, for
¢ € O(1). Pick a point x from the first Gaussian. After picking x, rotate the coordinate
system to make the first axis point towards x. Independently pick a second point y also
from the first Gaussian. The fact that almost all of the mass of the Gaussian is within
the slab {x | —¢ < x; < ¢, ¢ € O(1)} at the equator implies that y’s component along
x’s direction is O(1) with high probability. Thus, y is nearly perpendicular to x. So,
|x —y| = /|x]|?> + |y|>. See Figure 2.4 (a). More precisely, since the coordinate system
has been rotated so that x is at the North Pole, x = (v/d & O(1),0,...,0). Since y is
almost on the equator, further rotate the coordinate system so that the component of

y that is perpendicular to the axis of the North Pole is in the second coordinate. Then
y = (O(1),V/d £ O(1),0,...,0). Thus,

(x—y)?=d+0(Wd)+d+0Wd) =2d+ O(Vd)
and |x —y| = v/2d & O(1) with high probability.

Given two spherical unit variance Gaussians with centers p and q separated by a
distance A, the distance between a randomly chosen point x from the first Gaussian and
a randomly chosen point y from the second is close to /A2 + 2d, since X — p,p — q,

24

x 0 : V2d

d 7 Vo2 +2d / {

B B p 0 q

Figure 2.4: (a) indicates that two randomly chosen points in high dimension are almost
surely nearly orthogonal. (b) indicates that the distance between a pair of random points
from two different unit balls approximating the annuli of two Gaussians.

and q — y are nearly mutually perpendicular. Pick x and rotate the coordinate system
so that x is at the North Pole. Let z be the North Pole of the ball approximating the
second Gaussian. Now pick y. Most of the mass of the second Gaussian is within O(1)
of the equator perpendicular to q — z. Also, most of the mass of each Gaussian is within
distance O(1) of the respective equators perpendicular to the line q — p. See Figure 2.4
(b). Thus,

x -y~ A+ z—q]’+|q—y|?
— A2 1 2d+ O(Vd)).

To ensure that the distance between two points picked from the same Gaussian are
closer to each other than two points picked from different Gaussians requires that the
upper limit of the distance between a pair of points from the same Gaussian is at most
the lower limit of distance between points from different Gaussians. This requires that
V2d + O(1) < V2d+ A% — O(1) or 2d + O(\/d) < 2d + A?, which holds when A €
w(d"*). Thus, mixtures of spherical Gaussians can be separated, provided their centers
are separated by w(dl/ 4). If we have n points and want to correctly separate all of
them with high probability, we need our individual high-probability statements to hold
with probability 1 — 1/poly(n), which means our O(1) terms from Theorem 2.8 become
O(y/Togn). So we need to include an extra O(y/logn) term in the separation distance.

Algorithm for separating points from two Gaussians: Calculate all
pairwise distances between points. The cluster of smallest pairwise distances
must come from a single Gaussian. Remove these points. The remaining
points come from the second Gaussian.

One can actually separate Gaussians where the centers are much closer. In the next
chapter we will use Singular Value Decomposition to separate a mixture of two Gaussians
when their centers are separated by just a distance O(1).

25

2.9 Fitting a Single Spherical Gaussian to Data

Given a set of sample points, X1, Xz, ..., Xy, in a d-dimensional space, we wish to find the
spherical Gaussian that best fits the points. Let F' be the unknown Gaussian with mean
p and variance o in each direction. The probability density for picking these points when
sampling according to F' is given by

(_ (Xl_M)2+(X2_N)2+"'+(Xn—u)2)
¢ exp ol

x—p2 "
where the normalizing constant c is the reciprocal of [[e 202 dx}. In integrating from

(2m) 2

x2 1"
—0o0 to 0o, one could shift the origin to g and thus c is {f ewdx] = 1. and is
independent of p.

The Mazimum Likelihood Estimator (MLE) of F, given the samples x1, X3, ..., Xy, iS
the F' that maximizes the above probability density.

Lemma 2.12 Let {x1,Xa,...,X,} be a set of n points in d-space. Then (x; — ,u)2 +
(xg — u)2+- c (X — ,u,)2 s minimized when p is the centroid of the points X1, X, . .., X,
namely p = %(Xl + X0+ Xp).

Proof: Setting the gradient of (x; — p)” + (x2 — p)* 4 - - - + (x, — p)? with respect p to
zero yields
—2(x1—p) = 2(x2—p) = —2(x, —p) =0.

Solving for p gives pr = £(x; + X3 4 - -+ + Xy,). B

To determine the maximum likelihood estimate of o2 for F, set p to the true centroid.

Next, we show that o is set to the standard deviation of the sample. Substitute v = #

and a = (x; — p)* + (xo — p)> + -+ + (x,, — p)” into the formula for the probability of
picking the points x1,Xs,...,X,. This gives

e—azz

o]

Now, a is fixed and v is to be determined. Taking logs, the expression to maximize is

2
—av —nln /e Y dx

xT

26

To find the maximum, differentiate with respect to v, set the derivative to zero, and solve
for 0. The derivative is ,
[z|?e " da

X
—a + n—f .
X

Setting y = |/vx| in the derivative, yields

J y2e ¥’ dy

+ LY
—a+ - ——5.
v [evdy

y
Since the ratio of the two integrals is the expected distance squared of a d- dimensional
spherical Gausswun of standard deviation f to its center, and this is known to be we

get —a + 57 Substltutlng o? for 55 gives —a + ndo?. Setting —a + ndo? = 0 shows that

the maximum occurs when o = ‘fd. Note that this quantity is the square root of the

average coordinate distance squared of the samples to their mean, which is the standard
deviation of the sample. Thus, we get the following lemma.

Lemma 2.13 The mazimum likelihood spherical Gaussian for a set of samples is the
one with center equal to the sample mean and standard deviation equal to the standard
deviation of the sample from the true mean.

Let x1,Xo,...,X, be a sample of points generated by a Gaussian probability distri-
bution. pu = %(xl + X9 + -+ +x,) is an unbiased estimator of the expected value of
the distribution. However, if in estimating the variance from the sample set, we use the
estimate of the expected value rather than the true expected value, we will not get an
unbiased estimate of the variance since the sample mean is not independent of the sam-
ple set. One should use pu = (X1 + X9 + - -+ + X,,) when estimating the variance. See
Section 77 of the appendix.

2.10 Bibliographic Notes

The word vector model was introduced by Salton [SWY75]. Taylor series remainder
material can be found in Whittaker and Watson 1990, pp. 95-96 and Section 12.8.4 of the
appendix. There is vast literature on the Gaussian distribution, its properties, drawing
samples according to it, etc. The reader can choose the level and depth according to
his/her background. For Chernoff bounds and their applications, see [MU05] or [MR95b].
The proof here and the application to heavy-tailed distributions is simplified from [Kan09].
The original proof of the random projection theorem by Johnson and Lindenstrauss was
complicated. Several authors used Gaussians to simplify the proof. See [Vem04] for details
and applications of the theorem. The proof here is due to Dasgupta and Gupta [DG99].

27

2.11 Exercises

Exercise 2.1

1. Let x and y be independent random variables with uniform distribution in [0, 1].
What is the expected value E(z), E(x?), E(x —y), E(zy), and E((x — y)*)?

2. Let x and y be independent random variables with uniform distribution in [—%, %]
What is the expected value E(z), E(x?), E(x —y), E(zy), and E((x — y)*)?

3. What is the expected squared distance between two points generated at random inside
a unit d-dimensional cube centered at the origin?

4. Randomly generate a number of points inside a d-dimensional unit cube centered
at the origin and plot distance between and the angle between the vectors from the
origin to the points for all pairs of points.

Exercise 2.2 Show that Markov’s inequality is tight by showing the following:

1. For each of a = 2,3, and 4 give a probability distribution p(z) for a nonnegative

random variable x where Prob (m > aE(x)) = %

2. For arbitrary a > 1 give a probability distribution for a nonnegative random variable
x where Prob (:c > aE(az)) =1

a

Exercise 2.3 Give a probability distribution p(x) and a value b for which Chebyshev’s
inequality is tight and a probability distribution and value of b for which it is not tight?

Exercise 2.4 Consider the probability function p(x) = c$—14, x > 1, and generate 100
random samples. How close is the average of the samples to the expected value of x?

Exercise 2.5 Let G be a d-dimensional spherical Gaussian with variance X centered at

2
the origin. Derive the expected squared distance to the origin.

Exercise 2.6 How large must € be for 99% of the volume of a d-dimensional unit-radius
ball to lie in the shell of e-thickness at the surface of the ball?

Exercise 2.7 A 3-dimensional cube has vertices, edges, and faces. In a d-dimensional
cube, these components are called faces. A wvertex is a 0-dimensional face, an edge a
1-dimensional face, etc.

1. For 0 <i <d, how many i-dimensional faces does a d-dimensional cube have?

2. What is the total number of faces of all dimensions? The d-dimensional face is the
cube itself which you can include in your count.

3. What is the surface area of a unit cube in d-dimensions?

28

4. What is the surface area of the cube if the length of each side was 27

5. Prove that the volume of a unit cube is close to its surface.
Exercise 2.8 Repeat Fzxercise 2.7 for a d-dimensional tetrahedron.

Exercise 2.9 Consider the portion of the surface area of a unit radius, 3-dimensional
ball with center at the origin that lies within a circular cone whose vertex is at the origin.
What is the formula for the incremental unit of area when wusing polar coordinates to
integrate the portion of the surface area of the ball that is lying inside the circular cone?
What is the formula for the integral? What is the value of the integral if the angle of the
cone is 36°7 The angle of the cone is measured from the axis of the cone to a ray on the
surface of the cone.

Exercise 2.10 For what value of d does the volume, V(d), of a d-dimensional unit ball
take on its mazimum?

Hint: Consider the ratio -~

V1)

Exercise 2.11 How does the volume of a ball of radius two behave as the dimension of the
space increases? What if the radius was larger than two but a constant independent of d?
What function of d would the radius need to be for a ball of radius r to have approximately
constant volume as the dimension increases?

Exercise 2.12 [If dlim V(d) = 0, the volume of a d-dimensional sphere for sufficiently
—r 00

large d must be less than V (3). How can this be if the d-dimensional sphere contains the
three dimensional sphere?

Exercise 2.13 Consider a unit radius, circular cylinder in 3-dimensions of height one.
The top of the cylinder could be an horizontal plane or half of a circular ball. Consider
these two possibilities for a unit radius, circular cylinder in 4-dimensions. In 4-dimensions
the horizontal plane is 3-dimensional and the half circular ball is 4-dimensional. In each
of the two cases, what is the surface area of the top face of the cylinder? You can use
V(d) for the volume of a unit radius, d-dimension ball and A(d) for the surface area of
a unit radius, d-dimensional ball. An infinite length, unit radius, circular cylinder in 4-
dimensions would be the set {(x1, To, T3, 74)|23 + 23 + 23 < 1} where the coordinate x; is
the axis.

Exercise 2.14 Given a d-dimensional circular cylinder of radius r and height h
1. What is the surface area in terms of V(d) and A(d)?

2. What 1is the volume?

Exercise 2.15 Write a recurrence relation for V (d) in terms of V (d — 1) by integrating
using an incremental unit that is a disk of thickness dr.

29

Exercise 2.16 Verify the formula V(d) = 2f01 V(d—1)(1—22)% day ford =1 and
d = 2 by integrating and comparing with V(2) = m and V(3) = 37

Exercise 2.17 Consider a unit ball A centered at the origin and a unit ball B whose
center is at distance s from the origin. Suppose that a random point x is drawn from the
mixture distribution: “with probability 1/2, draw at random from A; with probability 1/2,
draw at random from B”. Show that a separation s = w(1/v/d — 1) is sufficient so that
Prob(zx € AN B) = o(1) (i.e., for any € > 0 there exists ¢ such that if s > ¢/v/d —1
then Prob(x € AN B) < €). In other words, this separation means that nearly all of the
maxture distribution is identifiable.

Exercise 2.18 Prove that 1 + x < e for all real x. For what values of x is the approzi-
mation 1 4+ x =~ e* within 0.017

Exercise 2.19 Consider the upper hemisphere of a unit-radius ball in d-dimensions.
What is the height of the mazimum volume cylinder that can be placed entirely inside
the hemisphere? As you increase the height of the cylinder, you need to reduce the cylin-
der’s radius so that it will lie entirely within the hemisphere.

Exercise 2.20 What is the volume of the maximum size d-dimensional hypercube that
can be placed entirely inside a unit radius d-dimensional ball?

Exercise 2.21 For a 1,000-dimensional unit-radius ball centered at the origin, what frac-
tion of the volume of the upper hemisphere is above the plane x1 = 0.17 Above the plane
r1 =0.017

Exercise 2.22 Calculate the ratio of area above the plane x1 = € of a unit radius ball
in d-dimensions for e = 0.01,0.02,0.03,0.04,0.05 and for d = 100 and d = 1,000. Also
calculate the ratio for e = 0.001 and d = 1, 000.

Exercise 2.23 Let {x| x| < 1} be a d-dimensional, unit radius ball centered at the ori-
gin. What fraction of the volume is the set {(z1, s, ..., z4)| |z;| < \/La}?

Exercise 2.24 Almost all of the volume of a ball in high dimensions lies in a narrow
slice of the ball at the equator. However, the narrow slice is determined by the point on
the surface of the ball that is designated the North Pole. Ezplain how this can be true
if several different locations are selected for the location of the North Pole giving rise to
different equators.

Exercise 2.25 Fxplain how the volume of a ball in high dimensions can simultaneously
be in a narrow slice at the equator and also be concentrated in a narrow annulus at the
surface of the ball.

30

Exercise 2.26 Generate 500 points uniformly at random on the surface of a unit-radius
ball in 50 dimensions. Then randomly generate five additional points. For each of the five
new points, calculate a narrow band at the equator, assuming the point was the North Pole.
How many of the 500 points are in each band corresponding to one of the five equators?
How many of the points are in all five bands? How wide do the bands need to be for all
points to be in all five bands?

Exercise 2.27 Consider a slice of a 100-dimensional ball that lies between two parallel
planes, each equidistant from the equator and perpendicular to the line from the North
Pole to the South Pole. What percentage of the distance from the center of the ball to the
poles must the planes be to contain 95% of the surface area?

Exercise 2.28 Place n points at random on a d-dimensional unit-radius ball. Assume d
is large. Pick a random vector and let it define two parallel hyperplanes on opposite sides
of the origin that are equal distance from the origin. How far apart can the hyperplanes
be moved and still have the probability that none of the n points lands between them be at
least .997

Exercise 2.29 Consider two random vectors in a high-dimensional space. Assume the
vectors have been normalized so that their lengths are one and thus the points lie on a
unit ball. Assume one of the vectors is the North pole. Prove that the ratio of the area
of a cone, with axis at the North Pole of fized angle say 45° to the area of a hemisphere,
goes to zero as the dimension increases. Thus, the probability that the angle between two
random vectors is at most 45° goes to zero. How does this relate to the result that most
of the volume is near the equator?

Exercise 2.30 Project the volume of a d-dimensions ball of radius v/d onto a line through
the center. For large d, give an intuitive argument that the projected volume should behave
like a Gaussian.

Exercise 2.31

1. Write a computer program that generates n points uniformly distributed over the
surface of a unit-radius d-dimensional ball.

2. Generate 200 points on the surface of a sphere in 50 dimensions.

3. Create several random lines through the origin and project the points onto each line.
Plot the distribution of points on each line.

4. What does your result from (3) say about the surface area of the sphere in relation
to the lines, i.e., where is the surface area concentrated relative to each line?

Exercise 2.32 [f one generates points in d-dimensions with each coordinate a unit vari-
ance Gaussian, the points will approzimately lie on the surface of a sphere of radius v/d.

31

1. What is the distribution when the points are projected onto a random line through
the origin?

2. If one uses a Gaussian with variance four, where in d-space will the points lie?

Exercise 2.33 Randomly generate a 100 points on the surface of a sphere in 3-dimensions
and in 100-dimensions. Create a histogram of all distances between the pairs of points in
both cases.

Exercise 2.34 Consider drawing a random point x on the surface of the unit sphere in
R®. What is the variance of x1 (the first coordinate of x)? See if you can give an argument
without doing any integrals.

Exercise 2.35 We have claimed that a randomly generated point on a ball lies near the
equator of the ball, wherever we place the North Pole. Is the same claim true for a
randomly generated point on a cube? To test this claim, randomly generate ten +1 valued
vectors in 128 dimensions. Think of these ten vectors as ten choices for the North Pole.
Then generate some additional £1 valued vectors. To how many of the original vectors is
each of the new vectors close to being perpendicular; that is, how many of the equators is
each new vector close to?

Exercise 2.36 Project the vertices of a high-dimensional cube onto a line from (0,0, ...,0)
to (1,1,...,1). Arqgue that the “density” of the number of projected points (per unit dis-
tance) varies roughly as a Gaussian with variance O(1) with the mid-point of the line as
center.

Exercise 2.37 Define the equator of a d-dimensional unit cube to be the hyperplane

{x ilx_g}

1. Are the vertices of a unit cube concentrated close to the equator?

2. Is the volume of a unit cube concentrated close to the equator?
3. Is the surface area of a unit cube concentrated close to the equator?

Exercise 2.38 Let x be a random variable with probability density }l for 0 <z <4 and
zero elsewhere.

1. Use Markov’s inequality to bound the probability that x > 3.
2. Make use of Prob(|z| > a) = Prob(z* > a?) to get a tighter bound.

3. What is the bound using Prob(|z| > a) = Prob(z" > a")?
Exercise 2.39 Consider the probability distribution p(x =0) =1— % and p(z =a) = 1.

Plot the probability that x is greater than or equal to b as a function of b for the bound
giwven by Markov’s inequality and by Markov’s inequality applied to x* and x*.

32

Exercise 2.40 Generate 20 points uniformly at random on a 1,000-dimensional sphere
of radius 100. Calculate the distance between each pair of points. Then, project the data
onto subspaces of dimension k=100, 50, 10, 5, 4, 3, 2, 1 and calculate the difference
between 'k times the original distances and the new pair-wise distances. For each value
of k what is the mazimum difference as a percent of Vk.

Exercise 2.41 In d-dimensions there are exactly d-unit vectors that are pairwise orthog-
onal. However, if you wanted a set of vectors that were almost orthogonal you might
squeeze in a few more. For example, in 2-dimensions if almost orthogonal meant at least
45 degrees apart you could fit in three almost orthogonal vectors. Suppose you wanted to
find 900 almost orthogonal vectors in 100 dimensions where almost orthogonal meant an
angle of between 85 and 95 degrees. How would you generate such a set?

Hint: Consider projecting a 1,000 orthonormal 1,000-dimensional vectors to a random
100-dimensional space.

Exercise 2.42 FExercise 2.41 finds almost orthogonal vectors using the Johnson Linden-
strauss theorem. One could also create almost orthogonal vectors by generating random
Gaussian vectors. Compare the two results to see which does a better job.

Exercise 2.43 To preserve pairwise distances between n data points in d space, we pro-
jected to a random O(Inn/e?) dimensional space. To save time in carrying out the pro-
jection, we may try to project to a space spanned by sparse vectors, vectors with only a
few nonzero entries. That is, choose say O(Inn/e?) vectors at random, each with 100
nonzero components and project to the space spanned by them. Will this work to preserve
approzimately all pairwise distances? Why?

Exercise 2.44 Suppose there is an object moving at constant velocity along a straight
line. You receive the gps coordinates corrupted by Gaussian noise every minute. How do
you estimate the current position?

Exercise 2.45
1. What is the mazimum size rectangle that can be fitted in a unit variance Gaussian?

2. What rectangle best approzimates a unit variance Gaussian if one measure goodness
of fit by how small the symmetric difference of the Gaussian and rectangle is.

Exercise 2.46 Let x1,2o,...,x, be independent samples of a random wvariable x with

n

mean m and variance o*. Let m, = %Z x; be the sample mean. Suppose one estimates
i=1

the variance using the sample mean rather than the true mean, that is,

Prove that E(c?) = ”T’l 2 and thus one should have divided by n — 1 rather than n.
Hint: First calculate the variance of the sample mean and show that var(ms) = %var(x).
Then calculate E(o?) = E[X 3" (x;—my)?] by replacing x;—my with (x;—m)— (ms—m).
Exercise 2.47 Generate ten values by a Gaussian probability distribution with zero mean
and variance one. What is the center determined by averaging the points? What is the
variance? In estimating the variance, use both the real center and the estimated center.
When using the estimated center to estimate the variance, use both n = 10 and n = 9.
How do the three estimates compare?

Exercise 2.48 Suppose you want to estimate the unknown center of a Gaussian in d-
space which has variance one in each direction. Show that O(logd/e*) random samples
from the Gaussian are sufficient to get an estimate ji of the true center u, so that with
probability at least 99/100,

How many samples are sufficient to ensure that
lw—pl <e?

52
Exercise 2.49 Use the probability distribution #ﬂe’%(7= 1o generate ten points.

(a) From the ten points estimate u. How close is the estimate of p to the true mean of

57
10
(b) Using the true mean of 5, estimate o® by the fomula 0* = & ;(:p, —5)%. How close
is the estimate of o2 to the true variance of 97
10
(c) Using your estimate of the mean, estimate o by the fomula 0* = & ;(:cl —5)%. How

close is the estimate of o to the true variance of 97

(d) Using your estimate of the mean, estimate o by the fomula 0 = & > (x; — 5)?. How

close is the estimate of o2 to the true variance of 97

Exercise 2.50 Create a list of the five most important things that you learned about high
dimensions.

Exercise 2.51 Write a short essay whose purpose is to excite a college freshman to learn
about high dimensions.

34

3 Best-Fit Subspaces and Singular Value Decompo-
sition (SVD)

3.1 Introduction and Overview

In this chapter, we will examine the Singular Value Decomposition (SVD) of a matrix.
Consider each row of an n x d matrix A as a point in d-dimensional space. The singular
value decomposition will find the best-fitting k-dimensional subspace for k = 1,2,3,...,
for the associated set of n data points. Here, “best” means minimizing the sum of the
squares of the perpendicular distances of the points to the subspace, or equivalently,
maximizing the sum of squares of the lengths of the projections of the points onto this
subspace.? We begin with a special case where the subspace is 1-dimensional, namely a
line through the origin. We will then show that the best-fitting k-dimensional subspace
can be found by k applications of the best fitting line algorithm, where on each iteration ¢
we find the line of best fit subject to being perpendicular to the previous i —1 lines. When
k reaches the rank of the matrix, from these operations we can get an exact decomposition
of the matrix called the Singular Value Decomposition.

In matrix notation, the singular value decomposition of a matrix A with real entries
(we assume all our matrices have real entries) is the factorization of A into the product
of three matrices, A = UDVT, where the columns of U and V are orthonormal® and the
matrix D is diagonal with positive real entries. The columns of V' are the unit length vec-
tors defining the best fitting lines described above (the i'® column being the unit-length
vector in the direction of the i line). The coordinates of a row of U will be the fractions
of the corresponding row of A along the direction of each of the lines.

The SVD is useful in many tasks. In many applications, a data matrix A is close to a
low rank matrix and it is useful to find a good low rank approximation to A. The singular
value decomposition of A gives the best rank k approximations to A, for any k& .

If u® and v are columns of U and V respectively, then the matrix equation A =
UDVT can be rewritten as
A= Z Dudv®”

where, note that since u is a n x 1 matrix and v¥ is a d x 1 matrix, udvO” s an n x d
matrix with the same dimensions as A. The ' term in the sum can be viewed as giving
the components of the rows of A along direction v(V. When the terms are summed, they

2This equivalence is due to the Pythagorean Theorem. For each point, its squared length (its distance
to the origin squared) is exactly equal to the squared length of its projection onto the subspace plus the
squared distance of the point to its projection; therefore, maximizing the sum of the former is equivalent
to minimizing the sum of the latter. For further discussion see Section 3.2.

3A set of vectors is orthonormal if each is of length one and they are pairwise orthogonal.

35

reconstruct A.

In addition to the singular value decomposition, there is an eigenvalue decomposition.
Let A be a square matrix. A vector v such that Av = Av is called an eigenvector and
A the eigenvalue. When A satisfies a few additional conditions besides being square, the
eigenvectors are orthogonal and A can be expressed as A = VDV where the eigenvectors
are the columns of V' and D is a diagonal matrix with the corresponding eigenvalues on
its diagonal. If A is symmetric, then the singular values of A are its eigenvalues and the
singular vectors of A are the eigenvectors. If a singular value has multiplicity d greater
than one, the corresponding singular vectors span a subspace of dimensions d and any
orthogonal basis of the subspace can be used as the eigenvectors or singular vectors.

The singular value decomposition is defined for all matrices, whereas the more familiar
eigenvector decomposition requires that the matrix A be square and certain other condi-
tions on the matrix to ensure orthogonality of the eigenvectors. In contrast, the columns
of V' in the singular value decomposition, called the right-singular vectors of A, always
form an orthogonal set with no assumptions on A. The columns of U are called the left-
singular vectors and they also form an orthogonal set (this will be proved in Section 3.7).
A simple consequence of the orthonormality is that for a square and invertible matrix A,
the inverse of A is VD 1UT.

Eigenvalues and eignevectors satisfy Av = Av. We will show that singular values and
vectors satisfy a somewhat analogous relationship. Since Av(is a n x 1 matrix (vector),
the matrix A cannot act on it from the left. But A” which is d x n can act on this vector.
Indeed, we will show that

AvY = Du® and ATu® = Dyv®,

In words, A acting on v produces a scalar multiple of u® and A7 acting on u® produces
the same scalar multiple of v(V.

3.2 Preliminaries

Consider projecting a point a; = (a;1, @2, - - - , a;q) onto a line through the origin. Then
a? +a? + - + a2, = (length of projection)® + (distance of point to line)*.
This holds by the Pythagorean Theorem; see Figure 3.1. Thus
(distance of point to line)* = a2 + a% + - - - + a2, — (length of projection)®.

n
Since > (a? + a?, + - -+ + a?;) is a constant independent of the line, minimizing the sum
i=1

of the squares of the distances to the line is equivalent to maximizing the sum of the
squares of the lengths of the projections onto the line. Similarly for best-fit subspaces,

36

< Minimizing 3 a? is equiva-
i :

1
lent to maximizing > 52
p

B!

Figure 3.1: The projection of the point x; onto the line through the origin in the direction
of v.

maximizing the sum of the squared lengths of the projections onto the subspace minimizes
the sum of squared distances to the subspace.

Thus we have two interpretations of the best-fit subspace. The first is that it mini-
mizes the sum of squared distances of the data points to it. This interpretation and its
use are akin to the notion of least-squares fit from calculus.* The second interpretation of
best-fit-subspace is that it maximizes the sum of projections squared of the data points
on it. This says that the subspace contains the maximum content of data among all
subspaces of the same dimension.

The reader may wonder why we minimize the sum of squared perpendicular distances
to the line rather than, say, the sum of distances (not squared). There are examples
where the latter definition gives a different answer than the line minimizing the sum
of squared perpendicular distances. The choice of the objective function as the sum of
squared distances seems a bit arbitrary and in a way it is. But the square has many nice
mathematical properties. The first of these, as we have just seen, is that minimizing the
sum of squared distances is equivalent to maximizing the sum of squared projections.

3.3 Centering Data
The centroid of a set of points is the coordinate-wise average of the points.
) 1
Centroid (5) = —: Zx.
|S| x€eSs

We first show that the line minimizing the sum of squared distances to .S, if not restricted
to go through the origin, must pass through the centroid of S. This implies that if the

4But there is a difference: here we take the perpendicular distance to the line or subspace, whereas, in
the calculus notion, given n pairs, (z1,41), (Z2,Y2),- .-, (Tn,yn), we find a line | = {(z,y) : y = mx + b}
minimizing the vertical distance of the points to it, namely, Y. (y; — mx; — b)2.

37

centroid is subtracted from each data point, such a line will pass through the origin. The
best fit line can be generalized to k dimensional “planes”. The operation of subtracting
the centroid from all data points is useful in other contexts as well. So we give it the
name “centering data”.

Lemma 3.1 The best-fit line (minimizing the sum of perpendicular distances squared) of
a set of data points must pass through the centroid of the points.

Proof: Subtract the centroid from each data point so that the centroid is 0. Let ¢ be the
best-fit line and assume for contradiction that ¢ does not pass through the origin. The
line ¢ can be written as {a+ Av|\A € R}, where a is the closest point to 0 on ¢ and v is a
unit length vector in the direction of ¢, which is perpendicular to a. For a data point a;,
let dist(a;,) denote its perpendicular distance to ¢. By the Pythagorean Theorem, we
have |a; — a|* = dist(ay, £)? + (v - a;)?, or equivalently, dist(a;, ()* = |a; — a|? — (v - a;)%.
Summing over all data points:

n n

Zdist(ai,€)2 = Z (Jaj — a]* = (v-a;)?) = Z (lai® + |al* — 2a;-a — (v - &)?)
i=1 i=1 i=1

= Z |as|” + nfal* — 2a- (Z ai) - Z(V -a;)” = Z |as|* + nlal* — Z(V)’

i=1 %

where, since the centroid is 0,), a; = 0. The above expression is minimized when a = 0,
so the line ¢/ = {Av : A € R} through the origin is a better fit than ¢, contradicting ¢
being the best-fit line. B

This proof, as well as others, requires the sum of squared distances for the Pythagorean
Theorem to apply.

A statement analogous to Lemma 3.1 holds for higher dimensional objects. Define an
affine space as a subspace translated by a vector. So an affine space is a set of the form

k
{vo+ > _AvilAi, A, A € R},

i=1
Here, vq is the translation and vy, v, ..., vy form an orthonormal basis for the subspace.

Lemma 3.2 The k dimensional affine space which minimizes the sum of squared perpen-
dicular distances to the data points must pass through the centroid of the points.

Proof: We only give a brief idea of the proof, which is similar to the previous lemma.

Instead of (v - a;)%, we will now have Y, (v¢ - a;)%, where, v¢,t = 1,2,...,k are an
orthonormal basis of the subspace through the origin parallel to the affine space.]

38

3.4 Singular Vectors

We now define the singular vectors of an n x d matrix A. Consider the rows of A as
n points in a d-dimensional space. Consider the best fit line through the origin. Let v
be a unit vector along this line. The length of the projection of aj, the i** row of A, onto
v is |a; - v|. From this we see that the sum of the squared lengths of the projections is
|Av|?. The best fit line is the one maximizing |Av|* and hence minimizing the sum of the
squared distances of the points to the line.

With this in mind, define the first singular vector vy of A, a column vector, as

vy, = arg max |Av|.
v|=1
Technically, there may be a tie for the vector attaining the maximum and so we should
not use the article “the”. If there is a tie, we arbitrarily pick one of the vectors and refer
to it as “the first singular vector” avoiding the more cumbersome “one of the the vectors
achieving the maximum”. We adopt this terminology for all uses of arg max.

The value o1 (A) = |Avy] is called the first singular value of A. Note that o} =

> (a;-vq)? is the sum of the squared lengths of the projections of the points onto the line
i=1
determined by v;.

So if the data points were all either on a line or close to a line, intuitively, vy should
give us the direction of that line. It is possible that data points are not close to one line,
but lie close to a 2-dimensional plane or more generally a low dimensional space. A widely
applied technique called Principal Component Analysis (PCA) deals with such situations
using singular vectors. Suppose we have an algorithm for finding vy (we will describe one
such algorithm later). How do we use this to find the best-fit 2-dimensional plane or more
generally k-dimensional space? As above, we may assume after centering data that the
space passes through the origin.

The greedy approach begins by finding v; and then finds the best 2-dimensional sub-
space containing vy. The fact that we are using the sum of squared distances helps. For
every 2-dimensional subspace containing vy, the sum of squared lengths of the projections
onto the subspace equals the sum of squared projections onto vy plus the sum of squared
projections along a vector perpendicular to vy in the subspace. Thus, instead of looking
for the best 2-dimensional subspace containing vy, look for a unit vector vo perpendicular
to v that maximizes |Av|?> among all such unit vectors. Using the same greedy strategy
to find the best three and higher dimensional subspaces, defines vg, vy4,... in a similar
manner. This is captured in the following definitions. There is no apriori guarantee that
the greedy algorithm gives the best fit. But, in fact, the greedy algorithm does work and
yields the best-fit subspaces of every dimension as we will show.

39

The second singular vector, vq, is defined by the best fit line perpendicular to vy.

vy = argmax |Av|
vlvy
[v|=1

The value 0y (A) = |Ava| is called the second singular value of A. The third singular
vector vs and third singular value are defined similarly by

v = arg max |Av|

vlivi,ve
lvl=1
and
03(A) = |Avs],
and so on. The process stops when we have found singular vectors vy, va, ..., vy, singular
values o1, 09,...,0,, and

max |Av|=0.
vlvi,va,.,vr
lvl=1

The greedy algorithm found the vy that maximized |Av| and then the best fit 2-
dimensional subspace containing v;. Is this necessarily the best-fit 2-dimensional subspace
overall? Yes the following theorem establishes that the greedy algorithm finds the best
subspaces of every dimension.

Theorem 3.3 (The Greedy Algorithm Works) Let A be an nxd matriz with singu-
lar vectors vi,va,...,vy. For1 <k <r, let V} be the subspace spanned by vq,va, ..., V.
For each k, Vi is the best-fit k-dimensional subspace for A.

Proof: The statement is obviously true for k = 1. For k = 2, let W be a best-fit 2-
dimensional subspace for A. For any orthonormal basis (wy, wa) of W, |Awy|? + | Aw|?
is the sum of squared lengths of the projections of the rows of A onto W. Choose an
orthonormal basis (w1, wa) of W so that wy is perpendicular to vy. If vy is perpendicular
to W, any unit vector in W will do as ws. If not, choose wa to be the unit vector in W
perpendicular to the projection of vy onto W. This makes wo perpendicular to vy. Since
v1 maximizes |Av|?, it follows that |Aw;|> < |Avy]?. Since v, maximizes |Av|? over all
v perpendicular to vy, |Aws|? < |Ava|?. Thus

|14W1|2 + |14VV2|2 S |/1V1|2 + |AV2|2.

Hence, V5 is at least as good as W and so is a best-fit 2-dimensional subspace.

For general k, proceed by induction. By the induction hypothesis, V;._; is a best-fit
k-1 dimensional subspace. Suppose W is a best-fit k-dimensional subspace. Choose an
orthonormal basis wq, wa, ..., wy of W so that wy is perpendicular to vy, va,..., Vi_1.
Then

|AW > 4 |Awg|> + - 4 [Awy_1 > < |Avy > + |Ava]? + - + [Avie_q]?

40

since Vj_1 is an optimal k — 1 dimensional subspace. Since wy is perpendicular to
V1,Va,...,Vi_1, by the definition of vy, |Avvk|2 < |Avk]2. Thus

|Aw1] + [Awa* + - + [Awi1 [+ [Awi] < [Ave [+ [Ava | + - + [Avieea [P + [Avi [,
proving that V is at least as good as W and hence is optimal.]

Note that the n-vector Av; is a list of lengths (with signs) of the projections of the
rows of A onto v;. Think of |Av;| = 0,(A) as the “component” of the matrix A along v;.
For this interpretation to make sense, it should be true that adding up the squares of the
components of A along each of the v; gives the square of the “whole content of the matrix
A”. This is indeed the case and is the matrix analogy of decomposing a vector into its
components along orthogonal directions.

Consider one row, say a;, of A. Since vi,Va,..., Vv, span the space of all rows of A,
T

a; - v = 0 for all v perpendicular to vy, va,...,v,. Thus, for each row a;, Y (a;- vi)? =
i=1
|a;|?. Summing over all rows j,

s n

Dol =D ey v = 30D (g vi)P = 3 Avif = 3 oi(A),

Jj=1i=1 i=1 j=1

n n d
But Y |aj]* = > >~ a%, the sum of squares of all the entries of A. Thus, the sum of
=1 j=1k=1

squares of the singular values of A is indeed the square of the “whole content of A”, i.e.,
the sum of squares of all the entries. There is an important norm associated with this

quantity, the Frobenius norm of A, denoted ||A||r defined as

1Allr = [> a3
jk

Lemma 3.4 For any matriz A, the sum of squares of the singular values equals the square
of the Frobenius norm. That is, > c2(A) = ||A||%.

Proof: By the preceding discussion.]

The vectors vy, Vs, ..., v, are called the right-singular vectors. The vectors Av; form
a fundamental set of vectors and we normalize them to length one by

1
u; = Avj.
1 O',L(A) 1
Later we will show that uy, us, ..., u, similarly maximize |u” A| when multiplied on the

left and are called the left-singular vectors. Clearly, the right-singular vectors are orthog-
onal by definition. We will show later that the left-singular vectors are also orthogonal.

41

3.5 Singular Value Decomposition (SVD)

Let A be an n x d matrix with singular vectors vi,va,...,v, and corresponding
singular values o1, 09, ..., 0,. The left-singular vectors of A are u; = UiiAvi where o,y is
a vector whose coordinates correspond to the projections of the rows of A onto v;. Each
o;u;vy is a rank one matrix whose rows are the “v; components” of the rows of 4, i.e., the
projections of the rows of A in the v; direction. We will prove that A can be decomposed
into a sum of rank one matrices as

,

T

A= E ouv; .
i=1

Geometrically, this is just decomposing each point in A into its components along each
of the r orthogonal directions given by the v;. We will also prove this algebraically. We
begin with a simple lemma that two matrices A and B are identical if Av = Bv for all v.

Lemma 3.5 Matrices A and B are identical if and only if for all vectors v, Av = Bv.

Proof: Clearly, if A = B then Av = Bv for all v. For the converse, suppose that
Av = Bv for all v. Let e; be the vector that is all zeros except for the ¥ component
which has value one. Now Ae; is the i*" column of A and thus A = B if for each 1,

Aei = Bei. |
Theorem 3.6 Let A be an n X d matriz with right-singular vectors vy,Va, ..., Vy, left-
singular vectors Uy, s, ..., Uy, and corresponding singular values oq,02,...,0,.. Then

.

T

A= E ouVv; .
i=1

Proof: We first show that multiplying A and Y o,u;v{ by v; results in equality.
i=1

T
E owvi v = oju; = Av;
i=1

Since any vector v can be expressed as a linear combination of the singular vectors

plus a vector perpendicular to the vi, Av = > o,u;viv for all v and by Lemma 3.5,
i=1
A= ouvi. n
=1

(2

The decomposition A = Y. o;u;vy is called the singular value decomposition, SVD, of
A. In matrix notation A = UDVT where the columns of U and V consist of the left and
right-singular vectors, respectively, and D is a diagonal matrix whose diagonal entries are

42

rXTr rxd

nxd nxr

Figure 3.2: The SVD decomposition of an n x d matrix.

the singular values of A. For any matrix A, the sequence of singular values is unique and
if the singular values are all distinct, then the sequence of singular vectors is unique up
to signs. However, when some set of singular values are equal, the corresponding singular
vectors span some subspace. Any set of orthonormal vectors spanning this subspace can
be used as the singular vectors.

3.6 Best Rank-tk Approximations

Let A be an n x d matrix and think of the rows of A as n points in d-dimensional

space. Let
T
T
A= E oV
i=1

be the SVD of A. For k € {1,2,...,r}, let

k
Ak: E O'Z'lliV’ir
i=1

be the sum truncated after k£ terms. It is clear that A, has rank k. We show that A,
is the best rank k£ approximation to A, where, error is measured in Frobenius norm.
Geometrically, this is just saying that vy,..., vk indeed defines the k-dimensional space
minimizing the sum of squared distances of the points to the space. To see why, we need
the following lemma.

Lemma 3.7 The rows of Ay are the projections of the rows of A onto the subspace V
spanned by the first k singular vectors of A.

Proof: Let a be an arbitrary row vector. Since the v; are orthonormal, the projection
of the vector a onto V4 is given by 3% (a-v;)v;”. Thus, the matrix whose rows are

43

the projections of the rows of A onto V} is given by Zle Avivl. This last expression
simplifies to Zle AviviT = Zle ouvil = Ay n

Theorem 3.8 For any matriz B of rank at most k
A = Aillp < [|A = Bllp

Proof: Let B minimize | A — B||7, among all rank k or less matrices. Let V be the space
spanned by the rows of B. The dimension of V' is at most k. Since B minimizes |A — B H%,
it must be that each row of B is the projection of the corresponding row of A onto V:
Otherwise replace the row of B with the projection of the corresponding row of A onto
V. This still keeps the row space of B contained in V' and hence the rank of B is still at
most k. But it reduces ||A — B||%, contradicting the minimality of ||A — B]|p.

Since each row of B is the projection of the corresponding row of A, it follows that
|A — BJ|% is the sum of squared distances of rows of A to V. Since A; minimizes the

sum of squared distance of rows of A to any k-dimensional subspace, from Theorem 3.3,
it follows that ||A — Akl < ||A — B|| 5. B

There is another matrix norm, which is of interest. To motivate, consider the example
of a term-document matrix A. Suppose we have a large database of documents that form
rows of an n x d matrix A. There are d terms and each document is a d-vector with one
component per term, which is the number of occurrences of the term in the document.
We are allowed to “preprocess” A. After the preprocessing, we receive queries. Each
query X is an d-vector which specifies how important each term is to the querier. The
desired answer is a n-vector which gives the similarity (dot product) of the query to
each document in the database, namely Ax, the “matrix-vector” product. Query time
is to be much less than preprocessing time, since the idea is that we need to answer
many queries for the same database. Besides this, there are many situations where one
performs many matrix vector products with the same matrix. This applicable to these
situations as well. Néively, it would take O(nd) time to do the product Ax. Suppose we
did SVD and took A, = Zle o;u;v;! as our approximation to A. Then, we could return
Apx = Zle o;u;(vy - x) as the approximation to Ax. This only takes k& dot products
of d-vectors, followed by a sum of k n-vectors, and so takes time O(kd + kn), which is
a win provided k < min(d,n). How is the error measured? Since x is unknown, the
approximation needs to be good for every x. So we should take the maximum over all x
of [(Ar — A)x|. But unfortunately, this is infinite since |x| can grow without bound. So
we restrict to x| < 1. Formally, we define a new norm of a matrix A by

|A||l2 = max |Ax].
x:|x|<1
This is called the 2-norm or the spectral norm. Note that it is indeed just equal to o1(A).

We will prove in Section 3.7 the following theorem stateing that Ay is the best rank k
approximation to A, when, error is measured by the spectral norm.

44

Theorem 3.9 Let A be an n x d matriz. For any matrix B of rank at most k

1A = Axll, < [[A = B,

3.7 Left Singular Vectors

Theorem 3.10 The left singular vectors are pairwise orthogonal.

Proof: First we show that each uj,7 > 2 is orthogonal to u;. Suppose not, and for some
i > 2, ulu; # 0. Without loss of generality assume that ulu; =6 > 0. (If uy7u; < 0
then just replace u; with —u;.) For ¢ > 0, let

Vi + €evi

/
vV, = .
1 ‘Vl + EVi|
Notice that v} is a unit-length vector.

o1uy + oy
Vv14¢e?

has length at least as large as its component along uy; which is

/ —_—
Av] =

o1uy + 044

V14 e?

for 0 <e< ‘:f—f, a contradiction. Thus uy - u; = 0 for ¢ > 2.

urlr()><0’1+50’i5) (1—%) >0'1—§0’1+%0’i(5>0'1,

The proof for other u;, uy, 7 > ¢ > 1 is similar. Suppose without loss of generality that
T
u;-uy > 0.

(V; + €V;) o0 + €0
[vi + ev;] V142

has length at least as large as its component along u; which is

T

o1Uu; + €0;U; 2 2
T 1Hi J) 1 € € £
u (—) > (O'i +€a]-ui Uj) (1 — —2> > 0; — o> o; + §ajui U; > 0,

V14 g2

o;ulu;
e < =~ a contradiction since vj + evj is orthogonal to vy, va,...,vi_1 and o; is the
K2
maximum of |Av| over such vectors. B

i

Next we prove Theorem 3.9. We first show that the square of the 2-norm of A — Ay
is the square of the (k4 1) singular value of A. This is essentially by definition of Ay;
that is, Ay represents the projections of the points in A onto the space spanned by the
top k singular vectors, and so A — Aj, is the remaining portion of those points, whose top
singular value will be o4;. Formally, we have

Lemma 3.11 [|A — A% = Oy

45

r k
Proof: Let A =" o;u;v;T be the singular value decomposition of A. Then 4, = Y oyu;vi’
i=1 =1

v
and A — Ay = > o;uyvil. Let v be the top singular vector of A — A;. Express v as a
i=k+1
T
linear combination of vy, vs,...,v,. That is, write v = > a;v;. Then
i=1
T
T
(A — Ap)v| = E oVl E Q;Vj E ;0 U;Vi' Vi
i=k+1 i=k+1
'S
= E Qo4
i=k+1

since the u; are orthonormal The v maximizing this last quantity, subject to the con-

straint that |v|* = Z a? = 1, occurs when 41 = 1 and the rest of the a; are 0. Thus,
=1

A — Ayl = 0., proving the lemma. N

Finally, we prove Theorem 3.9 which states that Ay is the best rank k, 2-norm ap-
proximation to A:

Proof: If A is of rank k or less, the theorem is obviously true since ||A Agll, = 0.
Assume that A is of rank greater than k. By Lemma 3.11, |A — A4|3 = 07,,. The null
space of B, the set of vectors v such that Bv = 0, has dlmensmn at least d — k. Let
V1,Va,...,Viky1 be the first £ + 1 singular vectors of A. By a dimension argument, it
follows that there exists a z # 0 in

Null (B) N Span {v1,va,...,Vii1}.

Scale z to be of length one.

IA=Bl; > [(A~B)z|".

Since Bz = 0,
1A = Bl; > |Az|”.
Since z is in the Span{vy,va,..., Viy1}
n 2 n k+1 k+1 ,
|Az|? = ZaiuiviTZ = Z o} (vi'z) Za vilz)? > Opis Z (vi'z)" =07,
i=1 i=1 i=1
It follows that |A — B|j2 > o2 +1 and the theorem is proved. B

We now prove the analog of eigenvectors and eigenvalues for singular values and vectors
we discussed in the introduction.

46

Lemma 3.12 (Analog of eigenvalues and eigenvectors)
Av; = 0;(A)w; and ATu; = o;(A)vy.

Proof: The first equation is already known. For the second, note that from SVD, we get
ATy = Zj oj(A)viu;Tu;, where, all terms except when i = j are zero since the u¥ are
orthonormal.

3.8 Power Method for Computing the Singular Value Decom-
position

Computing the singular value decomposition is an important branch of numerical
analysis in which there have been many sophisticated developments over a long period of
time. Here we present an “in-principle” method to establish that the approximate SVD
of a matrix A can be computed in polynomial time. The reader is referred to numerical
analysis texts for more details. The method we present, called the power method, is simple
and is in fact the conceptual starting point for many algorithms. Let A be a matrix whose
SVD is ZZ ou;vil. We wish to work with a matrix that is square and symmetric. Let
B = AT A. By direct multiplication, using the orthogonality of the u;’s that was proved
in Theorem 3.10,

— AT A — vt vy
=A"A= (E oivil;) (g oju;v;)
i J
_ T T _ 2 T
= E oiovi(u; - u5)vy = g TIViVy
irj i

The matrix B is square and symmetric, and has the same left and right-singular vectors.

. o 2T 2, s . . .
In particular, Bv; = (3_, 07vivi)vj = 07Vj, so vj is an eigenvector of B with eigenvalue

of 0J2-. If A is itself square and symmetric, it will have the same right and left-singular

vectors, namely A = > o;v;v;? and computing B is unnecessary.
i

Now consider computing B2.
<ZO’ ViVv;) (ZO’VJ) Zaovl vl)va

When i # j, the dot product v;”vj is zero by orthogonality.® Thus, B? = Z otvivil.

computing the k™ power of B, all the cross product terms are zero and

r

k § : 2k T

= 0, ViVj .
i=1

5The “outer product” viva is a matrix and is not zero even for i # j.

47

If 01 > 05, then the first term in the summation dominates, so B*¥ — af’“vlvlT. This
means a close estimate to vi can be computes by simply taking the first column of B*
and normalizing it to a unit vector.

3.8.1 A Faster Method

A problem with the above method is that A may be a very large, sparse matrix, say a
10® x 10® matrix with 10° nonzero entries. Sparse matrices are often represented by just
a list of non-zero entries, say, a list of triples of the form (i, j, a;;). Though A is sparse, B
need not be and in the worse case may have all 10'% entries non-zero,® and it is then impos-
sible to even write down B, let alone compute the product B2. Even if A is moderate in
size, computing matrix products is costly in time. Thus, a more efficient method is needed.

Instead of computing B*, select a random vector x and compute the product B*x.
The vector x can be expressed in terms of the singular vectors of B augmented to a full
orthonormal basis as x = Y ¢;v;. Then

d
B*x ~ (0%vyvqiT) < E Civi) = o?*civy
i=1

Normalizing the resulting vector yields vy, the first singular vector of A. The way B*x
is computed is by a series of matrix vector products, instead of matrix products. B¥x =
AT A .. AT Ax, which can be computed right-to-left. This consists of 2k vector times
sparse matrix multiplications.

An issue occurs if there is no significant gap between the first and second singular val-
ues of a matrix. Take for example the case when there is a tie for the first singular vector
and o; = 09. Then, the argument above fails. We will overcome this hurdle. Theorem
3.13 below states that even with ties, the power method converges to some vector in the
span of those singular vectors corresponding to the “nearly highest” singular values. The
theorem needs a vector x which has a component of at least d along the first right singu-
lar vector v; of A. We will see in Lemma 3.14 that a random vector satisfies this condition.

Theorem 3.13 Let A be an nxd matriz and x a unit length vector in R with |xTvy| > 4,
where, § > 0. Let V' be the space spanned by the right singular vectors of A corresponding

to singular values greater than (1 — ¢) oy. Let w be unit vector after k = % iterations
of the power method, namely,
(ATA)*x
W —
’(ATA)’“ x‘

Then w has a component of at most € perpendicular to V.

SE.g., suppose each entry in the first row of A is non-zero and the rest of A is zero.

48

Proof: Let .
A= Z aiuiviT
i=1

be the SVD of A. If the rank of A is less than d, then for convenience complete
{v1,Va,...v,.} into an orthonormal basis {vy,Vva,...v4} of d-space. Write x in the basis

of the vyi’s as
d

= g CiVi

=1

Since (ATA)F = 327 | o?*vivT, it follows that (ATA)rx = 327 | o ¢;v;. By hypothesis,
|C1| Z d.

Suppose that o1, 09, ..., 0, are the singular values of A that are greater than or equal
to (1 —¢) oy and that 0,,.1,...,04 are the singular values that are less than (1 — ¢) 0.
Now
(AT A)rx|? = Za%czv1 Za4kc2 > oikc > otks?.

The component of |(AT A)*x|? perpendicular to the space V is

d d
3 ot < (- ol 3 e < (1) ol
i=m+1 1=m+1
since Zl 1 ¢; = |x| = 1. Thus, the component of w perpendicular to V' has squared
k
length at most % and so its length is at most

(1 o 6)2k0.%k B (1 _ 6)2k 6721’65
o 5~ %

Lemma 3.14 Let y € R" be a random vector with the unit variance spherical Gaussian
as its probability density. Let x = y/|y|. Let v be any fized (not random) unit length
vector. Then

1 1
Prob(|xTv] < —— + 3e~%/64,
(vl v = 10

Proof: By Theorem (2.8) of Chapter 2 with ¢ = v/d substituted in that theorem, the
probability that |y| > 2v/d is at most 3e~%%*. Further, y’v is a random variable with
the distribution of a unit variance Gaussian with zero mean and so the probability that
lyTv| < & is at most 1/10. Combining these two facts and using the union bound,

10
establishes the lemma. B

49

3.9 Singular Vectors and Eigenvectors

Recall that for a square matrix B, if the vector x and scalar A\ are such that Bx = A\x,
then x is an eigenvector of B and X is the corresponding eigenvalue. As we saw in Section
3.8, if B = AT A, then the right singular vectors v; of A are eigenvectors of B with eigen-
values 0]2-. The same argument shows that the left singular vectors u; of A are eigenvectors

of AAT with eigenvalues 7.

Notice that B = AT A has the property that for any vector x we have x” Bx > 0. This
is because B = Y, o7v;v;’ and for any x we have x'vivi'x = (x'v;)? > 0. A matrix
B with the property that x” Bx > 0 for all x is called positive semi-definite. So, any
matrix AT A is positive semi-definite. In the other direction, any positive semi-definite
matrix B can be decomposed into a product AT A, and so its eigenvalue decomposition
can be obtained from the singular value decomposition of A. The interested reader should
consult a linear algebra book.

3.10 Applications of Singular Value Decomposition
3.10.1 Principal Component Analysis

The traditional use of SVD is in Principal Component Analysis (PCA). PCA is il-
lustrated by a movie recommendation setting where there are n customers and d movies.
Let matrix A with elements a;; represent the amount that customer 7 likes movie j. One
hypothesizes that there are only k underlying basic factors that determine how much a
given customer will like a given movie, where & is much smaller than n or d. For example,
these could be the amount of comedy, drama, and action, the novelty of the story, etc.
Each movie can be described as a k-dimensional vector indicating how much of these ba-
sic factors the movie has, and each customer can be described as a k-dimensional vector
indicating how important each of these basic factors is to that customer; the dot-product
of these two vectors is hypothesized to determine how much that customer will like that
movie. In particular, this means that the n x d matrix A can be expressed as the product
of an n x k matrix U describing the customers and a k x d matrix V' describing the movies.
Finding the best rank £ approximation Ay by SVD gives such a U and V. One twist is
that A may not be exactly equal to UV, in which case A — UV is treated as noise.

In the above setting, A was available fully and we wished to find U and V' to identify
the basic factors. However, in a case such as movie recommendations, each customer may
have seen only a small fraction of the movies, so it may be more natural to assume that we
are given just a few elements of A and wish to estimate A. If A was an arbitrary matrix
of size n x d, this would require Q(nd) pieces of information and cannot be done with a
few entries. But again hypothesize that A was a small rank matrix with added noise. If
now we also assume that the given entries are randomly drawn according to some known
distribution, then there is a possibility that SVD can be used to estimate the whole of A.
This area is called collaborative filtering and one of its uses is to recommend movies or to

20

factors

products

customers A = U Vv

Figure 3.3: Customer-product data

target an ad to a customer based on one or two purchases. We do not describe it here.

3.10.2 Clustering a Mixture of Spherical Gaussians

Clustering is the task of partitioning a set of points in d-space into k subsets or clusters
where each cluster consists of “nearby” points. Different definitions of the quality of a
clustering lead to different solutions. Clustering is an important area which we will study
in detail in Chapter ?7?7. Here we will see how to solve a particular clustering problem
using singular value decomposition.

Mathematical formulations of clustering tend to have the property that finding the
highest quality solution to a given set of data is NP-hard. One way around this is to
assume stochastic models of input data and devise algorithms to cluster data generated by
such models. Mixture models are a very important class of stochastic models. A mixture
is a probability density or distribution that is the weighted sum of simple component
probability densities. It is of the form

F = wipy +wopy + -+ - + wypx,

where p1, po, . .., pr are the basic probability densities and wy, wo, . .., w; are positive real
numbers called weights that add up to 1. Clearly, F'is a probability density and integrates
to 1.

The model fitting problem is to fit a mixture of k basic densities to n independent,
identically distributed samples, each sample drawn according to the same mixture dis-
tribution F. The class of basic densities is known, but various parameters such as their
means and the component weights of the mixture are not. Here, we deal with the case
where the basic densities are all spherical Gaussians. There are two equivalent ways of
thinking of the sample generation process (which is hidden; only the samples are given):

o1

1. Pick each sample according to the density F on R

2. Pick a random i from {1,2,..., k} where probability of picking ¢ is w;. Then, pick
a sample according to the density p;.

One approach to the model-fitting problem is to break it into two subproblems:

1. First, cluster the set of samples into k clusters C1, Cy, ..., Cy, where, C; is the set of
samples generated according to p; (see (2) above) by the hidden generation process.

2. Then, fit a (single) Gaussian distribution to each cluster of sample points.

The second problem is relatively easier and indeed we saw the solution in Chapter
(2), where we showed that taking the empirical mean (the mean of the sample) and the
empirical standard deviation gives us the best-fit gaussian. The first problem is harder
and this is what we discuss here.

If the component Gaussians in the mixture have their centers very close together, then
the clustering problem is unresolvable. In the limiting case where a pair of component
densities are the same, there is no way to distinguish between them. What condition on
the inter-center separation will guarantee unambiguous clustering? First, by looking at
1-dimensional examples, it is clear that this separation should be measured in units of the
standard deviation, since the density is a function of the number of standard deviation
from the mean. In one dimension, if two Gaussians have inter-center separation at least
six times the maximum of their standard deviations, then they hardly overlap. This is
summarized in the question: How many standard deviations apart are the means? In
one dimension, if the answer is at least six (or a large constant), we can easily tell the
Gaussians apart. What is the analog of this in higher dimensions?

We discussed in Chapter (2) distances between two sample points from the same
Gaussian as well the distance between two sample points from two different Gaussians.
Recall from that discussion that if

e If x,y are two independent samples from the same spherical Gaussian with standard
deviation” o then

x —y|> ~ 2(Vd + 0(1))%0>.

o If x,y are samples from different spherical Gaussians each of standard deviation o
and means separated by distance A, then

x —y|> ~ 2(Vd + O(1))%0% + A2

Now we would like to assert that points from the same Gaussian are closer to each other
than points from different Gaussians. To ensure this, we would need

2(Vd — 0(1))%0® + A? > 2(Vd + O(1))%02.

"Since a spherical Gaussian has the same standard deviation in every direction, we call it the standard
deviation of the Gaussian.

52

Expanding the squares, the high order term 2d cancels and we need that
A > ddV,

for some constant ¢. While this was not a completely rigorous argument, it can be used to
show that a distance based clustering approach (see Chapter 2 for an example) requires an
inter-mean separation of at least ¢d"/* standard deviations to succeed, thus unfortunately
not keeping with mnemonic of a constant number of standard deviations separation of
the means. Here, indeed, we will show that Q(1) standard deviations suffice provided
ke O(1).

The central idea is the following. Suppose we can find the subspace spanned by the
k centers and project the sample points to this subspace. The projection of a spherical
Gaussian with standard deviation o remains a spherical Gaussian with standard deviation
o (Lemma 3.15). In the projection, the inter-center separation remains the same. So in
the projection, the Gaussians are distinct provided the inter-center separation in the whole
space is at least ¢k'/* o which is a lot less than ¢/d"/* o for k < d. Interestingly, we will
see that the subspace spanned by the k-centers is essentially the best-fit k-dimensional
subspace that can be found by singular value decomposition.

Lemma 3.15 Suppose p is a d-dimensional spherical Gaussian with center p and stan-
dard deviation o. The density of p projected onto a k-dimensional subspace V' is a spherical
Gaussian with the same standard deviation.

Proof: Rotate the coordinate system so V' is spanned by the first £ coordinate vectors.
The Gaussian remains spherical with standard deviation o although the coordinates of

its center have changed. For a point x = (1,2, ...,x4), we will use the notation x' =
(x1,m9,...x%) and X" = (Tgi1,Tpyo,-..,Ty). The density of the projected Gaussian at
the point (z1,xg,...,x) is
7|x/7“/|2 7|x//7“//‘2 7|xlfl_l/|2
ce” 207 / e 202 dx" =/ e 207 .

x//

This clearly implies the lemma.]

We now show that the top k singular vectors produced by the SVD span the space of
the k centers. First, we extend the notion of best fit to probability distributions. Then
we show that for a single spherical Gaussian whose center is not the origin, the best fit
1-dimensional subspace is the line though the center of the Gaussian and the origin. Next,
we show that the best fit k-dimensional subspace for a single Gaussian whose center is not
the origin is any k-dimensional subspace containing the line through the Gaussian’s center
and the origin. Finally, for k spherical Gaussians, the best fit k-dimensional subspace is
the subspace containing their centers. Thus, the SVD finds the subspace that contains
the centers.

93

1. The best fit 1-dimension subspace
to a spherical Gaussian is the line
through its center and the origin.

2. Any k-dimensional subspace contain-
ing the line is a best fit k-dimensional
subspace for the Gaussian.

3. The best fit k-dimensional subspace
for k spherical Gaussians is the sub-
space containing their centers.

Figure 3.4: Best fit subspace to a spherical Gaussian.

Recall that for a set of points, the best-fit line is the line passing through the origin
that maximizes the sum of squared lengths of the projections of the points onto the line.
We extend this definition to probability densities instead of a set of points.

Definition 3.1 If p is a probability density in d space, the best fit line for p is the line
I ={Avy: X € R} where
vy = arg Tnla>1< pr [(vx)?].
For a spherical Gaussian centered at the origin, it is easy to see that any line passing
through the origin is a best fit line. Our next lemma shows that the best fit line for a
spherical Gaussian centered at pu # 0 is the line passing through g and the origin.

Lemma 3.16 Let the probability density p be a spherical Gaussian with center p # 0.

The unique best fit 1-dimensional subspace is the line passing through p and the origin.
If p =0, then any line through the origin is a best-fit line.

o4

Proof: For a randomly chosen x (according to p) and a fixed unit length vector v,

B = B [(v (=) +v"n)’]
= B [(v (=)"+ 2 (vTh) (vV (=) + (V1)
= B |V =)’ | +2(v') B[V (=)] + (v)’
= B[=)+ (')
— o+ (Vi)

since [(VT (x — p))Q} is the variance in the direction v and E (v (x — p)) = 0. The

lemma follows from the fact that the best fit line v is the one that maximizes (VT;J,)2
which is maximized when v is aligned with the center p. To see the uniqueness, just note
that if g # 0, then v? p is strictly less when v is not aligned with the center.]

We now extend Definition 3.1 to k-dimensional subspaces.

Definition 3.2 If p is a probability density in d-space then the best-fit k-dimensional
subspace Vj, is
Vi = argmax FE [|proj(x, V)|2},
Vidim(V)=k *~P

where proj(x, V') is the orthogonal projection of x onto V.

Lemma 3.17 For a spherical Gaussian with center w, a k-dimensional subspace is a best
fit subspace if and only if it contains .

Proof: If u = 0, then by symmetry any k—dimensional subspace is a best-fit subspace.
If p # 0, then, the best-fit line must pass through g by Lemma (3.16). Now, as in the
greedy algorithm for finding subsequent singular vectors, we would project perpendicular
to the first singular vector. But after the projection, the mean of the Gaussian becomes
0 and then any vectors will do as subsequent best-fit directions.]

This leads to the following theorem.

Theorem 3.18 If p is a mixture of k spherical Gaussians, then the best fit k-dimensional
subspace contains the centers. In particular, if the means of the Gaussians are linearly
independent, the space spanned by them is the unique best-fit k dimensional subspace.

Proof: Let p be the mixture wip;+wops+- - -+wipr. Let V be any subspace of dimension
k or less. Then,

E [|proj(x, V)m = Zwi E [|proj(x7 V)|2]

X~p X~p;
i=1 !

95

If V' contains the centers of the densities p;, by Lemma 3.17, each term in the summation
is individually maximized, which implies the entire summation is maximized, proving the
theorem.]

For an infinite set of points drawn according to the mixture, the k-dimensional SVD
subspace gives exactly the space of the centers. In reality, we have only a large number
of samples drawn according to the mixture. However, it is intuitively clear that as the
number of samples increases, the set of sample points approximates the probability density
and so the SVD subspace of the sample is close to the space spanned by the centers. The
details of how close it gets as a function of the number of samples are technical and we
do not carry this out here.

3.10.3 Singular Vectors and Ranking Documents

An important task for a document collection is to rank the documents according to
their intrinsic relevance to the collection. A good candidate is a document’s projection
onto the best-fit direction for the collection of term-document vectors, namely the top
left-singular vector of the term-document matrix. An intuitive reason for this is that this
direction has the maximum sum of squared projections of the collection and so can be
thought of as a synthetic term-document vector best representing the document collection.

Ranking in order of the projection of each document’s term vector along the best fit
direction has a nice interpretation in terms of the power method. For this, we consider
a different example, that of the web with hypertext links. The World Wide Web can
be represented by a directed graph whose nodes correspond to web pages and directed
edges to hypertext links between pages. Some web pages, called authorities, are the most
prominent sources for information on a given topic. Other pages called hubs, are ones
that identify the authorities on a topic. Authority pages are pointed to by many hub
pages and hub pages point to many authorities. One is led to what seems like a circular
definition: a hub is a page that points to many authorities and an authority is a page
that is pointed to by many hubs.

One would like to assign hub weights and authority weights to each node of the web.
If there are n nodes, the hub weights form a n-dimensional vector u and the authority
weights form a n-dimensional vector v. Suppose A is the adjacency matrix representing
the directed graph. Here a;; is 1 if there is a hypertext link from page ¢ to page j and 0
otherwise. Given hub vector u, the authority vector v could be computed by the formula

d
'Uj: E uiaij
i=1

since the right hand side is the sum of the hub weights of all the nodes that point to node

J. In matrix terms,
v=A"u

o6

Similarly, given an authority vector v, the hub vector u could be computed by u = Av.
Of course, at the start, we have neither vector. But the above discussion suggests a power
iteration. Start with any v. Set u = Av; then set v = ATu and repeat the process. Actu-
ally, as stated this process will cause the vectors to grow without bound, so after each step
we renormalize the vectors to have unit length. We know from the power method that
this converges to the left and right-singular vectors. So after sufficiently many iterations,
we may use the left vector u as hub weights vector and project each column of A onto this
direction and rank columns (authorities) in order of this projection. But the projections
just form the vector ATu which equals v. So we can just rank by order of the v;. This is
the basis of an algorithm called the HITS algorithm, which was one of the early proposals
for ranking web pages.

A different ranking called pagerank is widely used. It is based on a random walk on
the graph described above. We will study random walks in detail in Chapter 5.

3.10.4 An Application of SVD to a Discrete Optimization Problem

In clustering a mixture of Gaussians, SVD was used as a dimension reduction tech-
nique. It found a k-dimensional subspace (the space of centers) of a d-dimensional space
and made the Gaussian clustering problem easier by projecting the data to the subspace.
Here, instead of fitting a model to data, we have an optimization problem. Again ap-
plying dimension reduction to the data makes the problem easier. The use of SVD to
solve discrete optimization problems is a relatively new subject with many applications.
We start with an important NP-hard problem, the maximum cut problem for a directed
graph G(V, E).

The maximum cut problem is to partition the nodes of an n-node directed graph into
two subsets S and S so that the number of edges from S to S is maximized. Let A be
the adjacency matrix of the graph. With each vertex ¢, associate an indicator variable x;.
The variable z; will be set to 1 for i € S and 0 for i € S. The vector x = (21, 2y, ...,7,)
is unknown and we are trying to find it or equivalently the cut, so as to maximize the
number of edges across the cut. The number of edges across the cut is precisely

Z [L’Z(]_ — xj)aij.
1,7

Thus, the maximum cut problem can be posed as the optimization problem

Maximize Y z;(1 — x;)a;; subject to z; € {0, 1}.
1,J

In matrix notation,

le(l — xj)aij = XTA<1 — X),
'7j

o7

where 1 denotes the vector of all 1’s . So, the problem can be restated as
Maximize x” A(1 —x) subject to a; € {0,1}. (3.1)
The SVD is used to solve this problem approximately by computing the SVD of A and
k
replacing A by Ay = > oyuyv;T in (3.1) to get
i=1
Maximize x” A,(1 —x) subject to 2; € {0,1}. (3.2)

Note that the matrix A, is no longer a 0-1 adjacency matrix.

We will show that:

1. For each 0-1 vector x, xT A(1 — x) and xT A(1 — x) differ by at most \/Z% Thus,

the maxima in (3.1) and (3.2) differ by at most this amount.

2. A near optimal x for (3.2) can be found by exploiting the low rank of A, which by

Item 1 is near optimal for (3.1) where near optimal means with additive error of at
’fL2

most NEIR

First, we prove Item 1. Since x and 1 — x are 0-1 n-vectors, each has length at most
v/n. By the definition of the 2-norm, [(A — Ax)(1 — x)| < /n||A — Ag||]2. Now since
xT(A — Ag)(1 — x) is the dot product of the vector x with the vector (4 — A)(1 — x),

X" (A = Ar) (1 = x)| < n|]A = Agll2.
By Lemma 3.11, ||A — Ag||o = 0k+1(A). The inequalities,

(h+1)0%, <ot + 03+ ofy < |JAIE =Y af <n?
.7

imply that 0']3_,’_1 < k”—jl and hence ||A — Agl|2 < \/kL? proving Item 1.

Next we focus on Item 2. It is instructive to look at the special case when k=1 and A
is approximated by the rank one matrix A;. An even more special case when the left and
right-singular vectors u and v are required to be identical is already NP-hard to solve ex-
actly because it subsumes the problem of whether for a set of n integers, {ai, as, ..., a,},
there is a partition into two subsets whose sums are equal. So, we look for algorithms
that solve the maximum cut problem approximately.

For Item 2, we want to maximize Zle o;(xu;)(viT (1 — x)) over 0-1 vectors x. A
piece of notation will be useful. For any S C {1,2,...n}, write u;(S) for the sum of
coordinates of the vector u; corresponding to elements in the set S and also for vi. That
is, w;(S) = > w;;. We will maximize Zle o;(S)vi(S) using dynamic programming.

j€Ss

o8

For a subset S of {1,2,...,n}, define the 2k-dimensional vector

w(S) = (u1(5), va(5), ua(5), va(S), ..., wk(S), vi(9))-
If we had the list of all such vectors, we could find Y2 | oyu;(S)vi(S) for each of them
and take the maximum. There are 2" subsets S, but several S could have the same
w(S) and in that case it suffices to list just one of them. Round each coordinate of
each u; to the nearest integer multiple of ﬁ Call the rounded vector u;. Similarly ob-

tain v;. Let w(.S) denote the vector (1 (S), v1(S), 02(5), va(9),...,uk(S), vk(S)). We
will construct a list of all possible values of the vector w(.S). Again, if several differ-
ent S’s lead to the same vector w(.S), we will keep only one copy on the list. The list
will be constructed by dynamic programming. For the recursive step of dynamic pro-
gramming, assume we already have a list of all such vectors for S C {1,2,...,i} and
wish to construct the list for S C {1,2,...,i+ 1}. Each S C {1,2,...,i} leads to two
possible S C {1,2,...,i + 1}, namely, S and S U {i + 1}. In the first case, the vector
Ww(S") = (W (S),v1(S) + 01411, 02(S), V2(S) + T9is1,---,...). In the second case, it is
W (S") = (01(S) + @y iv1, V1(S), 02(S) + tgi11, V2(S), ..., ...) We put in these two vectors
for each vector in the previous list. Then, crucially, we prune - i.e., eliminate duplicates.

Assume that k& is constant. Now, we show that the error is at most \/2% as claimed.

Since uy, vi are unit length vectors, [u;(S)], [vi(S)| < v/n. Also [@;(S) —wi(S)| < 2 = &
and similarly for v;. To bound the error, we use an elementary fact: if a, b are reals with
lal, [b] < M and we estimate a by @’ and b by ' so that |a — d'[,|b —b'| < & < M, then

a'b’ is an estimate of ab in the sense

lab— a'V'| = |a(b—b") + V' (a — a)| < a||lb—b'| + (|b] + |0 — V'|)|a — a'| < 3MS.

Using this, we get that

k k
Y am(9)%(S) - Y ow(S)vi(S)| < Bkorv/n/k? < 3n*? [k < n’/k,
=1 =1

and this meets the claimed error bound.

Next, we show that the running time is polynomially bounded. |0;(5)], [vi(S)| < 2v/n.
Since 1;(.9), vi(S) are all integer multiples of 1/(nk?), there are at most 2/y/nk? possible
values of 0;(.5), v;(.S) from which it follows that the list of W(S) never gets larger than
(1/+/nk?)?* which for fixed k is polynomially bounded.

We summarize what we have accomplished.

Theorem 3.19 Given a directed graph G(V, E), a cut of size at least the maximum cut
minus O (\’}—%) can be computed in polynomial time n for any fired k.

It would be quite a surprise to have an algorithm that actually achieves the same
accuracy in time polynomial in n and k£ because this would give an exact max cut in
polynomial time.

29

3.11 Bibliographic Notes

Singular value decomposition is fundamental to numerical analysis and linear algebra.
There are many texts on these subjects and the interested reader may want to study these.
A good reference is [GvL96]. The material on clustering a mixture of Gaussians in Section
3.10.2 is from [VW02]. Modeling data with a mixture of Gaussians is a standard tool in
statistics. Several well-known heuristics like the expectation-minimization algorithm are
used to learn (fit) the mixture model to data. Recently, in theoretical computer science,
there has been modest progress on provable polynomial-time algorithms for learning mix-
tures. Some references are [DS07], [AK], [AMO05], [MV10]. The application to the discrete
optimization problem is from [FK99]. The section on ranking documents/webpages is
from two influential papers, one on hubs and authorities by Jon Kleinberg [K1e99] and
the other on pagerank by Page, Brin, Motwani and Winograd [BMPW98].

60

3.12 Exercises

Exercise 3.1 (Best fit functions versus best least squares fit) In many experiments
one collects the value of a parameter at various instances of time. Let y; be the value of
the parameter y at time x;. Suppose we wish to construct the best linear approrimation
to the data in the sense that we wish to minimize the mean square error. Here error is
measured vertically rather than perpendicular to the line. Develop formulas for m and b to
minimize the mean square error of the points {(x;,y;) |1 < i < n} to the line y = mz +b.

Exercise 3.2 Given five observed parameters, height, weight, age, income, and blood
pressure of n people, how would one find the best least squares fit subspace of the form

ay (height) 4+ as (weight) + as (age) + a4 (income) + a5 (blood pressure) = 0

Here aq,ao, ..., a5 are the unknown parameters. If there is a good best fit 4-dimensional
subspace, then one can think of the points as lying close to a 4-dimensional sheet rather
than points lying in 5-dimensions. Why is it better to use the perpendicular distance to the
subspace rather than vertical distance where vertical distance to the subspace is measured
along the coordinate axis corresponding to one of the unknowns?

Exercise 3.3 Find the best fit lines through the points in the sets below. Subtract the
center of gravity of the points in the set from each of the points in the set and find the
best fit line for the resulting points. Does the best fit line go through the origin?

1. (4:4) (6.2)
2. (4:,2) (4.4) (6,2) (6,4)
3. (3,2) (3,5) (5,1) (5,4)

Exercise 3.4 What is the best fit line through the origin for each of the following set of
points? Is the best fit line unique? Justify your answer for each of the subproblems.

1. {(0,1),(1,0)}
2. {(0,1),(2,0)}

3. The rows of the matriz

17 4
-2 26
11 7

Exercise 3.5 Find the left and right-singular vectors, the singular values, and the SVD
decomposition of the matrices in Figure 3.5.

61

° 0 2
(0,2)e M = i g
(3,1) 31

[J

20)

Figure 3.5: SVD problem

Exercise 3.6 Consider the matriz

1 2

-1 2

A= 1 -2
-1 =2

1. Run the power method starting from x = (}) for k = 3 steps. What does this give
as an estimate of vy ?

2. What actually are the v;’s, o;’s, and u;’s? It may be easiest to do this by computing
the eigenvectors of B = AT A.

3. Suppose matriz A is a database of restaurant ratings: each row is a person, each
column s a restaurant, and a;; represents how much person i likes restaurant j.
What might vy represent? What about uy ¢ How about the gap o1 — 09 %

Exercise 3.7 Let A be a square n X n matriz whose rows are orthonormal. Prove that
the columns of A are orthonormal.

Exercise 3.8 Suppose A is a n x n matrix with block diagonal structure with k equal size
blocks where all entries of the " block are a; with a; > as > -+ > ai > 0. Show that A
has exactly k nonzero singular vectors vy,va, ..., vy where vy has the value (%)1/2 in the
coordinates corresponding to the " block and 0 elsewhere. In other words, the singular
vectors exactly identify the blocks of the diagonal. What happens if a1 = as = --- = a3 ?
In the case where the a; are equal, what is the structure of the set of all possible singular
vectors?

Hint: By symmetry, the top singular vector’s components must be constant in each block.

Exercise 3.9 Interpret the first right and left-singular vectors for the document term
matriz.

62

Exercise 3.10 Verify that the sum of r-rank one matrices > ¢;xiy;’ can be written as
i=1
XOYT, where the x; are the columns of X, the y; are the columns of Y, and C is a

diagonal matriz with the constants c¢; on the diagonal.

Exercise 3.11 Let >, o;u;vi! be the SVD of A. Show that |uiFA‘ = Tnlax ‘uTA| equals
ul=1

1.

Exercise 3.12 If 01,09,...,0, are the singular values of A and vi,va,...,v, are the
corresponding right-singular vectors, show that

1. ATA = ZO’?ViViT

=1
2. Vi,Va,...V, are eigenvectors of AT A.

3. Assuming that the set of eigenvectors of a matriz is unique, conclude that the set of
singular values of the matriz is unique.

See the appendix for the definition of eigenvectors.

Exercise 3.13 Let > ou;vl be the singular value decomposition of a rank r matriz A.

k

Let A, = Y osuvl be a rank k approzimation to A. Express the following quantities in
i=1

terms of the singular values {o;,1 <1i <r}.

1. || A%
2. || Axll3
3. 1| A — Axll%
4o 1A= Al

Exercise 3.14 If A is a symmetric matriz with distinct singular values, show that the
left and right singular vectors are the same and that A =V DVT.

Exercise 3.15 Let A be a matriz. How would you compute

vy = arg max |Av|?
[v]=1

How would you use or modify your algorithm for finding vi to compute the first few
singular vectors of A.

Exercise 3.16 Compute the singular valued decomposition of the matrix
1 2
=(31)

63

Exercise 3.17 Write a program to implement the power method for computing the first
singular vector of a matrix. Apply your program to the matrix

12 3 - 9 10
2 3 4 - 10 O
A: . . z .
9 10 0 - 0 0
10 0 O 0 O

Exercise 3.18 Modify the power method to find the first four singular vectors of a matrix
A as follows. Randomly select four vectors and find an orthonormal basis for the space
spanned by the four vectors. Then multiple each of the basis vectors times A and find a
new orthonormal basis for the space spanned by the resulting four vectors. Apply your
method to find the first four singular vectors of matriz A of Exercise 3.17

Exercise 3.19 Let A be a real valued matriz. Prove that B = AAT is positive semi
definite. A matriz B is positive semi definite if for all x, x* Bx > 0.

Exercise 3.20 Let A be the adjacency matrix of a graph. The Laplacian of A is L =
D — A where D s a diagonal matriz whose diagonal entries are the row sums of A. Prove
that L is positive semi definite. A matriz L is positive semi definite if for all x, xT Lx > 0.

Exercise 3.21 Prove that the eigenvalues of a symmetric real valued matriz are real.

Exercise 3.22 Suppose A is a square invertible matriz and the SVD of A is A = > ou;vl
Prove that the inverse of A is Y Fv;ul

Exermse 3.23 Suppose A is square, but not necessarily invertible and has SVD A =

Z ouvl. Let B = Z —vluT. Show that BAx = x for all x in the span of the right-
=1
singular vectors of A For this reason B is sometimes called the pseudo inverse of A and

can play the role of A=! in many applications.
Exercise 3.24

1. For any matriz A, show that oy < I‘%F.

2. Prove that there exists a matriz B of rank at most k such that ||A — B||s < ”f‘/'le.

3. Can the 2-norm on the left hand side in (b) be replaced by Frobenius norm?

64

Exercise 3.25 Suppose an n X d matrix A is given and you are allowed to preprocess
A. Then you are given a number of d-dimensional vectors X1,Xa, ..., Xm and for each of
these vectors you must find the vector Ax; approximately, in the sense that you must find a
vector v satisfying |w; — Ax;| < €||Al|r|xi|. Here e >0 1is a given error bound. Describe
an algorithm that accomplishes this in time O (d;r—Q") per X; not counting the preprocessing
time.

Exercise 3.26 (Constrained Least Squares Problem using SVD) Given A, b,
and m, use the SVD algorithm to find a vector x with |x| < m minimizing |Ax —b|. This
problem is a learning exercise for the advanced student. For hints/solution consult Golub
and van Loan, Chapter 12.

Exercise 3.27 (Document-Term Matrices): Suppose we have a mxn document-term
matriz where each row corresponds to a document where the rows have been normalized
to length one. Define the “similarity” between two such documents by their dot product.

1. Consider a “synthetic” document whose sum of squared similarities with all docu-
ments in the matrix is as high as possible. What is this synthetic document and how
would you find it?

2. How does the synthetic document in (1) differ from the center of gravity?

3. Building on (1), given a positive integer k, find a set of k synthetic documents such
that the sum of squares of the mk similarities between each document in the matriz
and each synthetic document is mazximized. To avoid the trivial solution of selecting
k copies of the document in (1), require the k synthetic documents to be orthogonal
to each other. Relate these synthetic documents to singular vectors.

4. Suppose that the documents can be partitioned into k subsets (often called clusters),
where documents in the same cluster are similar and documents in different clusters
are not very similar. Consider the computational problem of isolating the clusters.
This is a hard problem in general. But assume that the terms can also be partitioned
into k clusters so that for i # j, no term in the i'" cluster occurs in a document
in the j™ cluster. If we knew the clusters and arranged the rows and columns in
them to be contiguous, then the matriz would be a block-diagonal matriz. Of course
the clusters are not known. By a “block” of the document-term matriz, we mean
a submatriz with rows corresponding to the i" cluster of documents and columns
corresponding to the i'" cluster of terms . We can also partition any n vector into
blocks. Show that any right-singular vector of the matrix must have the property
that each of its blocks is a right-singular vector of the corresponding block of the
document-term matriz.

5. Suppose now that the singular values of all the blocks are distinct (also across blocks).
Show how to solve the clustering problem.

65

Hint: (4) Use the fact that the right-singular vectors must be eigenvectors of AT A. Show
that AT A is also block-diagonal and use properties of eigenvectors.

Exercise 3.28 (Newcomb/Binford) The frequency distribution of first digits in many data
sets is not uniform. One might expect the distribution to be scale free in that changing
the units of measure should not change the distribution. Determine a distribution where
multiplying each number by two does not change the distribution. Hint: Construct a graph
with nine vertices where each vertex corresponds to one of the nine first digits. The edge
from vertex i to vertex j is labeled with the probability that multiplying a number whose first
digit is © by 2 results in a number whose first digit is j. What is the stationary probability
of a random walk on this graph?

Exercise 3.29 Show that mazimizing x uu’ (1 — x) subject to x; € {0,1} is equivalent
to partitioning the coordinates of u into two subsets where the sum of the elements in both
subsets are equal.

Exercise 3.30 Read in a photo and convert to a matrix. Perform a singular value decom-
position of the matriz. Reconstruct the photo using only 10%, 25%, 50% of the singular
values.

1. Print the reconstructed photo. How good is the quality of the reconstructed photo?
2. What percent of the Forbenius norm is captured in each case?

Hint: If you use Matlab, the command to read a photo is imread. The types of files that
can be read are given by imformats. To print the file use imwrite. Print using jpeg format.
To access the file afterwards you may need to add the file extension .jpg. The command
imread will read the file in wint8 and you will need to convert to double for the SVD code.
Afterwards you will need to convert back to uint8 to write the file. If the photo is a color
photo you will get three matrices for the three colors used.

Exercise 3.31 Create a set of 100, 100 x 100 matrices of random numbers between 0 and
1 such that each entry is highly correlated with the adjacency entries. Find the SVD of
A. What fraction of the Frobenius norm of A is captured by the top 10 singular vectors?
How many singular vectors are required to capture 95% of the Frobenius norm?

Exercise 3.32 Create a 100 x 100 matriz A of random numbers between 0 and 1 such
that each entry is highly correlated with the adjacency entries and find the first 10 vectors
for a single basis that is reasonably good for all 100 matrices. How does one do this?
What fraction of the Frobenius norm of a new matriz is captured by the basis?

Exercise 3.33 Show that the running time for the maximum cut algorithm in Section 77
can be carried out in time O(n® + poly(n)k*), where poly is some polynomial.

66

Exercise 3.34 Let X1,Xs3,...,X, be n points in d-dimensional space and let X be the
n X d matrix whose rows are the n points. Suppose we know only the matriz D of pairwise
distances between points and not the coordinates of the points themselves. The set of points
X1,X2,...,Xy giving rise to the distance matrix D is not unique since any translation,
rotation, or reflection of the coordinate system leaves the distances invariant. Fix the
origin of the coordinate system so that the centroid of the set of points is at the origin.
That is, > . x; = 0.

1. Show that the elements of XX are given by

n

1 1< 1 o 1 .
o = [l Y Y5

i=1 j=1
2. Describe an algorithm for determining the matriz X whose rows are the x;.

Exercise 3.35

1. Consider the pairwise distance matriz for twenty US cities given below. Use the
algorithm of Fxercise 3.34 to place the cities on a map of the US. The algorithm is
called classical multidimensional scaling, cmdscale, in Matlab. Alternatively use the
pairwise distance matriz to place the cities on a map of China.

Note: Any rotation or a mirror image of the map will have the same pairwise
distances.

2. Suppose you had airline distances for 50 cities around the world. Could you use
these distances to construct a world map?

|

B B C D D H L M M M

O U H A E (@) A E I I

S F I L N U M A M
Boston - 400 851 1551 1769 1605 2596 1137 1255 1123
Buffalo 400 - 454 1198 1370 1286 2198 803 1181 731
Chicago 851 454 - 803 920 940 1745 482 1188 355
Dallas 1551 1198 803 - 663 225 1240 420 1111 862
Denver 1769 1370 920 663 - 879 831 879 1726 700
Houston 1605 1286 940 225 879 - 1374 484 968 1056
Los Angeles 2596 2198 1745 1240 831 1374 - 1603 2339 1524
Memphis 1137 803 482 420 879 484 1603 - 872 699
Miami 1255 1181 1188 1111 1726 968 2339 872 - 15811
Minneapolis 1123 731 355 862 700 1056 1524 699 1511 -
New York 188 292 713 1374 1631 1420 2451 957 1092 1018
Omaha 1282 883 432 586 488 794 1315 529 1397 290
Philadelphia 271 279 666 1299 1579 1341 2394 881 1019 985
Phoenix 2300 1906 1453 887 586 1017 357 1263 1982 1280
Pittsburgh 483 178 410 1070 1320 1137 2136 660 1010 743
Saint Louis 1038 662 262 547 796 679 1589 240 1061 466
Salt Lake City 2099 1699 1260 999 371 1200 579 1250 2089 987
San Francisco 2699 2300 1858 1483 949 1645 347 1802 2594 1584
Seattle 2493 2117 1737 1681 1021 1891 959 1867 2734 1395

Washington D.C. 393 292 597 1185 1494 1220 2300 765 923 934

67

N (0] P P P S S S S D

Y M H H I t L F E C
A I (0] T L C A

Boston 188 1282 271 2300 483 1038 2099 2699 2493 393
Buffalo 292 883 279 1906 178 662 1699 2300 2117 292
Chicago 713 432 666 1453 410 262 1260 1858 1737 597
Dallas 1374 586 1299 887 1070 547 999 1483 1681 1185
Denver 1631 488 1579 586 1320 796 371 949 1021 1494
Houston 1420 794 1341 1017 1137 679 1200 1645 1891 1220
Los Angeles 2451 1315 2394 357 2136 1589 579 347 959 2300
Memphis 957 529 881 1263 660 240 1250 1802 1867 765
Miami 1092 1397 1019 1982 1010 1061 2089 2594 2734 923
Minneapolis 1018 290 985 1280 743 466 987 1584 1395 934
New York - 1144 83 2145 317 875 1972 2571 2408 230
Omaha 1144 1094 1036 836 354 833 1429 1369 1014

Philadelphia 83 1094

- 2083 259 811 1925 2523 2380 123
Phoenix 2145 1036 2083 - 1828 1272 504 653 1114 1973
Pittsburgh 317 836 259 1828 - 559 1668 2264 2138 192
Saint Louis 875 354 811 1272 559 - 1162 1744 1724 712
Salt Lake City 1972 833 1925 504 1668 1162 - 600 701 1848
San Francisco 2571 1429 2523 653 2264 1744 600 - 678 2442
Seattle 2408 1369 2380 1114 2138 1724 701 678 2329

Washington D.C. 230 1014 123 1973 192 712 1848 2442 2329 -

City Bei- Tian- Shang- Chong- Hoh- Urum- Lha- Yin- Nan- Har- Chang- Shen-
jing jin hai qing hot qi sa chuan ning bin chun yang
Beijing 0 125 1239 3026 480 3300 3736 1192 2373 1230 979 684
Tianjin 125 0 1150 1954 604 3330 3740 1316 2389 1207 955 661
Shanghai 1239 1150 0 1945 1717 3929 4157 2092 1892 2342 2090 1796
Chongqging 3026 1954 1945 0 1847 3202 2457 1570 993 3156 2905 2610
Hohhot 480 604 1717 1847 0 2825 3260 716 2657 1710 1458 1164
Urumgqi 3300 3330 3929 3202 2825 0 2668 2111 4279 4531 4279 3985
Lhasa 3736 3740 4157 2457 3260 2668 0 2547 3431 4967 4715 4421
Yinchuan 1192 1316 2092 1570 716 2111 2547 0 2673 2422 2170 1876
Nanning 2373 2389 1892 993 2657 4279 3431 2673 0 3592 3340 3046
Harbin 1230 1207 2342 3156 1710 4531 4967 2422 3592 0 256 546
Changchun 979 955 2090 2905 1458 4279 4715 2170 3340 256 0 294
Shenyang 684 661 1796 2610 1164 3985 4421 1876 3046 546 294 0

68

4 Random Graphs

Large graphs appear in many contexts such as the World Wide Web, the internet,
social networks, journal citations, and other places. What is different about the modern
study of large graphs from traditional graph theory and graph algorithms is that here
one seeks statistical properties of these very large graphs rather than an exact answer to
questions. This is akin to the switch physics made in the late 19 century in going from
mechanics to statistical mechanics. Just as the physicists did, one formulates abstract
models of graphs that are not completely realistic in every situation, but admit a nice
mathematical development that can guide what happens in practical situations. Perhaps
the most basic such model is the G (n,p) model of a random graph. In this chapter, we
study properties of the G(n, p) model as well as other models.

4.1 The G(n,p) Model

The G (n,p) model, due to Erdés and Rényi, has two parameters, n and p. Here n is
the number of vertices of the graph and p is the edge probability. For each pair of distinct
vertices, v and w, p is the probability that the edge (v,w) is present. The presence of each
edge is statistically independent of all other edges. The graph-valued random variable
with these parameters is denoted by G (n,p). When we refer to “the graph G (n,p)”, we
mean one realization of the random variable. In many cases, p will be a function of n
such as p = d/n for some constant d. In this case, the expected degree of a vertex of the
graph is %(n —1) &~ d. The interesting thing about the G(n, p) model is that even though
edges are chosen independently with no “collusion”, certain global properties of the graph
emerge from the independent choices. For small p, with p = d/n, d < 1, each connected
component in the graph is small. For d > 1, there is a giant component consisting of a
constant fraction of the vertices. In addition, there is a rapid transition at the threshold
d = 1. Below the threshold, the probability of a giant component is very small, and above
the threshold, the probability is almost one.

The phase transition at the threshold d = 1 from very small o(n) size components to a
giant Q(n) sized component is illustrated by the following example. Suppose the vertices
represent people and an edge means the two people it connects know each other. Given a
chain of connections, such as A knows B, B knows C, C knows D, ..., and Y knows Z, we
say that A indirectly knows Z. Thus, all people belonging to a connected component of
the graph indirectly know each other. Suppose each pair of people, independent of other
pairs, tosses a coin that comes up heads with probability p = d/n. If it is heads, they
know each other; if it comes up tails, they don’t. The value of d can be interpreted as the
expected number of people a single person directly knows. The question arises as to how
large are sets of people who indirectly know each other ?

If the expected number of people each person knows is more than one, then a giant
component of people, all of whom indirectly know each other, will be present consisting

69

1—o0(1)

Probability
of a giant
component

o(1)

1

+ b e m = =

1+¢

—c
Expected number of friends per person

Figure 4.1: Probability of a giant component as a function of the expected number of
people each person knows directly.

of a constant fraction of all the people. On the other hand, if in expectation, each person
knows less than one person, the largest set of people who know each other indirectly is a
vanishingly small fraction of the whole. Furthermore, the transition from the vanishing
fraction to a constant fraction of the whole, happens abruptly between d slightly less than
one to d slightly more than one. See Figure 4.1. Note that there is no global coordination
of who knows whom. Each pair of individuals decides independently. Indeed, many large
real-world graphs, with constant average degree, have a giant component. This is perhaps
the most important global property of the G(n,p) model.

4.1.1 Degree Distribution

One of the simplest quantities to observe in a real graph is the number of vertices of
given degree, called the vertex degree distribution. It is also very simple to study these
distributions in G (n,p) since the degree of each vertex is the sum of n — 1 independent
random variables, which results in a binomial distribution. Since we will be dealing with
graphs where the number of vertices n, is large, from here on we often replace n — 1 by n
to simplify formulas.

Example: In G(n, %), each vertex is of degree close to n/2. In fact, for any € > 0, the
degree of each vertex almost surely is within 1 4 € times n/2. To see this, note that the
probability that a vertex is of degree k is

= (7))) () G)) =56

This probability distribution has a mean m = n/2 and variance o? = n/4. To see this,
observe that the degree k is the sum of n indicator variables that take on value zero or

70

=)
®)
®

® ®
® ®

A randomly generated G(n,p) graph with 40 vertices and 24 edges

Figure 4.2: Two graphs, each with 40 vertices and 24 edges. The second graph was
randomly generated using the G(n, p) model with p = 1.2/n. A graph similar to the top
graph is almost surely not going to be randomly generated in the G(n, p) model, whereas
a graph similar to the lower graph will almost surely occur. Note that the lower graph
consists of a giant component along with a number of small components that are trees.

71

<—— Binomial distribution

/ Power law distribution

Figure 4.3: Ilustration of the binomial and the power law distributions.

one depending whether an edge is present or not. The expected value of the sum is the
sum of the expected values and the variance of the sum is the sum of the variances.

Near the mean, the binomial distribution is well approximated by the normal distri-
bution. See Section 12.4.9 in the appendix.

1 1 (k=m)* 1 _ (k=n/2)?
2 o2 = e n/2

e
V2mo? /2

The standard deviation of the normal distribution is ‘/75 and essentially all of the prob-
ability mass is within an additive term +cy/n of the mean n/2 for some constant ¢ and
thus is certainly within a multiplicative factor of 1+ ¢ of n/2 for sufficiently large n.]

The degree distribution of G (n,p) for general p is also binomial. Since p is the prob-
ability of an edge being present, the expected degree of a vertex is d ~ pn. The actual
degree distribution is given by

Prob(vertex has degree k) = (".")pF(1 — p)"*~1 ~ (})p*(1 — p)~*.

The quantity (”;1) is the number of ways of choosing k edges, out of the possible n — 1
edges, and p*(1 — p)"~*~! is the probability that the k selected edges are present and the
remaining n—k—1 are not. Since n is large, replacing n—1 by n does not cause much error.

The binomial distribution falls off exponentially fast as one moves away from the mean.
However, the degree distributions of graphs that appear in many applications do not ex-
hibit such sharp drops. Rather, the degree distributions are much broader. This is often
referred to as having a “heavy tail”. The term tail refers to values of a random variable
far away from its mean, usually measured in number of standard deviations. Thus, al-
though the G (n, p) model is important mathematically, more complex models are needed

72

to represent real world graphs.

Consider an airline route graph. The graph has a wide range of degrees, from degree
one or two for a small city, to degree 100, or more, for a major hub. The degree distribution
is not binomial. Many large graphs that arise in various applications appear to have power
law degree distributions. A power law degree distribution is one in which the number of
vertices having a given degree decreases as a power of the degree, as in

Number(degree k vertices) = cr,

for some small positive real r, often just slightly less than three. Later, we will consider
a random graph model giving rise to such degree distributions.

The following theorem claims that the degree distribution of the random graph G (n, p)
is tightly concentrated about its expected value. That is, the probability that the degree of
a vertex differs from its expected degree, np, by more than \,/np, drops off exponentially
fast with .

Theorem 4.1 Let v be a vertex of the random graph G(n,p). Let « be a real number in

(0, v/1p).-
Prob(|np — deg(v)| > ay/np) < 3¢/,

Proof: The degree deg(v) is the sum of n — 1 independent Bernoulli random variables,
Y1, Y2, - -, Yn_1, Where, y; is the indicator variable that the i** edge from v is present. So
the theorem follows from Theorem ?7?. B

Theorem 4.1.1 was for one vertex. The corollary below deals with all vertices.

Corollary 4.2 Suppose ¢ is a positive constant. If p is Q(Inn/ne?), then, almost surely,
every vertex has degree in the range (1 — e)np to (1 + €)np.

Proof: Apply Theorem with o = ¢,/np to get that the probability that an individual
vertex has degree outside the range [(1 — &)np, (1 + €)np| is at most 3e~<""?/3. By the

union bound, the probability that some vertex has degree outside this range is at most
3ne~<""/8. For this to be o(1), it suffices for p to be Q(Inn/ne®). Hence the Corollary.

Note that the assumption p is Q(Inn/ne?) is necessary. If p = d/n for d a constant,
then, indeed, some vertices may have degrees outside the range. Without the Q(Inn/ne?)
assumption, for p = %, Corollary 4.1.1 would claim almost surely no vertex had a degree
that was greater than a constant independent of n. But shortly we will see that it is highly
likely that for p = % there is a vertex of degree Q(logn/loglogn).

When p is a constant, the expected degree of vertices in G (n, p) increases with n. For
example, in G (n, %), the expected degree of a vertex is n/2. In many real applications,

73

we will be concerned with G (n,p) where p = d/n, for d a constant, i.e., graphs whose
expected degree is a constant d independent of n. Holding d = np constant as n goes to
infinity, the binomial distribution

n

Prob (k) = (k>pk 1—p)"

approaches the Poisson distribution

_ (np)k —np __ dk —d
Prob(k) = € p—ye .

To see this, assume k = o(n) and use the approximations n — k = n, (

(1- %)n_k >~ ¢~! to approximate the binomial distribution by

k k k
. N\ ke o\n—k _ TV ﬂ _én_d__d
Jg?o(k>p =P =7 (n) =2 =me™

Note that for p = %, where d is a constant independent of n, the probability of the
binomial distribution falls off rapidly for k£ > d, and is essentially zero for all but some
finite number of values of k. This justifies the k = o(n) assumption. Thus, the Poisson
distribution is a good approximation.

Example: In G(n, %) many vertices are of degree one, but not all. Some are of degree
zero and some are of degree greater than one. In fact, it is highly likely that there is a
vertex of degree Q(logn/loglogn). The probability that a given vertex is of degree k is

pranr - (1) () (1 1) =50

logn
log logn

If £ =logn/loglogn,

log k* = klog k = (loglogn — logloglogn) = logn

and thus k¥ = n. Since k! < k¥ = n, the probability that a vertex has degree k =
logn/loglogn is at least %6_1 > i If the degrees of vertices were independent random
variables, then this would be enough to argue that there would be a vertex of degree
logn/loglogn with probability at least 1 — (1 — i)n =1- 6_% = (0.31. But the degrees
are not quite independent since when an edge is added to the graph it affects the degree
of two vertices. This is a minor technical point, which one can get around.]

74

4.1.2 Existence of Triangles in G(n,d/n)

What is the expected number of triangles in G (n, %), when d is a constant? As the
number of vertices increases one might expect the number of triangles to increase, but this
is not the case. Although the number of triples of vertices grows as n®, the probability
of an edge between two specific vertices decreases linearly with n. Thus, the probability
of all three edges between the pairs of vertices in a triple of vertices being present goes
down as n~3, exactly canceling the rate of growth of triples.

A random graph with n vertices and edge probability d/n, has an expected number
of triangles that is independent of n, namely d*/6. There are (g) triples of vertices.

Each triple has probability (%)3 of being a triangle. Let A;;; be the indicator variable
for the triangle with vertices 4, j, and k being present. That is, all three edges (i, j),
(7,k), and (i,k) being present. Then the number of triangles is x = Zijk Ajji. Even
though the existence of the triangles are not statistically independent events, by linearity
of expectation, which does not assume independence of the variables, the expected value
of a sum of random variables is the sum of the expected values. Thus, the expected
number of triangles is

E(z)=E (3 A) =Y E(Ay) = (g) (g>3 ~ %3.

ijk ijk

Even though on average there are %3 triangles per graph, this does not mean that with
high probability a graph has a triangle. Maybe half of the graphs have %3 triangles and
the other half have none for an average of % triangles. Then, with probability 1/2, a
graph selected at random would have no triangle. If 1/n of the graphs had %Sn triangles

and the remaining graphs had no triangles, then as n goes to infinity, the probability that
a graph selected at random would have a triangle would go to zero.

We wish to assert that with some nonzero probability there is at least one triangle
in G(n,p) when p = %. If all the triangles were on a small number of graphs, then the
number of triangles in those graphs would far exceed the expected value and hence the
variance would be high. A second moment argument rules out this scenario where a small

fraction of graphs have a large number of triangles and the remaining graphs have none.

Calculate E(2?) where x is the number of triangles. Write x as x = 37, Ay, where
A;j is the indicator variable of the triangle with vertices 7, j, and k being present. Ex-
panding the squared term

E@?*) =E (3 Ay)2 —E (3 Al) .

i7j7k i7j7 k
i,7j/7k‘/

5

PP <D D

The two triangles of Part 1 are either The two triangles The two triangles in
disjoint or share at most one vertex of Part 2 share an Part 3 are the same tri-
edge angle

Figure 4.4: The triangles in Part 1, Part 2, and Part 3 of the second moment argument
for the existence of triangles in G(n,).

Split the above sum into three parts. Split the above sum into three parts. In Part 1,
let S7 be the set of 4, 7, k and 4, j', k' which share at most one vertex and hence the two
triangles share no edge. In this case, A;j; and Ay are independent and

E (Z AijDiji) = Z E(Aijr)E(Ayjn) < (ZE(Aijk) > (Z E(Ayjinr)) = E*(z).
51 S all

all
ijk it5' k!

In Part 2, 7,7,k and ¢/, j', K’ share two vertices and hence one edge. See Figure 4.4.
Four vertices and five edges are involved overall. There are at most (}) € O(n*), 4-vertex
subsets and (;l) ways to partition the four vertices into two triangles with a common edge.
The probability of all five edges in the two triangles being present is p®, so this part sums
to O(n'p®) = O(d°/n) and is o(1). There are so few triangles in the graph, the probability
of two triangles sharing an edge is extremely unlikely.

In Part 3, 7,5,k and ¢/, 5, k' are the same sets. The contribution of this part of the
summation to E(z?) is (1)p® = £. Thus,
d3
E(2*) < E*(z) + = +o(1),

which implies
d3
Var(z) = E(z%) — E*(x) < Y o(1).

For x to be less than or equal to zero, it must differ from its expected value by at least
its expected value. Thus,

Prob(z = 0) < Prob (|z — E(z)| > E(z)) .

By Chebychev inequality,

Var(z) < d*/6 + o(1) < 6 +o(1). (4.1)

Prob(z = 0) <
b =0)S Ty S T @B S @

Thus, for d > /6 = 1.8, Prob(z = 0) < 1 and G(n,p) has a triangle with nonzero
probability. For d < +v/6 and very close to zero, there simply are not enough edges in the
graph for there to be a triangle.

4.2 Phase Transitions

Many properties of random graphs undergo structural changes as the edge probability
passes some threshold value. This phenomenon is similar to the abrupt phase transitions
in physics, as the temperature or pressure increases. Some examples of this are the abrupt
appearance of cycles in G(n, p) when p reaches 1/n and the disappearance of isolated ver-
tices when p reaches k’%. The most important of these transitions is the emergence of a
giant component, a connected component of size ©(n), which happens at d = 1. Recall

Figure 4.1.

For these and many other properties of random graphs, a threshold exists where an

abrupt transition from not having the property to having the property occurs. If there

exists a function p (n) such that when lim I;l((:)) =0, G (n,p1 (n)) almost surely does not
n—oo

have the property, and when lim ’;f((:)) = 00, G (n,p2 (n)) almost surely has the property,
n—o0

then we say that a phase transition occurs, and p (n) is the threshold. Recall that G(n,p)
“almost surely does not have the property” means that the probability that it has the
property goes to zero in the limit, as n goes to infinity. We shall soon see that every
increasing property has a threshold. This is true not only for increasing properties of
G (n,p), but for increasing properties of any combinatorial structure. If for cp (n), ¢ < 1,
the graph almost surely does not have the property and for ¢p(n), ¢ > 1, the graph
almost surely has the property, then p(n) is a sharp threshold. The existence of a giant
component has a sharp threshold at 1/n. We will prove this later.

In establishing phase transitions, we often use a variable z(n) to denote the number
of occurrences of an item in a random graph. If the expected value of x(n) goes to zero as
n goes to infinity, then a graph picked at random almost surely has no occurrence of the
item. This follows from Markov’s inequality. Since x is a nonnegative random variable
Prob(z > a) < LE(z), which implies that the probability of z(n) > 1 is at most E(z(n)).
That is, if the expected number of occurrences of an item in a graph goes to zero, the
probability that there are one or more occurrences of the item in a randomly selected
graph goes to zero. This is called the first moment method.

The previous section showed that the property of having a triangle has a threshold
at p(n) = 1/n. If the edge probability p;(n) is o(1/n), then the expected number of
triangles goes to zero and by the first moment method, the graph almost surely has no
triangle. However, if the edge probability po(n) satisfies npa(n) — oo, then from (4.1),
the probability of having no triangle is at most 6/d* + o(1) = 6/(nps(n))® + o(1), which
goes to zero. This latter case uses what we call the second moment method. The first

7

Prob(z > 0)

Figure 4.5: Figure 4.5(a) shows a phase transition at p = . The dotted line shows an
abrupt transition in Prob(z) from 0 to 1. For any function asymptotically less than %,
Prob(z)>0 is zero and for any function asymptotically greater than %, Prob(z)>0 is one.
Figure 4.5(b) expands the scale and shows a less abrupt change in probability unless
the phase transition is sharp as illustrated by the dotted line. Figure 4.5(c) is a further

expansion and the sharp transition is now more smooth.

At least one
occurrence
of item in

10% of the
No items graphs

For 10% of the

>
E(z) 2 0.1 graphs, x > 1

Figure 4.6: If the expected fraction of the number of graphs in which an item occurs did
not go to zero, then E (), the expected number of items per graph, could not be zero.
Suppose 10% of the graphs had at least one occurrence of the item. Then the expected
number of occurrences per graph must be at least 0.1. Thus, F (z) = 0 implies the
probability that a graph has an occurrence of the item goes to zero. However, the other
direction needs more work. If £ (x) were not zero, a second moment argument is needed
to conclude that the probability that a graph picked at random had an occurrence of the
item was nonzero since there could be a large number of occurrences concentrated on a
vanishingly small fraction of all graphs. The second moment argument claims that for a
nonnegative random variable z with E (z) > 0, if Var(z) is o(E? (z)) or alternatively if
E (2%) < E?(z) (1 + o(1)), then almost surely = > 0.

78

and second moment methods are broadly used. We describe the second moment method
in some generality now.

When the expected value of x(n), the number of occurrences of an item, goes to infin-
ity, we cannot conclude that a graph picked at random will likely have a copy since the
items may all appear on a small fraction of the graphs. We resort to a technique called
the second moment method. 1t is a simple idea based on Chebyshev’s inequality.

Theorem 4.3 (Second Moment method) Let (n) be a random variable with E(x) >
0. If

Var(x) = o (E%x)) ,

then x is almost surely greater than zero.

Proof: If E(z) > 0, then for x to be less than or equal to zero, it must differ from its
expected value by at least its expected value. Thus,

Prob(z < 0) < Prob <|a: — E(x)| > E(x)) :

By Chebyshev inequality

Prob (|x — E(z)| > E(x)) < \;r((xx))

— 0.
Thus, Prob(z < 0) goes to zero if Var(z) is o (E*(x)). N
Corollary 4.4 Let x be a random variable with E(x) > 0. If
E(2*) < E*(2)(1+ o(1)),
then x is almost surely greater than zero.

Proof: If E(z?) < E*(z)(1+ o(1)), then

Var(z) = B(z%) — E*(x) < E*(x)o(1) = o(E*(z)).

Threshold for graph diameter two

We now present the first example of a sharp phase transition for a property. This
means that slightly increasing the edge probability p near the threshold takes us from
almost surely not having the property to almost surely having it. The property is that of
a random graph having diameter less than or equal to two. The diameter of a graph is

79

the maximum length of the shortest path between a pair of nodes.

The following technique for deriving the threshold for a graph having diameter two
is a standard method often used to determine the threshold for many other objects. Let
x be a random variable for the number of objects such as triangles, isolated vertices, or
Hamilton circuits, for which we wish to determine a threshold. Then we determine the
value of p, say pg, where the expected value of x goes from zero to infinity. For p < pg
almost surely a graph selected at random will not have a copy of x. For p > py, a second
moment argument is needed to establish that the items are not concentrated on a vanish-
ingly small fraction of the graphs and that a graph picked at random will almost surely
have a copy.

Our first task is to figure out what to count to determine the threshold for a graph
having diameter two. A graph has diameter two if and only if for each pair of vertices i
and j, either there is an edge between them or there is another vertex k£ to which both ¢
and j have an edge. The set of neighbors of ¢ and the set of neighbors of j are random
subsets of expected cardinality np. For these two sets to intersect requires np = \/n or
P \/iﬁ Such statements often go under the general name of “birthday paradox” though
it is not a paradox. In what follows, we will prove a threshold of O(v/Inn/+/n) for a graph
to have diameter two. The extra factor of v/Inn ensures that every one of the (Z) pairs of

1 and 7 has a common neighbor. When p = ¢4/ h’T", for ¢ < v/2, the graph almost surely
has diameter greater than two and for ¢ > v/2, the graph almost surely has diameter less

than or equal to two.

Theorem 4.5 The property that G (n,p) has diameter two has a sharp threshold at
p=V2/he

Proof: If G has diameter greater than two, then there exists a pair of nonadjacent ver-
tices ¢ and j such that no other vertex of GG is adjacent to both ¢ and j. This motivates
calling such a pair bad.

Introduce a set of indicator random variables [;;, one for each pair of vertices (i, j)
with ¢ < j, where I;; is 1 if and only if the pair (7, j) is bad. Let

1<j

be the number of bad pairs of vertices. Putting ¢ < j in the sum ensures each pair (i, j)

is counted only once. A graph has diameter at most two if and only if it has no bad pair,

ie., z = 0. Thus, if lim F (z) = 0, then for large n, almost surely, a graph has no bad
n—oo

pair and hence has diameter at most two.

80

The probability that a given vertex is adjacent to both vertices in a pair of vertices
(i,4) is p®. Hence, the probability that the vertex is not adjacent to both vertices is
1 — p%. The probability that no vertex is adjacent to the pair (4,7) is (1 — p?)"~ > and the
probability that ¢ and j are not adjacent is 1 — p. Since there are (g) pairs of vertices,
the expected number of bad pairs is

Setting p = ¢4/ 1“7”,

e
—~
&
S~—
112
MPM
/N
—_
|
@)

5
G
~——
—
—_
@)

o

5
=g

S—

3

2

2
n® —c“Ilnn
26

1

I
N[
3

For ¢ > /2, lim E (x) — 0. Thus, by the first moment method, for p = ¢,/ B2 with
n—oo

¢ > /2, G (n,p) almost surely has no bad pair and hence has diameter at most two.

Next, consider the case ¢ < /2 where lim E (z) — co. We appeal to a second moment
n—oo

argument to claim that almost surely a graph has a bad pair and thus has diameter greater
than two.

2
E(z*)=E (Z Iij> =E (Z L;; Zm) =E | Ljla | =) E(Ijlw).
i<j 1<j k<l ;;<Jl ;'g<]l
< <

The summation can be partitioned into three summations depending on the number of
distinct indices among i, j, k, and [. Call this number a.

E(2*) =Y E(IIu)+ Y E(ylx)+ Y E(I}). (4.2)

1< 1< 1<
k<l 1<k
a,:4 0,23 CL:2

Consider the case a = 4 where i, j, k, and [are all distinct. If [;;I;; = 1, then both
pairs (7, 7) and (k,[) are bad and so for each u ¢ {3, j, k,(}, one of the edges (i, u) or (j, u)
is absent and, in addition, one of the edges (k,u) or (I,u) is absent. The probability of
this for one w not in {7, 7, k,1} is (1 — p?)%. As u ranges over all the n — 4 vertices not in
{i,j, k,l}, these events are all independent. Thus,

,Inn

E(lijly) < (1 - P < (1—¢ 7)2”(1 +o0(1)) < n*2c2(1 +0(1))

81

and the first sum is
> E(Iiyla) < n* 7 (14 0(1)).
1<
k<l

For the second summation, observe that if ;;/;; = 1, then for every vertex u not equal
to 4, j, or k, either there is no edge between i and w or there is an edge (i,u) and both
edges (j,u) and (k,u) are absent. The probability of this event for one wu is

l—p+p(l—pP=1-2p"+p’~1-2p°
Thus, the probability for all such u is (1 — 2p2)n73. Substituting ¢ 1“7” for p yields

n—3
2¢21Inn ~ —2c%Ilnn __ _—2c2
(1 2m) s o oo

which is an upper bound on E(1;;I};) for one 4, j, k, and [with ¢ = 3. Summing over all
distinct triples yields n3~2¢ for the second summation in (4.2).

For the third summation, since the value of I;; is zero or one, E (If]) = E (I;;). Thus,
> E(I}) =E ().
ij

Hence, F (22) < n* 2 4+ n372 £ 2 and E () = n> <, from which it follows that
for ¢ < /2, E(2%) < E?(x) (14 0(1)). By a second moment argument, Corollary 4.4, a
graph almost surely has at least one bad pair of vertices and thus has diameter greater
than two. Therefore, the property that the diameter of G(n,p) is less than or equal to

two has a sharp threshold at p = V2 \ /1“7” x

Disappearance of Isolated Vertices

The disappearance of isolated vertices in G (n,p) has a sharp threshold at 1“7" At
this point the giant component has absorbed all the small components and with the
disappearance of isolated vertices, the graph becomes connected.

Theorem 4.6 The disappearance of isolated vertices in G (n,p) has a sharp threshold of
Inn

Proof: Let x be the number of isolated vertices in G (n,p). Then,
E(z)=n(1-p)"".
Since we believe the threshold to be anJ consider p = clnT”. Then,

. . n . — . —
lim E(z) = lim n (1 —<22)" = lim ne ™" = lim n'".

82

If ¢ >1, the expected number of isolated vertices, goes to zero. If ¢ < 1, the expected
number of isolated vertices goes to infinity. If the expected number of isolated vertices
goes to zero, it follows that almost all graphs have no isolated vertices. On the other
hand, if the expected number of isolated vertices goes to infinity, a second moment ar-
gument is needed to show that almost all graphs have an isolated vertex and that the
isolated vertices are not concentrated on some vanishingly small set of graphs with almost
all graphs not having isolated vertices.

Assume ¢ < 1. Write x = I{ + Is+ - - -+ I,, where I; is the indicator variable indicating
whether vertex ¢ is an isolated vertex. Then E (2?) = > F (I2) + 2 E (I;1;). Since I,
i=1

i<j
equals 0 or 1, I? = I; and the first sum has value E (x). Since all elements in the second
sum are equal

E(2*)=E(z)+n(n—1)E (L)
— E(@)+n(n—1)(1-p2r ",

The minus one in the exponent 2(n — 1) — 1 avoids counting the edge from vertex 1 to
vertex 2 twice. Now,

E@®) n(l—p)" " +nm—1)1—p 0

E2(z) n2 (1 — p)2nb
1 1. 1
- (-
TR T

For p = ¢ with ¢ < 1, lim E (z) = oo and

n—oo

. E(z? , 1 1 1
r}glgo E2 (x) o nlggo nl-ec + (- E)l — clnT”

=1+o(1).

By the second moment argument, Corollary 4.4, the probability that x = 0 goes to zero
implying that almost all graphs have an isolated vertex. Thus, IHT” is a sharp threshold
for the disappearance of isolated vertices. For p = clnT", when ¢ > 1 there almost surely

are no isolated vertices, and when ¢ < 1 there almost surely are isolated vertices.]
Hamilton circuits

So far in establishing phase transitions in the G(n,p) model for an item such as the
disappearance of isolated vertices, we introduced a random variable x that was the num-
ber of occurrences of the item. We then determined the probability p for which the
expected value of x went from zero to infinity. For values of p for which F(z) = 0, we
argued that with probability one, a graph generated at random had no occurrences of x.
For values of = for which E(x) — oo, we used the second moment argument to conclude

83

Figure 4.7: A degree three vertex with three adjacent degree two vertices. Graph cannot
have a Hamilton circuit.

that with probability one a graph generated at random had occurrences of x. That is,
the occurrences that forced E(x) to infinity were not all concentrated on a vanishingly
small fraction of the graphs. One might raise the question for the G(n,p) graph model,
do there exist items that are so concentrated on a small fraction of the graphs that the
value of p where E(z) goes from zero to infinity is not the threshold? An example where
this happens is Hamilton circuits.

Let x be the number of Hamilton circuits in G(n,p) and let p = d for some constant

d. There are %(n — 1)! potential Hamilton circuits in a graph and each has probability

(4)" of actually being a Hamilton circuit. Thus,

1 d\"
—(n—1
L 1) (n)
] 0 d<e
]l o0 d>e’
This suggests that the threshold for Hamilton circuits occurs when d equals Euler’s con-

stant e. This is not possible since the graph still has isolated vertices and is not even
connected for p = 2. Thus, the second moment argument is indeed necessary.

E(x) =

The actual threshold for Hamilton circuits is d = w(logn + loglogn). For any p(n)
asymptotically greater than = (logn +loglogn), G(n,p) will have a Hamilton circuit with
probability one. This is the same threshold as for the disappearance of degree one vertices.
Clearly a graph with a degree one vertex cannot have a Hamilton circuit. But it may seem
surprising that Hamilton circuits appear as soon as degree one vertices disappear. You
may ask why at the moment degree one vertices disappear there cannot be a subgraph
consisting of a degree three vertex adjacent to three degree two vertices as shown in Figure
4.7. The reason is that the frequency of degree two and three vertices in the graph is very
small and the probability that four such vertices would occur together in such a subgraph
is too small for it to happen.

84

4.3 The Giant Component

Consider G(n,p) as p grows. Starting with p = 0, the graph has n vertices and no
edges. As p increases and edges are added, a forest of trees emerges. When p is o(1/n)
the graph is almost surely a forest of trees, i.e., there are no cycles. When p is d/n, d
a constant, cycles appear. For d < 1, no connected component has asymptotically more
than logn vertices. The number of components containing a single cycle is a constant
independent of n. Thus, the graph consists of a forest of trees plus a few components that
have a single cycle with no 2(logn) size components.

At p equal 1/n, a phase transition occurs in which a giant component emerges. The
transition consists of a double jump. At p = 1/n, components of n?/3 vertices emerge,
which are almost surely trees. Then at p = d/n, d > 1, a true giant component emerges
that has a number of vertices proportional to n. This is a seminal result in random graph
theory and the main subject of this section. Giant components also arise in many real
world graphs; the reader may want to look at large real-world graphs, like portions of the
web and find the size of the largest connected component.

When one looks at the connected components of large graphs that appear in various
contexts, one observes that often there is one very large component. One example is
a graph formed from a data base of protean interactions® where vertices correspond to
proteins and edges correspond to pairs of proteins that interact. By an interaction, one
means two amino acid chains that bind to each other for a function. The graph has 2735
vertices and 3602 edges. At the time we looked at the data base, the associated graph
had the number of components of various sizes shown in Table 3.1. There are a number
of small components, but only one component of size greater than 16, and that is a giant
component of size 1851. As more proteins are added to the data base the giant component
will grow even larger and eventually swallow up all the smaller components.

Sl o |12 [3 4[5 [e[7][s8]9w0]1r]12]- [15]16]-- [1851
Number of 148 1179 [50 |25 | 14 |64 (6|1 [1 [1 [0 [0 [0 [1 [0 |1

Table 1: Table 3.1 Size of components in the graph implicit in the database of interacting
proteins.

The existence of a giant component is not unique to the graph produced from the
protein data set. Take any data set that one can convert to a graph and it is likely
that the graph will have a giant component, provided that the ratio of edges to vertices
is a small number greater than one half. Table 3.2 gives two other examples. This phe-
nomenon, of the existence of a giant component in many real world graphs deserves study.

8Science 1999 July 30 Vol. 285 No. 5428 pp751-753.

85

ftp://ftp.cs.rochester.edu/pub/u/joel /papers.lst
Vertices are papers and edges mean that two papers shared an author.

1 2 |3 |4 |5 |6 | 7|8 1427488
2712 1549 | 129 |51 |16 |12 |83 |1 |1

http://www.gutenberg.org/etext /3202
Vertices represent words and edges connect words that are synonyms of one another.

1121345 |14]16 |18 |48 | 117 | 125 | 128 | 30242
rjr{rjoy 1|1 11} 1 | 1|1 1

Table 2: Table 3.2 Size of components in two graphs constructed from data sets.

Returning to G(n, p), as p increases beyond d/n, all nonisolated vertices are absorbed
into the giant component, and at p = %IHT”, the graph consists only of isolated vertices
plus a giant component. At p = h’T”, the graph becomes completely connected. By
p = 1/2, the graph is not only connected, but is sufficiently dense that it has a clique of
size (2 — €)logn for any € > 0. We prove many of these facts in this chapter.

To compute the size of a connected component of G (n,p), do a breadth first search
of a component starting from an arbitrary vertex and generate an edge only when the
search process needs to know if the edge exists. Start at an arbitrary vertex and mark it
discovered and unexplored. At a general step, select a discovered, but unexplored vertex
v, and explore it as follows. For each undiscovered vertex u, independently decide with
probability p = d/n whether the edge (v,u) is in and if it is, mark u discovered and
unexplored. After this, mark v explored. Discovered but unexplored vertices are called
the frontier. The algorithm has found the entire connected component when the frontier
becomes empty.

For each vertex u, other than the start vertex, the probability that u is undiscovered

after the first 7 steps is precisely (1 — %)2 A step is the full exploration of one vertex. Let
z; be the number of vertices discovered in the first ¢ steps of the search. The distribution

of z; is Binomial(n —-1,1-— (1 — %)Z)
Consider the case d > 1. For small values of 7, the probability that a vertex is

undiscovered after i steps is '
a\" 1d
l——| =~1——.
n n
id

The probability that a vertex is discovered after 7 steps is **. The expected number of

86

Figure 4.8: A graph (left) and the breadth first search of the graph (right). At vertex 1
the algorithm queried all edges. The solid edges are real edges, the dashed edges are edges
that were queried but do not exist. At vertex 2 the algorithm queried all possible edges to
vertices not yet discovered. The algorithm does not query whether the edge (2,3) exists
since vertex 3 has already been discovered when the algorithm is at vertex 2. Potential
edges not queried are illustrated with dotted edges.

discovered vertices grows as id and the expected size of the frontier grows as (d — 1) 1.
As the fraction of discovered vertices increases, the expected rate of growth of newly
discovered vertices decreases since many of the vertices adjacent to the vertex currently
being searched have already been discovered. Once d%dln vertices have been discovered,
the growth of newly discovered vertices slows to one at each step. Eventually for d >1,
the growth of discovering new vertices drops below one per step and the frontier starts
to shrink. For d <1, (d — 1) 4, the expected size of the frontier is negative. The expected
rate of growth is less than one, even at the start.

It is easy to make this argument rigorous to prove that for the d < 1 case, almost
surely, there is no connected component of size Q(Inn). We do this before tackling the
more difficult d > 1 case.

Theorem 4.7 Let p=d/n with d < 1. The probability that G(n,p) has a component of

size more than c(ll_n—g) is at most 1/n for a suitable constant ¢ depending on d but not on
n.

Proof: There is a connected component of size at least k containing a particular vertex
v only if the breadth first search started at v has a nonempty frontier at all times up
to k. Let zp be the number of discovered vertices after k steps. The probability that
v is in a connected component of size greater than or equal to k is less than or equal
to Prob(z; > k). Now the distribution of z, is Binomial(n — 1,1 — (1 — d/n)*). Since
(1 —d/n)" > 1 — dk/n, the mean of Binomial(n — 1,1 — (1 — d/n)¥) is less than the mean
of Binomial(n,). Since Binomial(n, %) has mean dk, the mean of z, is at most dk where
d < 1. By a Chernoff bound, the probability that z is greater than k is at most e~“* for

87

y / \ \

0 \lnn 6 — AN n

Figure 4.9: The solid curve is the expected size of the frontier. The two dashed curves
indicate the range of possible values for the actual size of the frontier.

some constant ¢y > 0. If £ > clnn for a suitably large ¢, then this probability is at most
1/n?. This bound is for a single vertex v. Multiplying by n for the union bound completes
the proof.]

Now assume d > 1. As we saw, the expected size of the frontier grows as (d — 1)i
for small 7. The actual size of the frontier is a random variable. What is the probability
that the actual size of the frontier will differ from the expected size of the frontier by
a sufficient amount so that the actual size of the frontier is zero? To answer this, we
need to understand the distribution of the number of discovered vertices after ¢ steps.
For small i, the probability that a vertex has been discovered is 1 — (1 — d/n)" ~ id/n
and the binomial distribution for the number of discovered vertices, binomial(n, %d), is
well approximated by the Poisson distribution with the same mean ¢d. The probability
that a total of k vertices have been discovered in 7 steps is approximately e*di%. For a
connected component to have exactly ¢ vertices, the frontier must drop to zero for the first
time at step 7. A necessary condition is that exactly ¢ vertices must have been discovered

in the first ¢ steps. The probability of this approximately equals

o di (di)' _ e—didliz ot — o~ (d=D)igi _ ,~(d—1-Ind)i
7! 7

Ford > 1,Ind < d—1 and hence d—1—1Ind > 0. This probability drops off exponentially

with i. For ¢ > clnn and sufficiently large ¢, the probability that the breadth first search
starting from a particular vertex terminates with a component of size 7 is o(1/n) as long
as the Poisson approximation is valid. In the range of this approximation, the probability
that a breadth first search started from any vertex terminates with ¢ > cIlnn vertices is
o(1). Intuitively, if the component has not stopped growing within Q(Inn) steps, it is
likely to continue to grow until it becomes much larger and the expected value of the size
of the frontier again becomes small. While the expected value of the frontier is large, the
probability that the actual size will differ from the expected size sufficiently for the actual
size of the frontier to be zero is vanishingly small.

88

In Theorem 4.9, we prove that there is one giant component of size Q(n) along with
a number of components of size O(Inn). We first prove a technical lemma stating that
the probability of a vertex being in a small component is strictly less than one and hence
there is a giant component. We refer to a connected component of size O(logn) as a small
component.

Lemma 4.8 Assume d > 1. The probability that cc(v), the connected component contain-
ing vertex v, is small (i.e., of size O(logn)) is a constant strictly less than 1.

Proof: Let p be the probability that cc(v) is small, i.e., the probability that the breadth
first search started at v terminates before ¢q logn vertices are discovered. Slightly modify
the breadth first search as follows: If in exploring a vertex u at some point, there are m
undiscovered vertices, choose the number k of vertices which will be adjacent to u from
Binomial(m, ¢) distribution. Having picked k, pick one of the (') subsets of m undiscov-
ered vertices to be the set of vertices adjacent to u, and make the other m — k vertices
not adjacent to u. This process has the same distribution as picking each edge from u
independently at random to be present with probability d/n. As the search proceeds, m
decreases. If cc(v) is small, m is always greater than s = n — ¢; logn. Modify the process
once more picking k from Binomial(s, ¢) instead of from Binomial(m, ¢). Let p’ be the
probability that cc(v) is small for the modified process. Clearly, p’ > p, so it suffices
to prove that p’ is a constant strictly less than one. The mean of the binomial now is
d; = sd/n which is strictly greater than one. It is clear that the probability that the mod-
ified process ends before ¢ logn vertices are discovered is at least the probability for the
original process, since picking from n —c; logn vertices has decreased the number of newly
discovered vertices each time. Modifying the process so that the newly discovered vertices
are picked from a fixed size set, converts the problem to what is called a branching process..

A branching process is a method for creating a possibly infinite random tree. There
is a nonnegative integer-valued random variable y that is the number of children of the
node being explored. First, the root v of the tree chooses a value of y according to the
distribution of y and spawns that number of children. Each of the children independently
chooses a value according to the same distribution of y and spawns that many children.
The process terminates when all of the vertices have spawned children. The process may
go on forever. If it does terminate with a finite tree, we say that the process has become
“extinct”. Let Binomial(s, %) be the distribution of y. Let g be the probability of ex-
tinction. Then, ¢ > p’, since, the breadth first search terminating with at most ¢; logn
vertices is one way of becoming extinct. Let p; = (%)(d/n) (1 — (d/n))*~* be the proba-
bility that y spawns ¢ children. We have Y7 p; =1 and > . ip;, = E(y) = ds/n > 1.

The depth of a tree is at most the number of nodes in the tree. Let a; be the probability
that the branching process terminates at depth at most ¢. If the root v has no children,
then the process terminates with depth one where the root is counted as a depth one node
which is at most ¢. If v has i children, the process from v terminates at depth at most ¢ if

89

For a small number i of steps, the probability distribution of the size of the set of
discovered vertices at time 7 is p(k) = e*di% and has expected value di. Thus, the
expected size of the frontier is (d — 1)i. For the frontier to be empty would require that
the size of the set of discovered vertices be smaller than its expected value by (d — 1)i.
That is, the size of the set of discovered vertices would need to be di — (d —1)i = 4. The
probability of this is

p—dildi)' _ —didii i _

7! s

e—(d-1)igi — o—(d—1-Ind)i

which drops off exponentially fast with ¢ provided d > 1. Since d — 1 — Ind is some
constant ¢ > 0, the probability is e~ which for i = Inn is e ¢*" = % Thus, with high
probability, the largest small component in the graph is of size at most Inn.

Illustration 4.1

and only if the ¢ sub processes, one rooted at each child of v terminate at depth ¢ — 1 or
less. The ¢ processes are independent, so the probability that they all terminate at depth
at most ¢ — 1 is exactly a!_;. With this we get:

S S
7 7
ay = po + E piay_q1 = E pia;_q.
i=1 =0

We have a; = pg < 1. There is a constant o € [py, 1) such that whenever a;_; < a, the
above recursion implies that a; < «. This would finish the proof since then a; < a implies
as < a which implies a3 < « etc. and so ¢ = limy_ a; < a.

To prove the claim, consider the polynomial

h(z) =z — ipzx‘
=0

We see that k(1) = 0 and #/(1) = 1 — Y7 ip; & 1 — 24, which is at most a strictly
negative constant. By continuity of h(-), there is exists some xy < 1 such that h(z) > 0
for x € [xg,1]. Take @ = Max(z, py). Now since Y ;_, p;z* has all nonnegative coefficients,
it is an increasing function of and so if a;_; is at least «, then, Y ;_ p;ai_; is at least
S opiat > a. Now, if a;—1 < «,

S S
@ =Y piaj, >y pa’=a—ha)<a,
i=0 i=1

proving the claim.]

We now prove in Theorem 4.9 that in G(n, %), d > 1 there is one giant component
containing a fraction of the n vertices and that the remaining vertices are in components

90

of size less than some constant ¢; times logn. There are no components greater than
c1 logn other than the giant component.

Theorem 4.9 Let p=d/n with d > 1.

1. There are constants c¢; and co such that the probability that there is a connected
component of size between cilogn and can is at most 1/n.

2. The number of vertices in components of size O(Inn) is almost surely at most cn

for some ¢ < 1. Thus, with probability 1 — o(1), there is a connected component of
size)(n).

3. The probability that there are two or more connected components, each of size more
than n*3, is at most 1/n.

Proof: In the breadth first search of a component, the probability that a vertex has
not been discovered in ¢ steps is (1 — %)Z. It is easy to see that the approximation
(1 —d/n)" ~ 1 —1id/n is valid as long as i < cyn for a suitable constant ¢, since the
error term in the approximation is O(i?d?/n?), which for i < cyn is at most a small con-
stant times id/n. This establishes (1).

Next consider (2). For a vertex v, let cc(v) denote the set of vertices in the connected
component containing v. By (1), almost surely, cc(v) is a small set of size at most ¢; logn
or a large set of size at least con for every vertex v. The central part of the proof of
(2) that the probability of a vertex being in a small component is strictly less than one
was established in Lemma 4.8. Let x be the number of vertices in a small connected
component. Lemma 4.8 implies that the expectation of the random variable z equals the
number of vertices in small connected components is at most some c3n, for a constant cs
strictly less than one. But we need to show that for any graph almost surely the actual
number x of such vertices is at most some constant strictly less than one times n. For
this, we use the second moment method. In this case, the proof that the variance of x is
o(E?*(z)) is easy. Let x; be the indicator random variable of the event that cc(i) is small.
Let S and T run over all small sets. Noting that for ¢ # j, cc(i) and cc(j) either are the

91

same or are disjoint,

i 2]
x)+ Z Z Prob (cc(i) =)+ Z Z Prob (cc(i) = S; ce(j) =1T)
#i S ‘ 'dlsJomt

#)+ Y ¥ Prob (cc(i) = ce(j) = S)
+ Z ZProb ce(i) = S) Prob (ce(j) = T) (1 — p) I

dlSJOlIlt

< O(n) + (1 —p)~SITI (Z Prob (cc(i) (Z Prob (cc(j T))
< O(n)+ (14 o0(1)) E(z)E(z).

In the next to last line, if S containing ¢ and T containing j are disjoint sets, then the two
events, S is a connected component and 7" is a connected component, depend on disjoint
sets of edges except for the |S||T| edges between S vertices and T vertices. Let ¢4 be a
constant in the interval (c3, 1). Then, by Chebyshev inequality,

Var(z) < O(n) + o(1)c3n?

Prob(z > <
rob(w > eqn) < (cg —3)®n? = (cq4 —c3)?n?

=o(1).

For the proof of (3) suppose a pair of vertices u and v belong to two different connected
components, each of size at least n*?. With high probability, they should have merged
into one component producing a contradiction. First, run the breadth first search process
starting at v for in?/® steps. Since v is in a connected component of size n*?, there
are Q(n?/?) frontier vertices. The expected size of the frontier continues to grow until
some constant times n and the actual size of the frontier does not differ significantly
from the expected size. The size of the component also grows linearly with n. Thus,
the frontier is of size ni. See Exercise 4.23. By the assumption, u does not belong to
this connected component. Now, temporarily stop the breadth first search tree of v and
begin a breadth first search tree starting at u, again for %nQ/ 3 steps. It is important to
understand that this change of order of building G(n,p) does not change the resulting
graph. We can choose edges in any order since the order does not affect independence or
conditioning. The breadth first search tree from u also will have Q(n??) frontier vertices
with high probability . Now grow the u tree further. The probability that none of the
edges between the two frontier sets is encountered is (1 — p)Q(”4/3) < e ') which
converges to zero. So almost surely, one of the edges is encountered and v and v end up

in the same connected component. This argument shows for a particular pair of vertices

92

u and v, the probability that they belong to different large connected components is very
small. Now use the union bound to conclude that this does not happen for any of the (g)
pairs of vertices. The details are left to the reader.]

4.4 Branching Processes

A branching process is a method for creating a random tree. Starting with the root
node, each node has a probability distribution for the number of its children. The root
of the tree denotes a parent and its descendants are the children with their descendants
being the grandchildren. The children of the root are the first generation, their children
the second generation, and so on. Branching processes have obvious applications in pop-
ulation studies, but also in exploring a connected component in a random graph.

We analyze a simple case of a branching process where the distribution of the number
of children at each node in the tree is the same. The basic question asked is what is the
probability that the tree is finite, i.e., the probability that the branching process dies out?
This is called the extinction probability.

Our analysis of the branching process will give the probability of extinction, as well
as the expected size of the components conditioned on extinction. Not surprisingly, the
expected size of components conditioned on extinction is O(1). This says that in G(n, £),
with d > 1, there is one giant component of size Q(n), the rest of the components are
O(Inn) in size and the expected size of the small components is O(1).

An important tool in our analysis of branching processes is the generating func-
tion. The generating function for a nonnegative integer valued random variable y is

f () = 3" p;x’ where p; is the probability that y equals 7. The reader not familiar with
i=0

generatir;g functions should consult Section 12.7 of the appendix.

Let the random variable z; be the number of children in the j* generation and let
f; (z) be the generating function for z;. Then f; (z) = f () is the generating function for
the first generation where f(z) is the generating function for the number of children at a
node in the tree. The generating function for the 2"¢ generation is fo(x) = f (f (z)). In
general, the generating function for the j+ 15 generation is given by f;+1 (x) = f; (f (x)).
To see this, observe two things.

First, the generating function for the sum of two identically distributed integer valued
random variables x; and x5 is the square of their generating function

f2 (z) = p(z) + (pop1 + p1po) « + (Popa2 + P11 + Papo) A

For x1 4+ x5 to have value zero, both x; and x5 must have value zero, for x; 4+ x5 to have
value one, exactly one of x; or xo must have value zero and the other have value one, and

93

m <1
A
/(@)
— m>1
Do m=1and p; <1
¢

Figure 4.10: Ilustration of the root of equation f(z) = z in the interval [0,1).

so on. In general, the generating function for the sum of ¢ independent random variables,
each with generating function f (z), is f*(z).

The second observation is that the coefficient of 2’ in f; (z) is the probability of
there being 4 children in the j** generation. If there are i children in the j* generation,
the number of children in the j + 1%* generation is the sum of ¢ independent random
variables each with generating function f(z). Thus, the generating function for the j+ 1%
generation, given 4 children in the j** generation, is fi(x). The generating function for
the j + 1°¢ generation is given by

firi(x) = Z Prob(z; = i) f*(x).

If fj(xz) =3 a;a’, then f;11 is obtained by substituting f(z) for z in f;(z).
i=0

Since f (x) and its iterates, fs, f3,..., are all polynomials in z with nonnegative co-
efficients, f (z) and its iterates are all monotonically increasing and convex on the unit
interval. Since the probabilities of the number of children of a node sum to one, if pg < 1,
some coefficient of x to a power other than zero in f (x) is nonzero and f () is strictly
increasing.

Let ¢ be the probability that the branching process dies out. If there are ¢ children
in the first generation, then each of the ¢ subtrees must die out and this occurs with
probability ¢*. Thus, ¢ equals the summation over all values of ¢ of the product of the
probability of ¢ children times the probability that ¢ subtrees will die out. This gives
q = i0opiq’. Thus, ¢ is the root of x = > "7 p;a’, that is x = f(x).

This suggests focusing on roots of the equation f(z) = x in the interval [0,1]. The value

x =1 is always a root of the equation f (z) =z since f (1) = > p; = 1. When is there a
i=0

94

smaller nonnegative root? The derivative of f (x) at . = 1is f'(1) = p1+2ps+3ps+- - - .
Let m = f'(1). Thus, m is the expected number of children of a node. If m > 1, one
might expect the tree to grow forever, since each node at time j is expected to have more
than one child. But this does not imply that the probability of extinction is zero. In fact,
if po > 0, then with positive probability, the root will have no children and the process
will become extinct right away. Recall that for G(n, %), the expected number of children
is d, so the parameter m plays the role of d.

If m < 1, then the slope of f(x) at x = 1 is less than one. This fact along with
convexity of f (z) implies that f (z) > z for z in [0, 1) and there is no root of f(z) =z in
the interval [0, 1).

If m =1 and p; < 1, then once again convexity implies that f(z) > x for z € [0,1)
and there is no root of f(z) = x in the interval [0,1). If m = 1 and p; = 1, then f(z) is
the straight line f(x) = x.

If m >1, then the slope of f (z) is greater than the slope of z at z = 1. This fact,
along with convexity of f (z), implies f (x) = x has a unique root in [0,1). When py = 0,
the root is at x = 0.

Let ¢ be the smallest nonnegative root of the equation f(x) = x. For m < 1 and for
m=1 and py < 1, q equals one and for m >1, q is strictly less than one. We shall see
that the value of ¢ is the extinction probability of the branching process and that 1 — ¢ is
the immortality probability. That is, g is the probability that for some j, the number of
children in the j"* generation is zero. To see this, note that for m > 1, lim fj(z) = q for

Jj—00

0 <z < 1. Figure 4.11 illustrates the proof which is given in Lemma 4.10. Similarly note
that when m < 1 or m = 1 with py < 1, f; () approaches one as j approaches infinity.

Lemma 4.10 Assume m > 1. Let q be the unique root of f(x)=z in [0,1). In the limit as
J goes to infinity, f; (x) = q for x in [0,1).

Proof: If 0 < x < ¢, then z < f(z) < f(q) and iterating this inequality
r< fi(z) < folz) < <[fi(x)<[fla)=q

Clearly, the sequence converges and it must converge to a fixed point where f (x) = x.
Similarly, if ¢ <z < 1, then f(q) < f(x) < x and iterating this inequality

v fi@)> fala) > > f (@) > [(9) = q.

In the limit as j goes to infinity f; (z) = ¢ forall z, 0 <z < 1. m

oo

Recall that f; (x) is the generating function) Prob (z; = i) 2*. The fact that in the
i=0

limit the generating function equals the constant ¢, and is not a function of x, says

95

Po

Figure 4.11: Illustration of convergence of the sequence of iterations fi(x), fo(x),... to q.

that Prob (z; =0) = ¢ and Prob(z; =) = 0 for all finite nonzero values of i. The
remaining probability is the probability of a nonfinite component. Thus, when m >1, ¢
is the extinction probability and 1-g is the probability that z; grows without bound, i.e.,
immortality.

Theorem 4.11 Consider a tree generated by a branching process. Let f(x) be the gener-
ating function for the number of children at each node.

1. If the expected number of children at each node is less than or equal to one, then the
probability of extinction is one unless the probability of exactly one child is one.

2. If the expected number of children of each node is greater than one, then the proba-
bility of extinction is the unique solution to f(x) =z in [0,1).

Proof: Let p; be the probability of 7 children at each node. Then f(x) = py + p1x +
pox? + -+ - is the generating function for the number of children at each node and f(1) =
p1+ 2ps + 3ps3 + - -+ is the slope of f(z) at x = 1. Observe that f’(1) is the expected
number of children at each node.

Since the expected number of children at each node is the slope of f(x) at x = 1, if
the expected number of children is less than or equal to one, the slope of f(z) at z =1
is less than or equal to one and the unique root of f(z) =z in (0, 1] is at x = 1 and the
probability of extinction is one unless f'(1) = 1 and p; = 1. If f/(1) = 1 and p; = 1,
f(z) = x and the tree is an infinite degree one chain. If the slope of f(x) at x = 1 is
greater than one, then the probability of extinction is the unique solution to f(z) = x in

[07 1)' |

96

A branching process with m <1 or m=1 and p; < 1 dies out with probability one. If
m=1 and p; = 1, then the branching process consists of an infinite chain with no fan out.
If m >1, then the branching process will die out with some probability less than one un-
less po = 0 in which case it cannot die out, since a node always has at least one descendent.

Note that the branching process corresponds to finding the size of a component in
an infinite graph. In a finite graph, the probability distribution of descendants is not a
constant as more and more vertices of the graph get discovered.

The simple branching process defined here either dies out or goes to infinity. In bio-
logical systems there are other factors, since processes often go to stable populations. One
possibility is that the probability distribution for the number of descendants of a child
depends on the total population of the current generation.

Expected size of extinct families

We now show that the expected size of an extinct family is finite, provided that m # 1.
Note that at extinction, the size must be finite. However, the expected size at extinction
could conceivably be infinite, if the probability of dying out did not decay fast enough.
To see how the expected value of a random variable that is always finite could be infinite,
let x be an integer valued random variable. Let p; be the probability that = . If

oo
> p; = 1, then with probability one, x will be finite. However, the expected value of z
i=1

may be infinite. That is, Y ip; = co. For example, if for i >0, p; = 79”.%, then > p; =1,
i=0 i=1

oo

but > ip; = co. The value of the random variable x is always finite, but its expected
i=1

value is infinite. This does not happen in a branching process, except in the special case

where the slope m = f’(1) equals one and p; # 1

Lemma 4.12 If the slope m = f'(1) does not equal one, then the expected size of an
extinct family is finite. If the slope m equals one and p; = 1, then the tree is an infinite
degree one chain and there are no extinct families. If m=1 and p; < 1, then the expected
size of the extinct family is infinite.

Proof: Let z; be the random variable denoting the size of the i'* generation and let ¢ be
the probability of extinction. The probability of extinction for a tree with k£ children in
the first generation is ¢* since each of the k children has an extinction probability of q.
Note that the expected size of z;, the first generation, over extinct trees will be smaller
than the expected size of z; over all trees since when the root node has a larger number
of children than average, the tree is more likely to be infinite.

97

By Bayes rule

k

Prob (extinction|z; = k) q b1
= pkg =Pq -

Prob (z; = k|extinction) = Prob (z; = k)

Prob (extinction)

Knowing the probability distribution of z; given extinction, allows us to calculate the
expected size of z; given extinction.

E (z |extinction) = Z kped”™' = f'(q).
k=0

We now prove, using independence, that the expected size of the 7" generation given
extinction is

i
E (z;]extinction) = (f’ (q)) :

For i = 2, z5 is the sum of z; independent random variables, each independent of the ran-
dom variable z;. So, E(22|z; = j and extinction) = E(sum of j copies of z;|extinction) =
JjE(z1|extinction). Summing over all values of j

E(zs]extinction) = E(25]21 = j and extinction)Prob(z; = j|extinction)

NE

1

.
Il

[
NE

JE(z |extinction)Prob(z; = j|extinction)
1

<.
Il

oo
= F(z|extinction) Z jProb(z; = jlextinction) = E?(z |extinction).
j=1

Since E(z|extinction) = f'(¢), E (22]extinction) = (' (¢))?. Similarly, E (z;|extinction) =
(f"(q))". The expected size of the tree is the sum of the expected sizes of each generation.
That is,

Expected size of
tree given extinction

S " oy 1
= ;E(zi|ext1nct10n) = ; (f'(q) = [

Thus, the expected size of an extinct family is finite since f’(¢) < 1 provided m # 1.

The fact that f'(¢) < 1 is illustrated in Figure 4.10. If m <1, then ¢g=1 and f'(¢) =m
is less than one. If m >1, then ¢ € [0,1) and again f'(q) <1 since ¢ is the solution to
f(x) = x and f’(q) must be less than one for the curve f(z) to cross the line x. Thus,
for m <1 or m >1, f'(¢) <1 and the expected tree size of #,(q) is finite. For m=1 and
p1 < 1, one has ¢=1 and thus f’(¢) = 1 and the formula for the expected size of the tree
diverges.]

98

4.5 Cycles and Full Connectivity

This section considers when cycles form and when the graph becomes fully connected.
For both of these problems, we look at each subset of k£ vertices and see when they form
either a cycle or a connected component.

4.5.1 Emergence of Cycles
The emergence of cycles in G (n,p) has a threshold when p equals to 1/n.
Theorem 4.13 The threshold for the ezistence of cycles in G (n,p) is p = 1/n.

Proof: Let 2 be the number of cycles in G (n,p). To form a cycle of length k, the vertices
can be selected in (Z) ways. Given the k vertices of the cycle, they can be ordered by
arbitrarily selecting a first vertex, then a second vertex in one of k-1 ways, a third in one
of k — 2 ways, etc. Since a cycle and its reversal are the same cycle, divide by 2. Thus,

there are (Z)UC_TI)[cycles of length k and

E(x)=>_ (k) & Z sk < 5 (np) = (np) = < o(np)?,

k=3 k=3

provided that np < 1/2. When p is asymptotically less than 1/n, then lim np = 0 and

n—o0

lim (np)]c = 0. So, as n goes to infinity, E(x) goes to zero. Thus, the graph almost
surely has no cycles by the first moment method. A second moment argument can be

used to show that for p = d/n, d > 1, a graph will have a cycle with probability tending
to one. [

The argument above does not yield a sharp threshold since we argued that E(x) — 0
only under the assumption that p is asymptotically less that % A sharp threshold re-
quires E(x) — 0 for p=d/n, d < 1.

Consider what happens in more detail when p = d/n, d a constant.

E(z) = zn: (Z) & 3 Dl

k=3

——Z n(n—1) (n_k+1)(k—1)!pk

3

nn—1)---(n—k+1)d*
nk k-

N | —

k=3

E (x) converges if d < 1, and diverges if d > 1 If d < 1, E (z) < d? and lim F (x)

1
2 n—oo

||M:

1 Z n(n— 1) n k+1)1

equals a constant greater than zero. If d = 1, F (x) = . Consider

99

Property Threshold

cycles 1/n
giant component 1/n
giant component llnn
+ isolated vertices 2
connectivity, disappearance Inn

of isolated vertices "
diameter two \/ 21%

only the first logn terms of the sum. Since - = 1+ - < ¢/~ it follows that
nnDn=k+l) > 1/2. Thus,

<}
03
3
—
)
0
3

E(z) >

D=
x>~
Il
w
3|
kol
el
x>~
Il
w

Then, in the limit as n goes to infinity

logn
lim £ (z) > lim § > + > lim (loglogn) = ooc.
k=3

n—oo n—oo n—oo

For p = d/n, d < 1, E(x) converges to a nonzero constant and with some nonzero
probability, graphs will have a constant number of cycles independent of the size of the
graph. For d > 1, E(x) converges to infinity and a second moment argument shows that
graphs will have an unbounded number of cycles increasing with n.

4.5.2 Full Connectivity

As p increases from p = 0, small components form. At p = 1/n a giant component
emerges and swallows up smaller components, starting with the larger components and
ending up swallowing isolated vertices forming a single connected component at p = 1“7”,
at which point the graph becomes connected. We begin our development with a technical

lemma.

Lemma 4.14 The expected number of connected components of size k in G(n,p) is at
most

n kk—ka—l(l _ p)kn—k2

) .

Proof: The probability that & vertices form a connected component consists of the prod-
uct of two probabilities. The first is the probability that the k vertices are connected,
and the second is the probability that there are no edges out of the component to the
remainder of the graph. The first probability is at most the sum over all spanning trees
of the k vertices, that the edges of the spanning tree are present. The ”at most” in the

100

lemma statement is because G (n,p) may contain more than one spanning tree on these
nodes and, in this case, the union bound is higher than the actual probability. There are
k*=2 spanning trees on k nodes. See Section 12.8.6 in the appendix. The probability of
all the & — 1 edges of one spanning tree being present is p*~! and the probability that
there are no edges connecting the k vertices to the remainder of the graph is (1 — p)k(”fk).
Thus, the probability of one particular set of k vertices forming a connected component

is at most kF=2pF—1 (1 — p)kn*kQ . Thus, the expected number of connected components of

size k is () 2pF1(1 — p)hnk, n

We now prove that for p =
nents except for isolated vertices

%T" the giant component has absorbed all small compo-
es

Theorem 4.15 Let p = 2. For ¢ > 1/2, almost surely there are only isolated vertices
and a giant component. For c > 1, almost surely the graph is connected.

Proof: We prove that almost surely for ¢ > 1/2, there is no connected component with
k vertices for any k, 2 < k < n/2. This proves the first statement of the theorem since, if
there were two or more components that are not isolated vertices, both of them could not
be of size greater than n/2. The second statement that for ¢ > 1 the graph is connected
then follows from Theorem 4.6 which states that isolated vertices disappear at ¢ = 1.
We now show that for p = cln—" the expected number of components of size k,
2 <k <n/2 is less than n'=2 and thus for ¢ > 1/2 there are no components, except
for isolated vertices and the giant component. Let x; be the number of connected com-
ponents of size k. Substitute p = ¢ into (})k"2p*~! (1 — p)k"*k2

(}) < (en/k)*,1—p <eP, k—1<k and z = €% to get

and simplify using

Inn
E(zy) < exp (lnn +k+klnlnn—2Ink+klnc—cklnn+ ck2—> :
n
Keep in mind that the leading terms here for large k are the last two and, in fact, at k = n,
they cancel each other so that our argument does not prove the fallacious statement for
¢ > 1 that there is no connected component of size n, since there is. Let
Inn

f(E)=Inn+k+klnlnn —2Ink + klnc — cklnn + ck>—
n

Differentiating with respect to k,

2 2ck1
f'(k)=14+Inlnn—=+4Inc—clnn+ kel
k n
and 5 96l
clnn
(k)= R > 0.

Thus, the function f(k) attains its maximum over the range [2,n/2] at one of the extreme
points 2 or n/2. At k =2, f(2) ~ (1 —2c)Inn and at k = n/2, f(n/2) = —c%Inn. So

101

1-2¢)Inn 2c

f(k) is maximum at k = 2. For k = 2, E(x), = ¢/®*) is approximately ¢! =n'-
and is geometrically falling as k increases from 2. At some point F(zy) starts to increase
but never gets above n~i". Thus, the expected sum of the number of components of size
k,for 2 <k <n/2is

n/2

E Zxk = O(n'~%).
k=2

This expected number goes to zero for ¢ > 1/2 and the first-moment method implies that,
almost surely, there are no components of size between 2 and n/2. This completes the
proof of Theorem 4.15. m

4.5.3 Threshold for O(Inn) Diameter

We now show that within a constant factor of the threshold for graph connectivity,
not only is the graph connected, but its diameter is O(Inn). That is, if p is Q(Inn/n), the
diameter of G(n,p) is O(lnn).

Consider a particular vertex v. Let S; be the set of vertices at distance i from v. We
argue that as i grows, |Si|+ |Ss| + -+ + |S;| grows by a constant factor up to a size of
n/1000. This implies that in O(Inn) steps, at least n/1000 vertices are connected to wv.
Then, there is a simple argument at the end of the proof of Theorem 4.17 that a pair of
n/1000 sized subsets, connected to two different vertices v and w, have an edge between
them.

Lemma 4.16 Consider G(n,p) for sufficiently large n with p = clnn/n for any ¢ > 0.
Let S; be the set of vertices at distance i from some fized vertex v. If |S1]|+|Sa|+- - -+]S;| <
n/1000, then

Prob (|Sisa| < 2(1S1| +[Sa| + -+ - +[Si])) < e 10,

Proof: Let |S;| = k. For each vertex u not in S; U Sy U...US;, the probability that
w is not in S;y1 is (1 — p)* and these events are independent. So, |S;;1| is the sum of
n—(|S1]|+|S2|+- - - +|S;|) independent Bernoulli random variables, each with probability
of

1 — (1 _p>k >1— efcklnn/n

of being one. Note that n — (|S1| + [S2| + -+ +]Si]) = 999n/1000. So,

999n

> T2 ek
Z Tooo €)

E(|Sita])

Subtracting 200k from each side

nmn k
E(‘SZ-‘F].I) - 200k Z g (1 — G_CkITL — 400—) .
n

Let @ = £ and f(a) =1— e ™" — 400c. By differentiation f”(a) <0, so f is concave
and the minimum value of f over the interval [0,1/1000] is attained at one of the end

102

points. It is easy to check that both f(0) and f(1/1000) are greater than or equal to
zero for sufficiently large n. Thus, f is nonnegative throughout the interval proving that
E(]Si+1]) > 200[S;|. The lemma follows from Chernoff bounds. B

Theorem 4.17 For p > clnn/n, where c is a sufficiently large constant, almost surely,
G(n,p) has diameter O(lnn).

Proof: By Corollary 4.2, almost surely, the degree of every vertex is Q(np) = Q(Inn),
which is at least 20Inn for ¢ sufficiently large. Assume this holds. So, for a fixed vertex
v, S; as defined in Lemma 4.16 satisfies |S;| > 20 Inn.

Let 4o be the least ¢ such that |.S|+]Sa|+- - -+]5;| > n/1000. From Lemma 4.16 and the
union bound, the probability that for some i, 1 < i <ig—1, |S;t1| < 2(|S1|+]Sa|+- - -+]Si|)
is at most 377000 =10k < 1/pt So, with probability at least 1 — (1/n%), cach Sy, is
at least double the sum of the previous S; ’s, which implies that in O(Inn) steps, 7o + 1

is reached.

Consider any other vertex w. We wish to find a short O(Inn) length path between
v and w. By the same argument as above, the number of vertices at distance O(Inn)
from w is at least n/1000. To complete the argument, either these two sets intersect in
which case we have found a path from v to w of length O(Inn) or they do not intersect.
In the latter case, with high probability there is some edge between them. For a pair of
disjoint sets of size at least /1000, the probability that none of the possible n?/10°% or
more edges between them is present is at most (1— p)”Q/ 10° — =Q(nlnn) There are at most
22" pairs of such sets and so the probability that there is some such pair with no edges
is e~ ?(In)+0() _y 0 Note that there is no conditioning problem since we are arguing
this for every pair of such sets. Think of whether such an argument made for just the n
subsets of vertices, which are vertices at distance at most O(Inn) from a specific vertex,
would work.]

4.6 Phase Transitions for Increasing Properties

For many graph properties such as connectivity, having no isolated vertices, having a
cycle, etc., the probability of a graph having the property increases as edges are added to
the graph. Such a property is called an increasing property. @ is an increasing property
of graphs if when a graph G has the property, any graph obtained by adding edges to
G must also have the property. In this section we show that any increasing property, in
fact, has a threshold, although not necessarily a sharp one.

The notion of increasing property is defined in terms of adding edges. The following

lemma proves that if) is an increasing property, then increasing p in G (n,p) increases
the probability of the property Q).

103

Lemma 4.18 If () is an increasing property of graphs and 0 < p < q < 1, then the
probability that G (n,q) has property Q is greater than or equal to the probability that

G (n,p) has property Q.

Proof: This proof uses an interesting relationship between G (n, p) and G (n, ¢). Generate
G (n,q) as follows. First generate G (n,p). This means generating a graph on n vertices

with edge probabilities p. Then, independently generate another graph G <n, ‘{%Z) and
take the union by putting in an edge if either of the two graphs has the edge. Call the
resulting graph H. The graph H has the same distribution as G (n, ¢). This follows since
the probability that an edge is in H is p+ (1 — p)% = ¢, and, clearly, the edges of H are
independent. The lemma follows since whenever G (n, p) has the property @, H also has

the property Q.]

We now introduce a notion called replication. An m-fold replication of G(n,p) is a
random graph obtained as follows. Generate m independent copies of G(n, p). Include an
edge in the m-fold replication if the edge is in any one of the m copies of G(n,p). The
resulting random graph has the same distribution as G(n, ¢) where ¢ = 1 — (1 — p)™ since
the probability that a particular edge is not in the m-fold replication is the product of
probabilities that it is not in any of the m copies of G(n,p). If the m-fold replication of
G(n,p) does not have an increasing property @, then none of the m copies of G(n, p) has
the property. The converse is not true. If no copy has the property, their union may have
it. Since @ is an increasing property and ¢ =1— (1 —p)" <1 — (1 — mp) = mp

Prob (G(n, mp) has Q) > Prob (G(n, q) has Q) (4.3)

We now show that any increasing property () has a phase transition. The transition
occurs at the point at which the probability that G(n,p) has property @ is % We will
prove that for any function asymptotically less then p(n) that the probability of having

property) goes to zero as n goes to infinity.

Theorem 4.19 FEvery increasing property Q of G(n,p) has a phase transition at p(n),
where for each n, p(n) is the minimum real number a, for which the probability that
G(n,ay) has property Q is 1/2.

Proof: Let py(n) be any function such that

lim pg(n)

=0.
n—oo p(n)

We assert that almost surely G(n,pg) does not have the property Q). Suppose for con-
tradiction, that this is not true. That is, the probability that G(n,p) has the property
() does not converge to zero. By the definition of a limit, there exists ¢ > 0 for which
the probability that G(n,pg) has property () is at least £ on an infinite set I of n. Let
m = [(1/e)]. Let G(n,q) be the m-fold replication of G(n,py). The probability that

104

QWY O

copies of G The m-fold
replication H

If any graph has three or more edges, then the
m-fold replication has three or more edges.

QOO &

copies of G The m-fold
replication H

Even if no graph has three or more edges, the
m-fold replication might have three or more edges.

Figure 4.12: The property that G has three or more edges is an increasing property. Let
H be the m-fold replication of G. If any copy of G has three or more edges, H has three
or more edges. However, H can have three or more edges even if no copy of G has three
or more edges.

G(n,q) does not have @ is at most (1 —e)™ < e~ ! < 1/2 for all n € I. For these n, by
(11.4)
Prob(G(n, mpg) has Q) > Prob(G(n, q) has Q) > 1/2.

Since p(n) is the minimum real number a, for which the probability that G(n,a,) has
property @ is 1/2, it must be that mpg(n) > p(n). This implies that 2o s at least 1/m

p(n)
infinitely often, contradicting the hypothesis that lim 2 0((”)) = 0.
n—oo
A symmetric argument shows that for any p;(n) such that lim Ii (("n)) =0, G(n,p)
n—oo
almost surely has property Q.]

4.7 Phase Transitions for CNF-sat

Phase transitions occur not only in random graphs, but in other random structures as
well. An important example is that of satisfiability for a Boolean formula in conjunctive
normal form.

Generate a random CNF formula f with n variables, m clauses, and k literals per

clause. Each clause is picked independently with k literals picked uniformly at random
from the set of 2n possible literals to form the clause. Here, the number of clauses n

105

is going to infinity, m is a function of n, and k is a fixed constant. A reasonable value
to think of for k is £ = 3. A literal is a variable or its negation. Unsatisfiability is an
increasing property since adding more clauses preserves unsatisfiability. By arguments
similar to the last section, there is a phase transition, i.e., a function m(n) such that if
mi(n) is o(m(n)), a random formula with m,(n) clauses is, almost surely, satisfiable and
for mg(n) with mo(n)/m(n) — oo, a random formula with ms(n) clauses is, almost surely,
unsatisfiable. It has been conjectured that there is a constant r; independent of n such
that rpn is a sharp threshold.

Here we derive upper and lower bounds on r;. It is relatively easy to get an upper
bound on r;. A fixed truth assignment satisfies a random k clause with probability 1 — 2%
Of the 2% truth assignments to the k variables in the clause, only one fails to satisfy the
clause. Thus, with probability 2%, the clause is not satisfied, and with probability 1 — 2%,
the clause is satisfied. Let m = cn. Now, cn independent clauses are all satisfied by the
fixed assignment with probability (1 — %)Cn Since there are 2" truth assignments, the
expected number of satisfying assignments for a formula with cn clauses is 2" (1— %)Cn

If ¢ = 2¥1In2, the expected number of satisfying assignments is

on (1 . 2ik)TLlenQ '

(1- L)2 is at most 1/e and approaches 1/e in the limit. Thus,
k n
on (1 o 2%)”2 In2 S 2n€7nln2 —9gng—n _ 1.

For ¢ > 2¥1n2, the expected number of satisfying assignments goes to zero as n — oco.
Here the expectation is over the choice of clauses which is random, not the choice of a
truth assignment. From the first moment method, it follows that a random formula with
cn clauses is almost surely not satisfiable. Thus, r;, < 2¥1n 2.

The other direction, showing a lower bound for r, is not that easy. From now on, we
focus only on the case k = 3. The statements and algorithms given here can be extended
to k > 4, but with different constants. It turns out that the second moment method
cannot be directly applied to get a lower bound on r3 because the variance is too high. A
simple algorithm, called the Smallest Clause Heuristic (abbreviated SC), yields a satisfy-
ing assignment with probability tending to one if ¢ < %, proving that r3 > % Other more
difficult to analyze algorithms, push the lower bound on r3 higher.

The Smallest Clause Heuristic repeatedly executes the following. Assign true to a
random literal in a random smallest length clause and delete the clause since it is now
satisfied. Pick at random a 1-literal clause, if one exists, and set that literal to true. If
there is no 1-literal clause, pick a 2-literal clause, select one of its two literals and set the
literal to true. Otherwise, pick a 3-literal clause and a literal in it and set the literal to
true. If we encounter a 0-length clause, then we have failed to find a satisfying assignment;

106

otherwise, we have found one.

A related heuristic, called the Unit Clause Heuristic, selects a random clause with one
literal, if there is one, and sets the literal in it to true. Otherwise, it picks a random
as yet unset literal and sets it to true. The “pure literal” heuristic sets a random “pure
literal”, a literal whose negation does not occur in any clause, to true, if there are any
pure literals; otherwise, it sets a random literal to true.

When a literal w is set to true, all clauses containing w are deleted, since they are
satisfied, and w is deleted from any clause containing w. If a clause is reduced to length
zero (no literals), then the algorithm has failed to find a satisfying assignment to the
formula. The formula may, in fact, be satisfiable, but the algorithm has failed.

Example: Consider a 3-CNF formula with n variables and cn clauses. With n variables
there are 2n literals, since a variable and its complement are distinct literals. The expected
number of times a literal occurs is calculated as follows. Each clause has three literals.
Thus, each of the 2n different literals occurs % = %c times on average. Suppose ¢ = 5.
Then each literal appears 7.5 times on average. If one sets a literal to true, one would
expect to satisfy 7.5 clauses. However, this process is not repeatable since after setting a

literal to true there is conditioning so that the formula is no longer random.]

Theorem 4.20 If the number of clauses in a random 3-CNF formula grows as cn where
c is a constant less than 2/3, then with probability 1 — o(1), the Shortest Clause Heuristic
finds a satisfying assignment.

The proof of this theorem will take the rest of the section. A general impediment to
proving that simple algorithms work for random instances of many problems is condition-
ing. At the start, the input is random and has properties enjoyed by random instances.
But, as the algorithm is executed; the data is no longer random, it is conditioned on the
steps of the algorithm so far. In the case of SC and other heuristics for finding a satisfying
assignment for a Boolean formula, the argument to deal with conditioning is relatively
simple.

We supply some intuition before going to the proof. Imagine maintaining a queue of
1 and 2-clauses. A 3-clause enters the queue when one of its literals is set to false and
it becomes a 2-clause. SC always picks a 1 or 2-clause if there is one and sets one of its
literals to true. At any step when the total number of 1 and 2-clauses is positive, one of
the clauses is removed from the queue. Consider the arrival rate, the expected number
of arrivals into the queue. For a particular clause to arrive into the queue at time ¢ to
become a 2-clause, it must contain the negation of the literal being set to true at time ¢.
It can contain any two other literals not yet set. The number of such clauses is (";t) 22,
So, the probability that a particular clause arrives in the queue at time ¢ is at most

()2 _ 3
(5)23 = 2(n —2)°

107

Since there are cn clauses in total, the arrival rate is %, which for ¢ < 2/3 is a constant
strictly less than one. The arrivals into the queue of different clauses occur independently
(Lemma 4.21), the queue has arrival rate strictly less than one, and the queue loses one
or more clauses whenever it is nonempty. This implies that the queue never has too many
clauses in it. A slightly more complicated argument will show that no clause remains as
a 1 or 2-clause for Q(Inn) steps (Lemma 4.22). This implies that the probability of two
contradictory 1-length clauses, which is a precursor to a 0-length clause, is very small.

Lemma 4.21 LetT; be the first time that clause v turns into a 2-clause. T; is oo if clause
1 gets satisfied before turning into a 2-clause. The T; are mutually independent and for
any t,
Prob(T; =1t) < L
2(n —2)

Proof: For the proof, generate the clauses in a different way. The important thing is
that the new method of generation, called the method of “deferred decisions”, results in
the same distribution of input formulae as the original. The method of deferred decisions
is tied in with the SC algorithm and works as follows. At any time, the length of each
clause (number of literals) is all that we know; we have not yet picked which literals are
in each clause. At the start, every clause has length three and SC picks one of the clauses
uniformly at random. Now, SC wants to pick one of the three literals in that clause to
set to true, but we do not know which literals are in the clause. At this point, we pick
uniformly at random one of the 2n possible literals. Say for illustration, we picked Z1gs.
The literal T2 is placed in the clause and set to true. The literal zg is set to false. We
must also deal with occurrences of the literal or its negation in all other clauses, but again,
we do not know which clauses have such an occurrence. We decide that now. For each
clause, independently, with probability 3/n, include the variable z192 or Z192 in the clause
and if included, with probability 1/2, include the literal Zjpo in the clause and with the
other 1/2 probability include its negation, namely, x1p2. In either case, we decrease the
residual length of the clause by one. The algorithm deletes the clause since it is satisfied
and we do not care which other literals are in it. If we had included the negation of the
literal instead, then we delete just that occurrence, and decrease the length of the clause
by one.

At a general stage, suppose the fates of ¢ variables have already been decided and n—1
remain. The residual length of each clause is known. Among the clauses that are not yet
satisfied, choose a random shortest length clause. Among the n — i variables remaining,
pick one uniformly at random, then pick it or its negation as the new literal. Include
this literal in the clause thereby satisfying it. Since the clause is satisfied, the algorithm
deletes it. For each other clause, do the following. If its residual length is [, decide with
probability [/(n — i) to include the new variable in the clause and if so with probability
1/2 each, include it or its negation. If literal v is included in a clause, delete the clause
as it is now satisfied. If v is included in a clause, then just delete the literal and decrease
the residual length of the clause by one.

108

Why does this yield the same distribution as the original one? First, observe that the
order in which the variables are picked by the method of deferred decisions is independent
of the clauses; it is just a random permutation of the n variables. Look at any one clause.
For a clause, we decide in order whether each variable or its negation is in the clause. So
for a particular clause and a particular triple 4, j, and k with i < j < k, the probability
that the clause contains the i, the j™ and k'™ literal (or their negations) in the order
determined by deferred decisions is:

(1 - %) (1 - %) T (1 B n—3+2) njﬂ
(-2 (- 2) - (1)
<1 B %) (1 B n7;71> T (1 - n7i+2) nfiJrl - n(nfli(n72)7

where the (1 — ---) factors are for not picking the current variable or negation to be in-
cluded and the others are for including the current variable or its negation. Independence
among clauses follows from the fact that we have never let the occurrence or nonoccur-
rence of any variable in any clause influence our decisions on other clauses.

Now, we prove the lemma by appealing to the method of deferred decisions to generate
the formula. T; = ¢ if and only if the method of deferred decisions does not put the current
literal at steps 1,2,...,t — 1 into the i** clause, but puts the negation of the literal at
step t into it. Thus, the probability is precisely

2 (1= (U=35) (- =) i < sy

as claimed. Clearly the T; are independent since again deferred decisions deal with differ-
ent clauses independently. B

Lemma 4.22 With probability 1 — o(1), no clause remains a 2 or 1-clause for Q(Inn)
steps. Le., once a 3-clause becomes a 2-clause, it is either satisfied or reduced to a 0-clause
in O(lnn) steps.

Proof: Without loss of generality, again focus on the first clause. Suppose it becomes a
2-clause at step s; and remains a 2 or 1-clause until step s. Suppose s—s; > colnn. Let r
be the last time before s when there are no 2 or 1-clauses at all. Since at time 0, there are
no 2 or 1-clauses, r is well-defined. We have s —r > ¢y Inn. In the interval r to s, at each
step, there is at least one 2 or 1-clause. Since SC always decreases the total number of 1
and 2-clauses by one whenever it is positive, we must have generated at least s — r new
2-clauses between r and s. Now, define an indicator random variable for each 3-clause
which has value one if the clause turns into a 2-clause between r and s. By Lemma 4.21
these variables are independent and the probability that a particular 3-clause turns into
a 2-clause at a time ¢ is at most 3/(2(n — 2)). Summing over ¢ between r and s,

3(s —
Prob (a 3-clause turns into a 2-clause during [r, s]) < %
n p—

109

Since there are cn clauses in all, the expected sum of the indicator random variables is
cng((;jig)) ~ 30(82%). Note that 3¢/2 < 1, which implies the arrival rate into the queue of 2
and 1-clauses is a constant strictly less than one. Using Chernoff bounds, the probability
that more than s — r clauses turn into 2-clauses between r and s is at most o(1/n°). This
is for one choice of a clause, one choice of s; and one choice each of r and s within O(Inn)
of s;. Applying the union bound over O(n?) choices of clauses, O(n) choices of s; and
O(Inn)? choices of r and s, we get that the probability that any clause remains a 2 or
1-clause for Q(Inn) steps is o(1). B

Now, suppose SC terminates in failure. At some time ¢, the algorithm generates a
0-clause. At time ¢t —1, this clause must have been a 1-clause. Suppose the clause consists
of the literal w. Since at time ¢t — 1, there is at least one 1-clause, the shortest clause rule
of SC selects a 1-clause and sets the literal in that clause to true. This other clause must
have been w. Let t; be the first time either of these two clauses, w or w, became a 2-clause.
We have t — t; € O(Inn). Clearly, until time ¢, neither of these two clauses is picked by
SC. So, the literals which are set to true during this period are chosen independent of
these clauses. Say the two clauses were w + = + y and w + u + v at the start. z,y,u,
and v must all be negations of literals set to true during steps ¢; to t. So, there are
only O ((Inn)?*) choices for z,y,u, and v. There are O(n) choices of w, O(n?) choices of
which two clauses of the input become these w and w, and n choices for ¢;. Thus, there
are O (n*(Inn)?) choices for these clauses. The probability of these choices is therefore

O (n*(Inn)*/n’®) = o(1), as required.

4.8 Nonuniform and Growth Models of Random Graphs
4.8.1 Nonuniform Models

So far we have considered the random graph G(n,p) in which all vertices have the
same expected degree and showed that the degree is concentrated close to its expecta-
tion. However, large graphs occurring in the real world tend to have power law degree
distributions. For a power law degree distribution, the number f(d) of vertices of degree
d plotted as a function of d satisfies f(d) < ¢/d*, where « and ¢ are constants.

To generate such graphs, we stipulate that there are f(d) vertices of degree d and
choose uniformly at random from the set of graphs with this degree distribution. Clearly,
in this model the graph edges are not independent and this makes these random graphs
harder to analyze. But the question of when phase transitions occur in random graphs
with arbitrary degree distributions is still of interest. In this section, we consider when
a random graph with a nonuniform degree distribution has a giant component. Our
treatment in this section, and subsequent ones, will be more intuitive without providing
rigorous proofs.

110

Consider a graph in which half of the vertices are degree one and half

are degree two. If a vertex is selected at random, it is equally likely to

Q be degree one or degree two. However, if we select an edge at random

and walk to its endpoint, the vertex is twice as likely to be degree two as

\ degree one. In many graph algorithms, a vertex is reached by randomly
selecting an edge and traversing the edge to reach an endpoint. In this

case, the probability of reaching a degree ¢ vertex is proportional to iA;

/ where); is the fraction of vertices that are degree .

Figure 4.13: Probability of encountering a degree d vertex when following a path in a
graph.

4.8.2 Giant Component in Random Graphs with Given Degree Distribution

Molloy and Reed address the issue of when a random graph with a nonuniform degree
distribution has a giant component. Let A; be the fraction of vertices of degree i. There

will be a giant component if and only if > i(i — 2)\; > 0.
i=0

To see intuitively that this is the correct formula, consider exploring a component
of a graph starting from a given seed vertex. Degree zero vertices do not occur except
in the case where the vertex is the seed. If a degree one vertex is encountered, then
that terminates the expansion along the edge into the vertex. Thus, we do not want to
encounter too many degree one vertices. A degree two vertex is neutral in that the vertex
is entered by one edge and left by the other. There is no net increase in the size of the
frontier. Vertices of degree i greater than two increase the frontier by i — 2 vertices. The
vertex is entered by one of its edges and thus there are ¢ — 1 edges to new vertices in the
frontier for a net gain of ¢ — 2. The i)\; in i (i — 2) \; is proportional to the probability of
reaching a degree i vertex and the ¢ — 2 accounts for the increase or decrease in size of
the frontier when a degree 7 vertex is reached.

Example: Consider applying the Molloy Reed conditions to the G(n,p) model. The
summation Y . i(i — 2)p; gives value zero precisely when p = 1/n, the point at which
the phase transition occurs. At p = 1/n, the average degree of each vertex is one and
there are n/2 edges. However, the actual degree distribution of the vertices is binomial,
where the probability that a vertex is of degree 7 is given by p; = (7;) p'(1—p)"~*. We now
show that lim > i(i — 2)p; = 0 for p; = (7)p*(1 — p)"~* when p = 1/n.

i
n—00 ;

111

IN
~[7
N/

i=0 = i=1
and
2 & i 1+ 1 i
ZH:Z@—D'_ T2
=0 i=1 =0 =0
Thus,

4.9 Growth Models

4.9.1 Growth Model Without Preferential Attachment

Many graphs that arise in the outside world started as small graphs that grew over
time. In a model for such graphs, vertices and edges are added to the graph over time.
In such a model there are many ways in which to select the vertices for attaching a
new edge. One is to select two vertices uniformly at random from the set of existing
vertices. Another is to select two vertices with probability proportional to their degree.
This latter method is referred to as preferential attachment. A variant of this method
would be to add a new vertex at each unit of time and with probability § add an edge
where one end of the edge is the new vertex and the other end is a vertex selected with
probability proportional to its degree. The graph generated by this latter method is a tree.

112

Consider a growth model for a random graph without preferential attachment. Start
with zero vertices at time zero. At each unit of time a new vertex is created and with
probability d, two vertices chosen at random are joined by an edge. The two vertices
may already have an edge between them. In this case, we will add another edge. So, the
resulting structure is a multi-graph, rather then a graph. But since at time ¢, there are ¢
vertices and in expectation only O(dt) edges where there are t* pairs of vertices, it is very
unlikely that there will be multiple edges.

The degree distribution for this growth model is calculated as follows. The number of
vertices of degree k at time ¢ is a random variable. Let di(t) be the expectation of the
number of vertices of degree k at time ¢. The number of isolated vertices increases by one
at each unit of time and decreases by the number of isolated vertices, b(t), that are picked
to be end points of the new edge. b(t) can take on values 0,1, or 2. Taking expectations,

do(t+1) =do(t) +1— E(b(t)).

Now b(t) is the sum of two 0-1 valued random variables whose values are the number
of degree zero vertices picked for each end point of the new edge. Even though the
two random variables are not independent, the expectation of b(¢) is the sum of the
expectations of the two variables and is 26 dOT(t). Thus,

do(?)

do(t+1) =do(t) +1—26 —

The number of degree k vertices increases whenever a new edge is added to a degree k —1
vertex and decreases when a new edge is added to a degree k vertex. Reasoning as above,
dr_1(t) di(t)

- 20—, (4.4)

d (t+1) = dy(t) + 26

Note that this formula, as others in this section, is not quite precise. For example, the
same vertex may be picked twice, so that the new edge is a self-loop. For k << t, this
problem contributes a minuscule error. Restricting k to be a fixed constant and letting
t — o0 in this section avoids these problems.

Assume that the above equations are exactly valid. Clearly, do(1) = 1 and d;(1) =
dy(1) = --- = 0. By induction on t, there is a unique solution to (4.4), since given di(t)
for all k, the equation determines di(¢t + 1) for all k. There is a solution of the form
di(t) = pit, where py depends only on k and not on ¢, provided k is fixed and ¢ — oo.
Again, this is not precisely true, d;(1) = 0 and d;(2) > 0 clearly contradict the existence
of a solution of the form d;(t) = p;t.

Set dk(t) = pkt. Then,

t
(t+ 1) po = pot + 1 —2579%
po =1 — 20pg

113

Figure 4.14: In selecting a component at random, each of the two components is equally
likely to be selected. In selecting the component containing a random vertex, the larger
component is twice as likely to be selected.

1
Po= 71795

and ; y
DPe—t 251%

t t
Dk = 20pk—1 — 20py,

2
142

(20)
“\iyaw) P

1 25 *
_ . 4.
1+25<1+25) (4.5)

Thus, the model gives rise to a graph with a degree distribution that falls off exponentially
fast with degree.

Dk Pr—1

The generating function for component size

Let ng(t) be the expected number of components of size k at time t. Then ng(t) is
proportional to the probability that a randomly picked component is of size k. This is
not the same as picking the component containing a randomly selected vertex (see Figure
4.14). Indeed, the probability that the size of the component containing a randomly se-
lected vertex is k is proportional to kng(t). We will show that there is a solution for ny(¢)
of the form a,t where a; is a constant independent of ¢. After showing this, we focus on
the generating function g(x) for the numbers kag(t) and use g(z) to find the threshold
for giant components.

Consider ny(t), the expected number of isolated vertices at time t. At each unit of
time, an isolated vertex is added to the graph and an expected %"Tl(t) many isolated
vertices are chosen for attachment and thereby leave the set of isolated vertices. Thus,

na(t)

114

For k >1, ng(t) increases when two smaller components whose sizes sum to k are joined
by an edge and decreases when a vertex in a component of size k is chosen for attachment.

The probability that a vertex selected at random will be in a size k component is k"%(t)
Thus,

e+ 1) =)+ 05 D EZ (O hnit)

To be precise, one needs to consider the actual number of components of various sizes,
rather than the expected numbers. Also, if both vertices at the end of the edge are in the
same k-vertex component, then ny(t) does not go down as claimed. These small inaccu-
racies can be ignored.

Consider solutions of the form ng(t) = axt. Note that ng(t) = axt implies the num-
ber of vertices in a connected component of size k is kait. Since the total number of
vertices at time t is ¢, kay is the probability that a random vertex is in a connected
component of size k. The recurrences here are valid only for k fixed as ¢ — oco. So
> re o kar may be less than 1, in which case, there are nonfinite size components whose

k-1
sizes are growing with ¢. Solving for a;, yields a; = H;% and a, = ﬁ > gk —j)ajan—;.
j=1

Consider the generating function g(x) for the distribution of component sizes where
the coefficient of 2* is the probability that a vertex chosen at random is in a component
of size k.

g(x) = Z kayx”.
k=1

Now, g(1) = > _p—, kay, is the probability that a randomly chosen vertex is in a finite sized
component. For § = 0, this is clearly one, since all vertices are in components of size one.
On the other hand, for 6 = 1, the vertex created at time one has expected degree logn,
so it is in a nonfinite size component. This implies that for 6 = 1, g(1) < 1 and there is a
nonfinite size component. Assuming continuity, there is a ¢ above which g(1) < 1.
From the formula for the a}s, we will derive the differential equation

g = —20xqg + 20xgq +x

and then use the equation for g to determine the value of § at which the phase transition
for the appearance of a nonfinite sized component occurs.

Derivation of g(x)

From
1
R Y
and
5 k—1
W= 1o J(k = j)ajar—;

derive the equations

and
k-1

ay (1 + 2k0) —(523 Jlaja_;

J=1

for kK > 2. The generating function is formed by multiplying the k** equation by kxz* and
summing over all k. This gives

—x+§:kakxk+25x2akk2 k= 1—5Zlmk2j —J)aja_;.
k=1 k=1

Note that

g(z) = > kapz® and Jgx)=> apk2z*1.
k=1 k=1

Thus,
—z + g(x) + 20xg'(x —5kak2j — j)ajak_;.

Working with the right hand side

oo k-1
5Z/€xk23 — J)aja_]—5:1022] — NG+ k —j)a 1ajak_j'
= k=1 j=1
Now breaking the j7 + k£ — j into two sums gives
oo k—1 ~ ko1
0% Z Z]Q“jxj*l(k — jap_ja" I + oz Z Zjajxj(k — §)’ap_ja" I
=t k=1 j=1

Notice that the second sum is obtained from the first by substituting £ — 7 for j and that
both terms are dxg’g. Thus,

—x + g(z) + 20zg'(x) = 20xg (x)g(x).

Hence,

—_
HI%

/

_ 1=
=951 =

Q

Phase transition for nonfinite components

The generating function g(z) contains information about the finite components of the
graph. A finite component is a component of size 1,2,... which does not depend on ¢.

116

oo
Observe that g(1) = > kay and hence g(1) is the probability that a randomly chosen
k=0
vertex will belong to a component of finite size. If g(1) = 1 there are no nonfinite com-
ponents. When ¢(1) # 1, then 1 — g(1) is the expected fraction of the vertices that are in
nonfinite components. Potentially, there could be many such nonfinite components. But
an argument similar to Part 3 of Theorem 4.9 concludes that two fairly large components
would merge into one. Suppose there are two connected components at time ¢, each of
size at least t*/°. Consider the earliest created 1¢*/® vertices in each part. These vertices
must have lived for at least %t“/ ® time after creation. At each time, the probability of an
edge forming between two such vertices, one in each component, is at least 6€2(¢~%/°) and

so the probability that no such edge formed is at most (1 —6t=% 5)t4/5/ ? < e Q) 0,
So with high probability, such components would have merged into one. But this still
leaves open the possibility of many components of size ¢, (Int)?, or some other slowly
growing function of .

We now calculate the value of § at which the phase transition for a nonfinite component
occurs. Recall that the generating function for g (z) satisfies

11-42

If § is greater than some duiticar, then g(1) # 1. In this case the above formula simplifies
with 1 — g(1) canceling from the numerator and denominator, leaving just 2—15. Since kay
is the probability that a randomly chosen vertex is in a component of size k, the average

size of the finite components is ¢’(1) = > k?az. Now, ¢'(1) is given by
k=1

1
/
g1 =5 (16)
for all & greater than 0.picqr- If 0 is less than d..ii0q1, then all vertices are in finite compo-
nents. In this case g(1) = 1 and both the numerator and the denominator approach zero.
Appling L’Hopital’s rule

, 1 zg'(w)gg(z)
lim ¢'(z) = & —22 —
lim g'(2) = 35 —i

or

(9'(1))* = 35 (¢'(1) — 9(1)).

The quadratic (¢'(1))* — 35¢'(1) + 359(1) = 0 has solutions

, wEViE— % 1+VI-8
g(1)= 5 = 5) (4.7)

117

The two solutions given by (4.7) become complex for § > 1/8 and thus can be valid only
for 0 < § < 1/8. For 6 > 1/8, the only solution is ¢’(1) = 5 and a nonfinite component
exists. As J is decreased, at 0 = 1/8 there is a singular point where for § < 1/8 there are
three possible solutions, one from (4.6) which implies a giant component and two from
(4.7) which imply no giant component. To determine which one of the three solutions is
valid, consider the limit as 6 — 0. In the limit all components are of size one since there

are no edges. Only (4.7) with the minus sign gives the correct solution

1—V1T-8 1—(1—380—1640>+---)

o o —1440+---=1.

g (1) =

In the absence of any nonanalytic behavior in the equation for ¢’ (z) in the region
0 <6 < 1/8, we conclude that (4.7) with the minus sign is the correct solution for
0 < § < 1/8 and hence the critical value of § for the phase transition is 1/8. As we shall
see, this is different from the static case.

As the value of § is increased, the average size of the finite components increase from

one to
1—+v1-80 _o
40 5=1/8
when § reaches the critical value of 1/8. At 6 = 1/8, the average size of the finite com-
ponents jumps to % =18 = 4 and then decreases as % as the giant component swallows

up the finite components starting with the larger components.
Comparison to static random graph

Consider a static random graph with the same degree distribution as the graph in the
growth model. Again let py be the probability of a vertex being of degree k. From (4.5)

(26)"

e

Recall the Molloy Reed analysis of random graphs with given degree distributions which
asserts that there is a phase transition at > i(i — 2)p; = 0. Using this, it is easy to see

1=0
that a phase transition occurs for § = 1/4. For § = 1/4,

N

(20)" G G _ (1)

Pr = (1426)FFT — (1+ %)k+1 %)k

wino
Wl

N
~—

and

118

Size of
nonfinite grown.
component «— static

1/8 1/4 5

Figure 4.15: Comparison of the static random graph model and the growth model. The
curve for the growth model is obtained by integrating ¢'.

2 1 2 o 2 (1) 4 1\? 2.3 4.3 _
dii—2)2(3) 5202 (5) - 5202(5) 3X5—3%x51=0
=0 1= 1=
Recall that 1+a+a’+--- = L, a+20*4+30° - = %5, and a+4a”+94%--- = —‘(‘1(1_232.

See references at end of the chapter for calculating the size Sgq. of the giant compo-
nent in the static graph. The result is

0 0 <
Sstatic - 1— 1 5>
5++/624256

BT

4.9.2 Growth Model With Preferential Attachment

Consider a growth model with preferential attachment. At each time unit, a vertex is
added to the graph. Then with probability ¢, an edge is attached to the new vertex and
to a vertex selected at random with probability proportional to its degree. This model
generates a tree with a power law distribution.

Let d;(t) be the expected degree of the i'* vertex at time ¢. The sum of the degrees of
all vertices at time t is 26t and thus the probability that an edge is connected to vertex i

4t) The degree of vertex i is governed by the equation

at time ¢ 1s 55t -

0 4 (1) B d;(t)
atdl(t) =90 20t 2

where 0 is the probability that an edge is added at time t and dg((s? i

the vertex i is selected for the end point of the edge.

1
The two in the denominator governs the solution which is of the form at2. The value
1

1
of a is determined by the initial condition d; (t) = 0 at t = 4. Thus, 6 = ai2 or a = di" 2.

119

1,2,3 % t
d
+— vertex number —

Figure 4.16: Illustration of degree of i" vertex at time ¢. At time ¢, vertices numbered 1
2
to Z—Qt have degrees greater than d.

Hence, d;(t) = 5\@.

Next, we determine the probability distribution of vertex degrees. Now, d;(t) is less

than d provided ¢ > g—zt. The fraction of the ¢ vertices at time ¢ for which i > g—it and thus
that the degree is less than d is 1 — fl—z. Hence, the probability that a vertex has degree

less than d is 1 — fl—z. The probability density P(d) satisfies

d 52
/0 P(d)0d = Prob(degree < d) =1 — =

and can be obtained from the derivative of Prob(degree < d).

0 52 52

a power law distribution.

4.10 Small World Graphs

In the 1960’s, Stanley Milgram carried out an experiment that indicated that any two
individuals in the United States were connected by a short sequence of acquaintances.
Milgram would ask a source individual, say in Nebraska, to start a letter on its journey
to a target individual in Massachusetts. The Nebraska individual would be given basic
information about the target including his address and occupation and asked to send the
letter to someone he knew on a first name basis, who was closer to the target individual,
in order to transmit the letter to the target in as few steps as possible. Each person
receiving the letter would be given the same instructions. In successful experiments, it
would take on average five to six steps for a letter to reach its target. This research
generated the phrase “six degrees of separation” along with substantial research in social

120

science on the interconnections between people. Surprisingly, there was no work on how
to find the short paths using only local information.

In many situations, phenomena are modeled by graphs whose edges can be partitioned
into local and long distance. We adopt a simple model of a directed graph due to Klein-
berg, having local and long distance edges. Consider a 2-dimensional n x n grid where
each vertex is connected to its four adjacent vertices. In addition to these local edges,
there is one long distance edge out of each vertex. The probability that the long distance
edge from vertex u terminates at v, v # u, is a function of the distance d(u,v) from u to
v. Here distance is measured by the shortest path consisting only of local grid edges. The
probability is proportional to 1/d" (u,v) for some constant r. This gives a one parameter
family of random graphs. For r equal zero, 1/d° (u,v) = 1 for all v and v and thus the
end of the long distance edge at u is uniformly distributed over all vertices independent
of distance. As r increases the expected length of the long distance edge decreases. As
r approaches infinity, there are no long distance edges and thus no paths shorter than
that of the lattice path. What is interesting is that for r less than two, there are always
short paths, but no local algorithm to find them. A local algorithm is an algorithm that
is only allowed to remember the source, the destination, and its current location and can
query the graph to find the long-distance edge at the current location. Based on this
information, it decides the next vertex on the path.

The difficulty is that for » < 2, the end points of the long distance edges tend to
be uniformly distributed over the vertices of the grid. Although short paths exist, it is
unlikely on a short path to encounter a long distance edge whose end point is close to
the destination. When r equals two, there are short paths and the simple algorithm that
always selects the edge that ends closest to the destination will find a short path. For r
greater than two, again there is no local algorithm to find a short path. Indeed, with high
probability, there are no short paths at all.

The probability that the long distance edge from wu goes to v is proportional to
d~"(u,v). Note that the constant of proportionality will vary with the vertex u depend-
ing on where u is relative to the border of the n x n grid. However, the number of
vertices at distance exactly k from w is at most 4k and for k < n/2 is at least k. Let
cr(u) = Y, d"(u,v) be the normalizing constant. It is the inverse of the constant of
proportionality.

For r > 2, ¢,(u) is lower bounded by

n/2 n/2
cr(u) = Zd_r(u,v) > kz:(k)k_” = kz:kl_r > 1.
v =1 =1

%21 k=" is at least one.

No matter how large r is the first term of),

121

r > 2 The lengths of long distance edges tend to be short so the
probability of encountering a sufficiently long, long-distance edge is
too low.

r = 2 Selecting the edge with end point closest to the destina-
tion finds a short path.

r < 2 The ends of long distance edges tend to be uniformly dis-
tributed. Short paths exist but a polylog length path is unlikely
to encounter a long distance edge whose end point is close to the
destination.

Figure 4.17: Effects of different values of r on the expected length of long distance edges
and the ability to find short paths.

For r = 2 the normalizing constant ¢,(u) is upper bounded by

Zd u,v) Z4kk <4Z O(Inn).

For r < 2, the normalizing constant ¢,(u) is lower bounded by

n/2 n/2
= d ()= (kET > > KT
v k=1 k=n/4
n/2 1—p
The summation Y. k' has 7 terms, the smallest of which is (%) or () " depending
k=n/4

on whether r is greater or less than one. This gives the following lower bound on ¢, (u).
n - -r
() = T = w(n)
No short paths exist for the r > 2 case.

For r > 2, we first show that for at least one half the pairs of vertices there is no short
path between them. We begin by showing that the expected number of edges of length
greater than n's" goes to zero. The probability of an edge from u to v is d="(u,v)/c,(u)
where ¢,(u) is lower bounded by a constant. Thus, the probability that a long edge is of

length greater than or equal to n's is upper bounded by some constant ¢ times n's
gih g Y

or en~("3%). Since there are n? long edges, the expected number of edges of length at least
n5 is at most en’n= 5> or cn?, which for » > 2 goes to zero. Thus, by the first

122

moment method, almost surely, there are no such edges.

For at least one half of the pairs of vertices, the grid distance, measured by grid edges
between the vertices, is greater than or equal to n/4. Any path between them must have
at least in/ n's = }ln% edges since there are no edges longer than n's and so there is
no polylog length path.

An algorithm for the r = 2 case

For r = 2, the local algorithm that selects the edge that ends closest to the destination
t finds a path of expected length O(Inn)3. Suppose the algorithm is at a vertex u which
is a at distance k from ¢. Then within an expected O(Inn)? steps, the algorithm reaches
a point at distance at most k/2. The reason is that there are Q(k?) vertices at distance at
most k/2 from ¢. Each of these vertices is at distance at most k+k/2 = O(k) from u. See
Figure 4.18. Recall that the normalizing constant ¢, is upper bounded by O(Ilnn), and
hence, the constant of proportionality is lower bounded by some constant times 1/Inn.
Thus, the probability that the long-distance edge from u goes to one of these vertices is
at least

Q(k*k™"/Inn) = Q(1/Inn).

Consider Q(Inn)? steps of the path from u. The long-distance edges from the points
visited at these steps are chosen independently and each has probability Q(1/Inn) of
reaching within £/2 of ¢. The probability that none of them does is

c(lnn)? “lnn C1
1—-—Q(1/1 = = —
((1/Inn)) cre .
for a suitable choice of constants. Thus, the distance to ¢ is halved every O(lnn)? steps
and the algorithm reaches ¢ in an expected O(Inn)? steps.

A local algorithm cannot find short paths for the r» < 2 case

For r < 2 no local polylog time algorithm exists for finding a short path. To illustrate
the proof, we first give the proof for the special case » = 0, and then give the proof for
r <2

When r = 0, all vertices are equally likely to be the end point of a long distance edge.
Thus, the probability of a long distance edge hitting one of the n vertices that are within
distance y/n of the destination is 1/n. Along a path of length /n, the probability that
the path does not encounter such an edge is (1 — 1/n)Y" . Now,

, NN N7 .
Iim | 1— — = lim (1— — = lim e v» = 1.

n—00 n n—00 n n—00

123

< 3k/2 k/2

Q(k?) vertices at
distance k/2 from ¢

Figure 4.18: Small worlds.

Since with probability 1/2 the starting point is at distance at least n/4 from the desti-
nation and in y/n steps, the path will not encounter a long distance edge ending within
distance y/n of the destination, for at least half of the starting points the path length will
be at least \/n. Thus, the expected time is at least % n and hence not in polylog time.

For the general r < 2 case, we show that a local algorithm cannot find paths of length
O(n®="/%). Let § = (2 —r)/4 and suppose the algorithm finds a path with at most n’
edges. There must be a long-distance edge on the path which terminates within distance
n? of t; otherwise, the path would end in n° grid edges and would be too long. There are
O(n?) vertices within distance n’ of t and the probability that the long distance edge from
one vertex of the path ends at one of these vertices is at most n? (#) =nl=2/2 To
see this, recall that the lower bound on the normalizing constant is (n?>~") and hence an
upper bound on the probability of a long distance edge hitting v is 6 (r) independent
of where v is. Thus, the probablhty that the long distance edge from one of the n? vertices
on the path hits any one of the n?° vertices within dlstance nd of t is n% L = = n'7.
The probablhty that this happens for any one of the n’ vertices on the path is at most

J r=2)/4 = o(1) as claimed.

r—2 (
n2n—n2n4 =N

Short paths exist for r < 2

Finally we show for r < 2 that there are O(Inn) length paths between s and ¢. The
proof is similar to the proof of Theorem 4.17 showing O(Inn) diameter for G(n,p) when
pis Q(Inn/n), so we do not give all the details here. We give the proof only for the case
when r = 0.

For a particular vertex v, let S; denote the set of vertices at distance ¢ from v. Using
only local edges, if i is O(vInn), then |S;| is Q(Inn). For later i, we argue a constant

124

factor growth in the size of S; as in Theorem 4.17. As long as |S1|+|Sa|+- - -+[S;| < n?/2,
for each of the n?/2 or more vertices outside, the probability that the vertex is not in
Sit1is (1 — #)'Sil <1- % since the long-distance edge from each vertex of S; chooses
a long-distance neighbor at random. So, the expected size of S;;; is at least |S;|/4 and
using Chernoff, we get constant factor growth up to n?/2. Thus, for any two vertices v
and w, the number of vertices at distance O(Inn) from each is at least n?/2. Any two
sets of cardinality at least n?/2 must intersect giving us a O(Inn) length path from v to

w.

4.11 Bibliographic Notes

The G(n, p) random graph model is from Erdos Rényi [ER60]. Among the books writ-
ten on properties of random graphs a reader may wish to consult Palmer [Pal85], Jansen,
Luczak and Ruciriski [JLROO],or Bollobés [Bol01]. Material on phase transitions can be
found in [BT87]. The work on phase transitions for CNF was started by Chao and Franco
[CF86]. Further work was done in [FS96], [AP03], [Fri99], and others. The proof here
that the SC algorithm produces a solution when the number of clauses is cn for ¢ < % is
from [Chv92].

For material on the giant component consult [Kar90] or [JKLP93]. Material on branch-
ing process can be found in [AN72]. The phase transition for giant components in random
graphs with given degree distributions is from Molloy and Reed [MR95a].

There are numerous papers on growth models. The material in this chapter was based

primarily on [CHK*] and [BA]. The material on small world is based on Kleinberg, [Kle00]
which follows earlier work by Watts and Strogatz [WS98|.

125

4.12 Exercises

Exercise 4.1 Search the World Wide Web to find some real world graphs in machine
readable form or data bases that could automatically be converted to graphs.

1. Plot the degree distribution of each graph.
Compute the average degree of each graph.
Count the number of connected components of each size in each graph.

Describe what you find.

v e e

What is the average vertex degree? If the graph were a G(n,p) graph, what would
the value of p be?

6. Spot differences between your graph and G(n,p) for p from the last part. [Look at
sizes of connected components, cycles.]

Exercise 4.2 In G(n,p) the probability of a vertex having degree k is (Z)pk(l —p)n k.
1. Show by direct calculation that the expected degree is np.
2. Compute directly the variance of the distribution.

3. Where is the mode of the binomial distribution for a given value of p? The mode is
the point at which the probability is maximum.

Exercise 4.3
1. Plot the degree distribution for G(1000,0.003).
2. Plot the degree distribution for G(1000,0.030).

Exercise 4.4 To better understand the binomial distribution plot (Z)pk(l —p)"* as a
function of k for n = 50 and k = 0.05,0.5,0.95. For each value of p check the sum over
all k to ensure that the sum is one.

Exercise 4.5 In GG (n, %) , what is the probability that there is a vertex of degree logn?
Give an exact formula; also derive simple approximations.

Exercise 4.6 The example of Section j.1.1 showed that if the degrees in G(n, %) were
independent there would almost surely be a vertex of degree logn/loglogn. However, the
degrees are not independent. Show how to overcome this difficulty.

126

Exercise 4.7 Let f (n) be a function that is asymptotically less than n. Some such func-
1

tions are 1/n, a constant d, logn or n3. Show that
(1 + @) ~ e/,

for large n. That is

Exercise 4.8

l)nlnn

1. In the limit as n goes to infinity, how does (1 — = behave.

2. What is lim ("Tﬂ)nr?
n—o0
Exercise 4.9 Consider a random permutation of the integers 1 to n. The integer i is
said to be a fized point of the permutation if i is the integer in the i'" position of the
permutation. Use indicator variables to determine the expected number of fixed points in
a random permutation.

Exercise 4.10 Generate a graph G (n, %) with n = 1000 and d=2, 3, and 6. Count the
number of triangles in each graph. Try the experiment with n=100.

Exercise 4.11 What is the expected number of squares (4-cycles) in G (n, %) ? What 1is
the expected number of 4-cliques in G (n, %) 7

Exercise 4.12 Carry out an argument, similar to the one used for triangles, to show that
p= # is a threshold for the existence of a 4-clique. A j-clique consists of four vertices
with all (;1) edges present.

Exercise 4.13 What is the expected number of paths of length 3, logn, v/n, and n — 1
in G(n, %) ? The expected number of paths of a given length being infinite does not imply
that a graph selected at random has such a path.

Exercise 4.14 Let x be an integer chosen uniformly at random from {1,2,...,n}. Count
the number of distinct prime factors of n. The exercise is to show that the number of prime
factors almost surely is ©(Inlnn). Let p stand for a prime number between 2 and n.

1. For each fized prime p, let I,, be the indicator function of the event that p divides x.
Show that E(1,) = %—k O (%) It is known that % =Inlnn and you may assume
p<n

this.
2. The random variable of interest, y = > I,, is the number of prime diwvisors of x
P

picked at random. Show that the variance of y is O(Inlnn). For this, assume the
known result that the number of primes up ton is O(n/Inn). To bound the variance
of y, think of what E(1,1,) is for p # q, both primes.

127

3. Use (1) and (2) to prove that the number of prime factors is almost surely O(Inlnn).

Exercise 4.15 Suppose one hides a clique of size k in a random graph G (n, %) Le.,
in the random graph, choose some subset S of k vertices and put in the missing edges to
make S a clique. Presented with the modified graph, find S. The larger S is, the easier
it should be to find. In fact, if k is more than cv/nlnn, then the clique leaves a telltale
sign identifying S as the k vertices of largest degree. Prove this statement by appealing

to Theorem 4.1.1. It remains a puzzling open problem to do this when k is smaller, say,

O(n'/?).

Exercise 4.16 The clique problem in a graph is to find the mazximal size clique. This
problem is known to be NP-hard and so a polynomial time algorithm is thought unlikely.
We can ask the corresponding question about random graphs. For example, in G (n, %)
there almost surely is a clique of size (2 — €)logn for any € > 0. But it is not known how
to find one in polynomial time.

1. Show that in G(n, %), there are, almost surely, no cliques of size 2log,n.

2. Use the second moment method to show that in G(n, %), almost surely there are
cliques of size (2 — €)log, n.

3. Show that for any € > 0, a clique of size (2 —€)logn can be found in G (n, %) mn
time nOMn™),

4. Give an O (n?) algorithm for finding a clique of size Q (logn) in G(n, 3). Hint: use
a greedy algorithm. Apply your algorithm to G (1000, %) What size clique do you
find?

5. An independent set of vertices in a graph is a set of vertices, no two of which are

connected by an edge. Give a polynomial time algorithm for finding an independent
set in G (n, 1) of size Q (logn).

Exercise 4.17 Suppose H 1is a fized graph on cn wvertics with icQ(log n)? edges. Show
that if ¢ > 2, whp, H does not occur as a subgraph of G(n,1/4).

Exercise 4.18 Given two instances, G and Gy of G(n, %), what s the largest subgraph
common to both G1 and G5?

Exercise 4.19 (Birthday problem) What is the number of integers that must be drawn
with replacement from a set of n integers so that some integer, almost surely, will be
selected twice?

Exercise 4.20 Suppose the graph of a social network has 20,000 vertices. You have a
program that starting from a random seed produces a community. A community is a set
of vertices where each vertex in the set has more edges connecting it toother vertices in
the set than to vertices outside of the set. In running the algorithm you find thousands of
commumnities and wonder how many communities there are in the graph. Finally, when
you find the 10,000 community, it is a duplicate. It is the same community as one found
earlier.

128

1. Use the birthday problem to derive a lower and an upper bound on the number of
communities.

Exercise 4.21 Let d > 1 be a constant and p; = 1 — (1 — %)Z. We saw that if we do
breadth first search in G(n, %) starting at some vertex, z;, the number of discovered vertices
after i steps has the distribution Binomial(n,p;). We also saw that that if the connected
component found has i vertices, then z; = i. Show that as n — oo (and d is a fized
constant), Prob(z; = 1) € o(1/n) unless i < c¢ilnn ori > con for some constants ¢y, ;.

Exercise 4.22 Let s be the expected number of vertices discovered as a function of the
number of steps t in a breadth first search of G (n, %) Write a differential equation using

expected values for the size of s. Show that the normalized size f = 574 of the frontier is

f(x)=1—e* —x where v = L is the normalized time.

Exercise 4.23 For f(x) = 1—e % —x, what is the value of Tpa, = argmax f(x)? What
is the value of f(Tmaz)? Where does the maximum expected value of the frontier of a
breadth search in G(n, 4) occur as a function of n?

Exercise 4.24 [f y and z are independent, nonnegative random variables, then the gen-
erating function of the sum y + z is the product of the generating function of y and z.

Show that this follows from E(zY%) = E(2Y2*) = E(aV)E(2?).

Exercise 4.25 Let f;(x) be the j™ iterate of the generating function f(z) of a branch-
ing process. When m > 1, lim;_ofj(x) = q for 0 < x < 1. In the limit this implies
Prob(z; =0) = q and Prob(z; =1) = 0 for all nonzero finite values of i. Shouldn’t the
probabilities add up to 17 Why is this not a contradiction?

Exercise 4.26 Try to create a probability distribution for a branching process which
varies with the current population in which future generations neither die out, nor grow
to infinity.

Exercise 4.27 Let d be a constant strictly greater than 1. Show that for a branching
process with number of children distributed as Binomial(n — cyn®/?, %), the root of the
f(z) =11in (0,1) is at most a constant strictly less than 1.

Exercise 4.28 Randomly generate G (50,p) for several values of p. Start with p = %.
1. For what value of p do cycles first appear?

2. For what value of p do isolated vertices disappear and the graphs become connected?

Exercise 4.29 Consider G(n,p) with p = % Then, we saw that almost surely, there are
no cycles of length 10.

1. Use the second moment method to show that, almost surely, there is a simple path
of length 10.

129

2. Exaplin these two results - that there is a simple path of length 10, but no cycle of
length 10.

Exercise 4.30 Complete the second moment argument of Theorem 4.13 to show that for
p= %, d > 1, G(n,p) almost surely has a cycle.

Hint: If two cycles share one or more edges, then the union of the two cycles is at least
one greater than the union of the vertices.

Exercise 4.31 Draw a tree with 10 vertices and label each vertex with a unique integer
from 1 to 10. Construct the Prifer sequence (Appendiz 12.8.6) for the tree. Given the
Priifer sequence, recreate the tree.

Exercise 4.32 Construct the tree corresponding to the following Priifer sequences (Ap-
pendiz 12.8.6)

1. 113663 (1,2),(1,3),(1,4).(5,5),(5,6),(6,7), and (6,8)
2. 552833226.

Inn 9

n °

Exercise 4.33 What is the expected number of isolated vertices in G(n,p) for p = %

Exercise 4.34 Theorem 4.17 shows that for some ¢ > 0 and p = clnn/n, G(n,p) has
diameter O (Inn). Tighten the argument to pin down as low a value as possible for c.

Exercise 4.35 What is diameter of G(n,p) for various values of p?

Exercise 4.36
1. List five increasing properties of G (n,p).

2. List five non increasing properties .

Exercise 4.37 Consider generating the edges of a random graph by flipping two coins,
one with probability p1 of heads and the other with probability py of heads. Add the edge
to the graph if either coin comes down heads. What is the value of p for the generated
G(n,p) graph?

Exercise 4.38 In the proof of Theorem 4.19, we proved for po(n) such that lim po(n)

n—oo P(n)
that G(n,po) almost surely did not have property Q. Give the symmetric argument that

for any p1(n) such that lim zi((nn)) =0, G(n,p1) almost surely has property Q.
n—oo

Exercise 4.39 Consider a model of a random subset N(n,p) of integers {1,2,...n}
where, N(n,p) is the set obtained by independently at random including each of {1,2,...n}
into the set with probability p. Define what an “increasing property” of N(n,p) means.
Prove that every increasing property of N(n,p) has a threshold.

130

Exercise 4.40 N(n,p) is a model of a random subset of integers {1,2,...n} where,
N(n,p) is the set obtained by independently at random including each of {1,2,...n} into
the set with probability p. What is the threshold for N (n,p) to contain

1. a perfect square,
2. a perfect cube,
3. an even number,

4. three numbers such that v +y =z ¢

Exercise 4.41 Ezxplain why the property, that N (n,p) contains the integer 1, has a
threshold. What is the threshold?

Exercise 4.42 [s there a condition such that any property satisfying the condition has a
sharp threshold? For example, is monotonicity such a condition?

Exercise 4.43 The Sudoku game consists of a 9 x 9 array of squares. The array is parti-
tioned into nine 3 X 3 squares. Each small square should be filled with an integer between
1 and 9 so that each row, each column, and each 3 X 3 square contains exactly one copy
of each integer. Initially the board has some of the small squares filled in in such a way
that there is exactly one way to complete the assignments of integers to squares. Some
simple rules can be developed to fill in the remaining squares such as if the row and column
containing a square already contain a copy of every integer except one, that integer should
be placed in the square.

Start with a 9 X 9 array of squares with each square containing a number between 1
and 9 such that no row, column, or 3 X 3 square has two copies of any integer.

1. How many integers can you randomly erase and there still be only one way to cor-
rectly fill in the board?

2. Develop a set of simple rules for filling in squares such as if a row does not contain
a given integer and if every column except one in which the square in the row is
blank contains the integer, then place the integer in the remaining blank entry in the

row. How many integers can you randomly erase and your rules will still completely
fill in the board?

Exercise 4.44 Generalize the Sudoku game for arrays of size n? x n?. Develop a simple
set of rules for completing the game. An example of a rule is the following. If the a row
does not contain a given integer and if every column except one in which the square in
the row is blank contains the integer, then place the integer in the remaining blank entry
in the row. Start with a legitimate completed array and erase k entries at random.

1. Is there a threshold for the integer k such that if only k entries of the array are
erased, your set of rules will find a solution?

131

2. Experimentally determine k for some large value of n.

Exercise 4.45 Let {x;|1 < i < n}, be a set of indicator variables with identical probability
distributions. Let x = > x; and suppose E () — oco. Show that if the x; are statistically

=1
independent, then Prob(xz = 0) — 0.

Exercise 4.46 In a square n X n grid, each of the O(n?) edges is randomly chosen to
be present with probability p and absent with probability 1 — p. Consider the increasing
property that there is a path from the bottom left corner to the top right corner which
always goes to the right or up. Show that p = 1/2 is a threshold for the property. Is it a
sharp threshold?

Exercise 4.47 The threshold property seems to be related to uniform distributions. What
if we considered other distributions? Consider a model where i is selected from the set
{1,2,...,n} with probability @ Is there a threshold for perfect squares? Is there a
threshold for arithmetic progressions?

Exercise 4.48 Modify the proof that every increasing property of G(n,p) has a threshold
to apply to the 3-CNF satisfiability problem.

k
Exercise 4.49 Fuvaluate (1 — 2%)2 for k=3, 5, and 7. How close is it to 1/e?

Exercise 4.50 Randomly generate clauses for a Boolean formula in 3-CNF. Compute
the number of solutions and the number of connected components of the solution set as a
function of the number of clauses generated. What happens?

Exercise 4.51 Consider a random process for generating a Boolean function f in con-
Junctive normal form where each of ¢ clauses is generated by placing each of n variables
in the clause with probability p and complementing the variable with probability /2. What
is the distribution of clause sizes for various p such as p = 3/n, 1o, other values? Experi-
mentally determine the threshold value of p for f to cease to be satisfied.

Exercise 4.52 For a random 3-CNF formula with n variables and cn clauses, what is
the expected number of satisfying assignments?

Exercise 4.53 Which of the following variants of the SC algorithm admit a theorem like
Theorem 4.217

1. Among all clauses of least length, pick the first one in the order in which they appear
in the formula.

2. Set the literal appearing in most clauses independent of length to 1.

132

Exercise 4.54 Suppose we have a queue of jobs serviced by one server. There is a total
of n jobs in the system. At time t, each remaining job independently decides to join the
queue to be serviced with probability p = d/n, where d < 1 is a constant. Fach job has a
processing time of 1 and at each time the server services one job, if the queue is nonempty.
Show that with high probability, no job waits more than Q(Inn) time to be serviced once
it joins the queue.

Exercise 4.55 Consider G (n,p).

1. Where is phase transition for 2-colorability? Hint: For p = d/n with d < 1, G(n,p)
15 acyclic, so it is bipartite and hence 2-colorable. When pn — oo, the expected
number of triangles goes to infinity. Show that, almost surely, there is a triangle?

What does this do for 2-colorability?

2. What about 3-colorability?

Exercise 4.56 A vertex cover of size k for a graph is a set of k vertices such that one end
of each edge is in the set. Experimentally play with the following problem. For G(n, %),
for what value of k is there a vertex cover of size k?

Exercise 4.57 Consider graph 3-colorability. Randomly generate the edges of a graph
and compute the number of solutions and the number of connected components of the
solution set as a function of the number of edges generated. What happens?

Exercise 4.58 In G(n,p), let x) be the number of connected components of size k. Using
Tk, write down the probability that a randomly chosen vertex is in a connected component
of size k. Also write down the expected size of the connected component containing a
randomly chosen vertex.

Exercise 4.59 For p asymptotically greater than %, show that

S i(i = 2)\ > 0.

=0

Exercise 4.60 Consider generating a random graph adding one edge at a time. Let n(i,t)
be the number of components of size i at time t.

n(i 1) —n(z’,t—l)%—Z‘%n(j,t—1)n(z’—j,t—1)—%n(i)

Compute n(i,t) for a number of values of i and t. What is the behavior? What is the
sum of n(i,t) for fivzed t and all i? Can you write a generating function for n(i,t)?

133

Exercise 4.61 The global clustering coefficient of a graph is defined as follows. Let d,
be the degree of vertex v and let e, be the number of edges connecting vertices adjacent to
vertex v. The global clustering coefficient c is given by

_ 2ey
€= Z do(dy—1)°
v

In a social network, for example, it measures what fraction of pairs of friends of each
person are themselves friends. If many are, the clustering coefficient is high. What is ¢
for a random graph with p = %? For a denser graph? Compare this value to that for some
social network.

Exercise 4.62 Consider a structured graph, such as a grid or cycle, and gradually add
edges or reroute edges at random. Let L be the average distance between all pairs of
vertices in a graph and let C' be the ratio of triangles to connected sets of three vertices.
Plot L and C as a function of the randomness introduced.

Exercise 4.63 Consider an n x n grid in the plane.

1. Prove that for any vertex u, there are at least k vertices at distance k for 1 < k <
n/2.

2. Prove that for any vertex u, there are at most 4k vertices at distance k.

3. Prove that for one half of the pairs of points, the distance between them is at least
4/4.

Exercise 4.64 Show that in a small-world graph with r < 2, that there exist short paths
with high probability. The proof for r =0 is in the text.

Exercise 4.65 Change the small worlds graph as follows. Start with a n X n grid where
each vertex has one long-distance edge to a vertex chosen uniformly at random. These are
exactly like the long-distance edges for r = 0. But the grid edges are not present. Instead,
we have some other graph with the property that for each vertex, there are ©(t?) vertices
at distance t from the vertex for t < n. Show that, almost surely, the diameter is O(Inn).

Exercise 4.66 Given an n node directed graph with two random out edges from each
node. For two vertices s and t chosen at random, prove that there exists a path of length
at most O(Inn) from s to t with high probability.

Exercise 4.67 How does the diameter of a graph consisting of a cycle change as one
adds a few random long distance edges? This question explores how much randomness is
needed to get a small world.

Exercise 4.68 Ideas and diseases spread rapidly in small world graphs. What about
spread of social contagion? A disease needs only one contact and with some probability
transfers. Social contagion needs several contacts. How many vertices must one start with
to spread social contagion, if the spread of contagion requires two adjacent vertices?

134

Exercise 4.69 How many edges are needed to disconnect a small world graph? By dis-
connect we mean at least two pieces each of reasonable size. Is this connected to the
emergence of a giant component?

Exercise 4.70 In the small world model, would it help if the algorithm could look at edges
at any node at a cost of one for each node looked at?

Exercise 4.71 Consider the n x n grid in the section on small world graphs. If the
probability of an edge from vertex u to vertex v is proportional to d~"(u,v), show that the
constant of proportionality c.(u) is

O(n*") forr >2
f(Inn) forr=2
6(1) forr <2

Exercise 4.72 In the n X n grid prove that for at least half of the pairs of vertices, the
distance between the vertices is greater than or equal to n/4

Exercise 4.73 Show that for r < 2 in the small world graph model that short paths exist
but a polylog length path is unlikely to encounter a long distance edge whose end point is

close to the destination.

Exercise 4.74 Make a list of the ten most interesting things you learned about random
graphs.

135

5 Random Walks and Markov Chains

A random walk on a directed graph consists of a sequence of vertices generated from
a start vertex by selecting an edge, traversing the edge to a new vertex, and repeating
the process. We will see that if the graph is strongly connected, then the fraction of time
the walk spends at the various vertices of the graph converges to a stationary probability
distribution.

Since the graph is directed, there might be vertices with no out edges and hence
nowhere for the walk to go. Vertices in a strongly connected component with no in edges
from the remainder of the graph can never be reached unless the component contains the
start vertex. Once a walk leaves a strongly connected component it can never return.
Most of our discussion of random walks will involve strongly connected graphs.

Start a random walk at a vertex xy and think of the starting probability distribution
as putting a mass of one on zy and zero on every other vertex. More generally, one
could start with any probability distribution p, where p is a row vector with nonnegative
components summing to one, with p, being the probability of starting at vertex x. The
probability of being at vertex x at time t + 1 is the sum over each adjacent vertex y of
being at y at time ¢ and taking the transition from y to . Let p® be a row vector with
a component for each vertex specifying the probability mass of the vertex at time ¢ and
let p®*tY be the row vector of probabilities at time ¢ + 1. In matrix notation®

p®p — pt+1)

where the ij'" entry of the matrix P is the probability of the walk at vertex i selecting
the edge to vertex j.

A fundamental property of a random walk is that in the limit, the long-term average
probability of being at a particular vertex is independent of the start vertex, or an initial
probability distribution over vertices, provided only that the underlying graph is strongly
connected. The limiting probabilities are called the stationary probabilities. This funda-
mental theorem is proved in the next section.

A special case of random walks, namely random walks on undirected graphs, has
important connections to electrical networks. Here, each edge has a parameter called
conductance, like electrical conductance. If the walk is at vertex wu, it chooses an edge
from among all edges incident to u to walk to the next vertex with probability propor-
tional to its conductance. Certain basic quantities associated with random walks are
hitting time, the expected time to reach vertex y starting at vertex x, and cover time,
the expected time to visit every vertex. Qualitatively, these quantities are all bounded
above by polynomials in the number of vertices. The proofs of these facts will rely on the

9Probability vectors are represented by row vectors to simplify notation in equations like the one here.

136

random walk Markov chain
graph stochastic process
vertex state
strongly connected persistent
aperiodic aperiodic
strongly connected _

and aperiodic ergotic
undirected graph time reversible

Table 5.1: Correspondence between terminology of random walks and Markov chains

analogy between random walks and electrical networks.

Aspects of the theory of random walks were developed in computer science with an
important application in defining the pagerank of pages on the World Wide Web by their
stationary probability. An equivalent concept called a Markov chain had previously been
developed in the statistical literature. A Markov chain has a finite set of states. For each
pair of states x and y, there is a transition probability p,, of going from state z to state y
where for each z, Zy Pzy = 1. A random walk in the Markov chain starts at some state. At
a given time step, if it is in state x, the next state y is selected randomly with probability
Pzy- A Markov chain can be represented by a directed graph with a vertex representing
each state and an edge with weight p,, from vertex x to vertex y. We say that the Markov
chain is connected if the underlying directed graph is strongly connected. That is, if there
is a directed path from every vertex to every other vertex. The matrix P consisting of the
Pay s called the transition probability matriz of the chain. The terms “random walk” and
“Markov chain” are used interchangeably. The correspondence between the terminologies
of random walks and Markov chains is given in Table 5.1.

A state of a Markov chain is persistent if it has the property that should the state ever
be reached, the random process will return to it with probability one. This is equivalent
to the property that the state is in a strongly connected component with no out edges.
For most of the chapter, we assume that the underlying directed graph is strongly con-
nected. We discuss here briefly what might happen if we do not have strong connectivity.
Consider the directed graph in Figure 5.1b with three strongly connected components,
A, B, and C. Starting from any vertex in A, there is a nonzero probability of eventually
reaching any vertex in A. However, the probability of returning to a vertex in A is less
than one and thus vertices in A, and similarly vertices in B, are not persistent. From
any vertex in ', the walk eventually will return with probability one to the vertex, since
there is no way of leaving component C. Thus, vertices in C' are persistent.

A connected Markov Chain is said to be aperiodic if the greatest common divisor of

137

<

O
O
A B
O
O

O O i
C

A B
(b)

O
O
a O

<

Figure 5.1: (a) A directed graph with vertices having no out out edges and a strongly
connected component A with no in edges.
(b) A directed graph with three strongly connected components.

the lengths of directed cycles is 1. It is known (though we do not prove it here) that for
connected aperiodic chains, the probability distribution of the random walk converges to
a unique stationary distribution.

Markov chains are used to model situations where all the information of the system
necessary to predict the future can be encoded in the current state. A typical example
is speech, where for a small k£ the current state encodes the last k£ syllables uttered by
the speaker. Given the current state, there is a certain probability of each syllable being
uttered next and these can be used to calculate the transition probabilities. Another
example is a gambler’s assets, which can be modeled as a Markov chain where the current
state is the amount of money the gambler has on hand. The model would only be valid
if the gambler’s bets depend only on current assets, not the past history.

Later in the chapter, we study the widely used Markov Chain Monte Carlo method
(MCMC). Here, the objective is to sample a large space according to some probability
distribution p. The number of elements in the space may be very large, say 10°. One
designs a Markov chain where states correspond to the elements of the space. The transi-
tion probabilities of the chain are designed so that the stationary probability of the chain
is the probability distribution p with which we want to sample. One samples by taking
a random walk until the probability distribution is close to the stationary distribution of
the chain and then selects the point the walk is at. The walk continues a number of steps
until the probability distribution is no longer dependent on where the walk was when the

138

first element was selected. A second point is then selected, and so on. Although it is
impossible to store the graph in a computer since it has 10'% vertices, to do the walk one
needs only store the vertex the walk is at and be able to generate the adjacent vertices
by some algorithm. What is critical is that the probability of the walk converges to the
stationary probability in time logarithmic in the number of states.

We mention two motivating examples. The first is to estimate the probability of a
region R in d-space according to a probability density like the Gaussian. Put down a
grid and make each grid point that is in R a state of the Markov chain. Given a proba-
bility density p, design transition probabilities of a Markov chain so that the stationary
distribution is exactly p. In general, the number of states grows exponentially in the di-
mension d, but the time to converge to the stationary distribution grows polynomially in d.

A second example is from physics. Consider an n x n grid in the plane with a particle
at each grid point. Each particle has a spin of +1. There are on’ spin configurations.
The energy of a configuration is a function of the spins. A central problem in statistical
mechanics is to sample a spin configuration according to itsprobability. It is easy to design
a Markov chain with one state per spin configuration so that the stationary probability of
a state is proportional to the state’s energy. If a random walk gets close to the stationary
probability in time polynomial to n rather than 2", then one can sample spin configura-
tions according to their probability.

A quantity called the mizing time, loosely defined as the time needed to get close to
the stationary distribution, is often much smaller than the number of states. In Section
5.4, we relate the mixing time to a combinatorial notion called normalized conductance
and derive upper bounds on the mixing time in many cases.

5.1 Stationary Distribution

Let p® be the probability distribution after ¢ steps of a random walk. Define the
long-term probability distribution a® by

1

The fundamental theorem of Markov chains asserts that the long-term probability dis-
tribution of a connected Markov chain converges to a unique limit probability vector,
denoted 7. Executing one more step, starting from this limit distribution, we get back
the same distribution. In matrix notation, wP = @ where P is the matrix of transition
probabilities. There is a unique probability vector (nonnegative components summing to
one) satisfying wP = 7 and this vector is the limit. Also since one step does not change
the distribution, any number of steps does not. For this reason, 7 is called the stationary
distribution.

139

Before proving the fundamental theorem of Markov chains, we first prove a technical
lemma.

Lemma 5.1 Let P be the transition probability matrixz for a connected Markov chain.
The n x (n+ 1) matric A = [P — 1, 1] obtained by augmenting the matriz P — I with an
additional column of ones has rank n.

Proof: If the rank of A = [P — I, 1] was less than n there would be two linearly indepen-

dent solutions to Ax = 0. Each row in P sums to one so each row in P — I sums to zero.

Thus x = (1,0), where all but the last coordinate of x is 1, is one solution to Ax = 0. As-

sume there was a second solution (x, &) perpendicular to (1,0). Then (P —I)x+al = 0.

Thus for each i Zpijxj —r;+a=0o0rx; = Zj pijT; +a. Bach z; is a convex combination
J

of some z; plus a. Let S be the set of 7 for which z; attains its maximum value. S is not
empty since z is perpendicular to 1 and hence some x; must be negative. Connectedness
implies that some z; of maximum value is adjacent to some x; of lower value. Thus,
Ty > Zj prjz;. Therefore o must be greater than 0 in x, = Zj PrjT; + . A symmetric
argument with 7" the set of ¢ with z; taking its minimum value implies o < 0 producing
a contradiction proving the lemma.]

Theorem 5.2 (Fundamental Theorem of Markov Chains) Let P be the transition
probability matriz for a connected Markov chain, p® the probability distribution after t
steps of a random walk, and

1

the long term probability distribution. Then there is a unique probability vector w satisfying
wP = . Moreover, for any starting distribution, tlim a® exists and equals 7.

—00
Proof: Note that a® is itself a probability vector, since its components are nonnegative
and sum to one. After one step, the distribution of the Markov chain starting from the
distribution a® is a® P. The change in probabilities due to this step.
1

1 _
p(l) + p(z) 4+t p(t)] _ ; [p(o) + p(l) 4+t p(t 1)}

a®p _ g —

A/~ 1

| =k =k =
T
—
o+
N
T
—
=)
=
SN—

Thus, b®) = a®P—a® satisfies [b®| < 2 and goes to zero as t — oo. Thus, Jim a' exists.
—00

By Lemma 5.1 above, A = [P — I,1] has rank n. Since the first n columns of A
sum to zero, the n x n submatrix B of A consisting of all its columns except the first is
invertible. Let ¢® be obtained from b® = a® P —a® by removing the first entry so that
a® B = [c® 1]. Then a® = [c¢® | 1]B~! — [0, 1]B~! implying w = [0, 1]B~". m

140

Observe that the expected time r, for a Markov chain starting in state x to return to
state x is the reciprocal of the stationary probability of z. That is r, = % Intuitively
this follows by observing that if a long walk always returns to state x in exactly r, steps,
the frequency of being in a state x would be % A rigorous proof requires the Strong Law
of Large Numbers.

We finish this section with the following lemma useful in establishing that a probability
distribution is the stationary probability distribution for a random walk on a connected
graph with edge probabilities.

Lemma 5.3 For a random walk on a strongly connected graph with probabilities on the
edges, if the vector ™ satisfies TyPyy = Typys for all x and y and) m, = 1, then 7 is
the stationary distribution of the walk.

Proof: Since 7 satisfies m,p,, = mypy., summing both sides, 7, = > m,p,, and hence 7

Yy
satisfies m = 7w P. By Theorem 5.2, 7r is the unique stationary probability.]

5.2 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is a technique for sampling a mul-
tivariate probability distribution p(x), where x = (x1, s, ..., z4). The MCMC method is
used to estimate the expected value of a function f(x)

E(f)=>_ fx)p(x).

If each z; can take on two or more values, then there are at least 2¢ values for x, so an
explicit summation requires exponential time. Instead, one could draw a set of samples,
each sample x with probability p(x). Averaging f over these samples provides an estimate
of the sum.

To sample according to p(x), design a Markov Chain whose states correspond to the
possible values of x and whose stationary probability distribution is p(x). There are two
general techniques to design such a Markov Chain: the Metropolis-Hastings algorithm
and Gibbs sampling. The Fundamental Theorem of Markov Chains, Theorem 5.2, states
that the average of f over states seen in a sufficiently long run is a good estimate of E(f).
The harder task is to show that the number of steps needed before the long-run average
probabilities are close to the stationary distribution grows polynomially in d, though the
total number of states may grow exponentially in d. This phenomenon known as rapid
mazing happens for a number of interesting examples. Section 5.4 presents a crucial tool
used to show rapid mixing.

We used x € R? to emphasize that distributions are multi-variate. From a Markov
chain perspective, each value x can take on is a state, i.e., a vertex of the graph on which

141

the random walk takes place. Henceforth, we will use the subscripts 4, j, k, ... to denote
states and will use p; instead of p(xy1,zs,...,z4) to denote the probability of the state
corresponding to a given set of values for the variables. Recall that in the Markov chain
terminology, vertices of the graph are called states.

Recall the notation that p(® is the row vector of probabilities of the random walk
being at each state (vertex of the graph) at time ¢. So, p*) has as many components as
there are states and its ¥ component, pgt), is the probability of being in state ¢ at time
t. Recall the long-term t-step average is

1 _
a(t) — ? [p(o) + p(l) 4+t p(t 1)] . (51)

The expected value of the function f under the probability distribution p is E(f) =
> fipi where f; is the value of f at state i. Our estimate of this quantity will be the
average value of f at the states seen in a t step walk. Call this estimate a. Clearly, the
expected value of a is

1 t
E(a) = Z fi <¥ ZProb (walk is in state 7 at time])> - Z fz-a,(“-

J=1

The expectation here is with respect to the “coin tosses” of the algorithm, not with respect
to the underlying distribution p. Let f.x denote the maximum absolute value of f. It is
easy to see that

Zfipi — E(a)

< fax 3 i — 0] = fraxlp — 2y (5.2)

where the quantity [p —a®|, is the [, distance between the probability distributions p
and a® and is often called the “total variation distance” between the distributions. We
will build tools to upper bound |p —a®|;. Since p is the stationary distribution, the ¢ for
which |p — a®)|; becomes small is determined by the rate of convergence of the Markov
chain to its steady state.

The following proposition is often useful.

Proposition 5.4 For two probability distributions p and q,
p—qli=2 Z(Pz —q)t =2 Z(% —pi)"

where x* =z if x >0 and 7 =0 if x < 0.

The proof is left as an exercise.

142

5.2.1 Metropolis-Hasting Algorithm

The Metropolis-Hasting algorithm is a general method to design a Markov chain whose
stationary distribution is a given target distribution p. Start with a connected undirected
graph G on the set of states. If the states are the lattice points (z1, 7o, ..., z4) in R? with
x; € {0,1,2,,...,n}, then G is the lattice graph with 2d coordinate edges at each interior
vertex. In general, let r be the maximum degree of any vertex of G. The transitions of
the Markov chain are defined as follows. At state i select neighbor j with probability %
Since the degree of ¢ may be less than r, with some probability no edge is selected and the
walk remains at 7. If a neighbor j is selected and p; > p;, go to j. If p; < p;, go to j with
probability p;/p; and stay at ¢ with probability 1 — I;—Z. Intuitively, this favors “heavier”
states with higher p values. So, for i, adjacent to j in G,

1 .
Pij = —min (1, &>
r Di

pii=1— Zpij-

J#i

and

Thus,
i . Dj r . i . Di
Pipi; = — 1in <1; —]) = - mln(piapj) = ~2 min <1’ —> = D;Dji-
T Di T T pj
By Lemma 5.3, the stationary probabilities are indeed p(x) as desired.

Example: Consider the graph in Figure 5.2. Using the Metropolis-Hasting algorithm,

assign transition probabilities so that the stationary probability of a random walk is

p(a) = 3, p(b) = 1, p(c) = 3, and p(d) = §. The maximum degree of any vertex is three,
1. . - 112 1 1. .

so at a, the prlol)gxblht%/ of taking the edge (a,b) is 377 or ¢. The probability of taking the

edge (a,c) is 553 or 15 and of taking the edge (a,d) is 332 or 15. Thus, the probability

of staying at a is % The probability of taking the edge from b to a is % The probability
of taking the edge from c to a is % and the probability of taking the edge from d to a is
1 . o 11 11 11 12 _ 1 e :

3. Thus, the stationary probability of a is ;3 + g3 + 53 + 35 = 3, which is the desired
probability. |

5.2.2 Gibbs Sampling

Gibbs sampling is another Markov Chain Monte Carlo method to sample from a
multivariate probability distribution. Let p(x) be the target distribution where x =
(x1,...,24). Gibbs sampling consists of a random walk on an undirectd graph whose
vertices correspond to the values of x = (z1,...,24) and in which there is an edge from
x to y if x and y differ in only one coordinate. Thus, the underlying graph is like a
d-dimensional lattice except that the vertices in the same coordinate line form a clique.

To generate samples of x = (z1,...,x4) with a target distribution p(x), the Gibbs
sampling algorithm repeats the following steps. One of the variables z; is chosen to be

143

1 1
3 1 a—b 1121 c—a 3
112 _ 1 1
_ 112 _ 1 1
b) = a—aq 1-1_1_1_2 c—c 1-1_1_1_4

3

=
N N N

=
I

o
S— —r
I
ool OOl B o)

s

b—a 1 d—a 1

b—c L1141 d—c 1
% b—0b 1 = d—d 1
b

Figure 5.2: Using the Metropolis-Hasting algorithm to set probabilities for a random walk
so that the stationary probability will be the desired probability.

updated. Its new value is chosen based on the marginal probability of x; with the other
variables fixed. There are two commonly used schemes to determine which x; to update.
One scheme is to choose z; randomly, the other is to choose x; by sequentially scanning
from x; to x4.

Suppose that x and y are two states that differ in only one coordinate. Without loss
of generality let that coordinate be the first. Then, in the scheme where a coordinate is
randomly chosen to modify, the probability pxy, of going from x to y is

1
Pxy = C_Zp(y1|x27 XT3y ,ZL’d).

The normalizing constant is 1/d since > (y1|x2, 23, ..., 24) equals 1 and summing over d
Y1
coordinates gives a value of d. Similarly,

1
Pyx :C_lp(xlly27 Y3, ... ayd)

1

:C—ZP($1|562, T3, ... 7$d)-

144

oo = ==
O — W N

~
w

w
—_

N N e e e e N N N
ElelH D= BleIH 0= D= i Wl

Y
\'CAJ
[\

®lw
AN N N N N N S S

w
w

panaz) = 312/ (P + P12+ 03 =351/Gis =35/ = 533 = ¢

Calculation of edge probability p(i1).12)

_ 114 _ 1 _ 114 2 _ 114 _ 2 118 _ 2

banae) =373 =% P2y =333 =9 Py =333 =9 P22 T 33 ~ 9
114 _ 1 _ 114 _ 1 _ 114 1 _ 118 _ 1

Pan@s) = 353 T 9 Pa2)(13) = 353 T 9 Pa3)(12) = 333 =6 PeD(23) = 3123 — 9
_ 118 _ 1 1112 1 113 _ 1 _ 118 _ 4

Pan(1) = 385 — 10 Pa22) =357 — 7 PO3)(23) = 3121 — 8 P@eHA) T 335 = 15
_ 118 _ 2 _ 1112 1 _ 113 1 _ 118 2

PanEy) = 35 — 13 P22 =357 — 7 PO3)B3) T 3121 — 8 PEHEL T 355 — 15

Edge probabilities.

Pupana2) = %% i% = P12P(12)(11)

P11P@a1)(13) = %% = %% = P13P(13)(11)

PuiP@a)(21) = %% = %% = P21P(21)(11)

Verification of a few edges.

Note that the edge probabilities out of a state such as (1,1) do not add up to one.

That is, with some probability the walk stays at the state that it is in. For example,

panay = 1 = (Panaz) + Panas) + panen +panen) =1 —§ — 5 — 35 — 21 = 35-

Figure 5.3: Using the Gibbs algorithm to set probabilities for a random walk so that the
stationary probability will be a desired probability.

145

Here use was made of the fact that for j # 1, z; = y;.

It is simple to see that this chain has stationary probability proportional to p (x).
Rewrite pyy as

_ 1p(yr|xo, @3, ... xq)p(xe, 3, . . ., T4)
Pxy = 5
p(xa, 3, ..., Ta)
— lp(yl’ L2, L35 - - - de)
d p(ry,x3,...,7q)
1y

dp(x%x?)u s 7[L'd>

QU

again using x; = y; for j # 1. Similarly write

o= L p(x)
v dp(l‘g,xg,...,l'd)

from which it follows that p(x)psy = p(¥)Pys- By Lemma 5.3 the stationary probability
of the random walk is p(x).

5.3 Areas and Volumes

Computing areas and volumes is a classical problem. For many regular figures in
two and three dimensions there are closed form formulae. In Chapter 2, we saw how to
compute volume of a high dimensional sphere by integration. For general convex sets in
d-space, there are no closed form formulae. Can we estimate volumes of d-dimensional
convex sets in time that grows as a polynomial function of d? The MCMC method answes
this question in the affirmative.

One way to estimate the area of the region is to enclose it in a rectangle and estimate
the ratio of the area of the region to the area of the rectangle by picking random points
in the rectangle and seeing what proportion land in the region. Such methods fail in high
dimensions. Even for a sphere in high dimension, a cube enclosing the sphere has expo-
nentially larger area, so exponentially many samples are required to estimate the volume
of the sphere.

It turns out that the problem of estimating volumes of sets is reducible to the problem
of drawing uniform random samples from sets. Suppose one wants to estimate the volume
of a convex set R. Create a concentric series of larger and larger spheres Sy, Ss, ..., S
such that S; is contained in R and .S; contains R. Then

Vol(Sy N R) Vol(Sy_1NR) Vol(Se N R)

1 = Vol = o 1
VoI(R) = Vol(Si N R) = G ig T A R Vol(Se o R) . Vol(S, 1 R) O

146

If the radius of the sphere S; is 1 + é times the radius of the sphere S;_;, then the value
of
Vol(Sk_1 N R)

VOl(Sk_g N R)

can be estimated by rejection sampling provided one can select points at random from a
d-dimensional region. Since the radii of the spheres grows as 1+ é, the number of spheres
is at most

O(logy1(1/q)7) = O(rd)

where r is the ratio of the radius of S; to the radius of 5;.

It remains to show how to draw a uniform random sample from a d-dimensional set.
It is at this point that we require the set to be convex so that the Markov chain technique
will converge quickly to its stationary probability. To select a random sample from a
d-dimensional convex set impose a grid on the region and do a random walk on the grid
points. At each time, pick one of the 2d coordinate neighbors of the current grid point,
each with probability 1/(2d) and go to the neighbor if it is still in the set; otherwise, stay
put and repeat. If the grid length in each of the d coordinate directions is at most some
a, the total number of grid points in the set is at most a?. Although this is exponential in
d, the Markov chain turns out to be rapidly mixing (the proof is beyond our scope here)
and leads to polynomial time bounded algorithm to estimate the volume of any convex
set in RY.

5.4 Convergence of Random Walks on Undirected Graphs

The Metropolis-Hasting algorithm and Gibbs sampling both involve a random walk.
Initial states of the walk are highly dependent on the start state of the walk. Both
these walks are random walks on edge-weighted undirected graphs. Such Markov chains
are derived from electrical networks. Recall the following notation which we will use
throughout this section. Given a network of resistors, the conductance of edge (z,y)
is denoted c¢,, and the normalizing constant c, equals Zy Czy- The Markov chain has
transition probabilities p,, = ¢, /c,. We assume the chain is connected. Since

CoPry = Cccwy/cw = Cpy = Cygp = Cycya:/cy = CyPazy

the stationary probabilities are proportional to ¢, where the normalization constant is

co=,Cs

An important question is how fast the walk starts to reflect the stationary probability
of the Markov process. If the convergence time was proportional to the number of states,
the algorithms would not be very useful since the number of states can be exponentially
large.

There are clear examples of connected chains that take a long time to converge. A
chain with a constriction, see Figure 5.4, takes a long time to converge since the walk is

147

Figure 5.4: A network with a constriction.

unlikely to reach the narrow passage between the two halves, both of which are reasonably
big. We will show in Theorem 5.5 that the time to converge is quantitatively related to
the tightest constriction.

A function is unimodal if it has a single maximum, i.e., it increases and then decreases.
A unimodal function like the normal density has no constriction blocking a random walk
from getting out of a large set of states, whereas a bimodal function can have a con-
striction. Interestingly, many common multivariate distributions as well as univariate
probability distributions like the normal and exponential are unimodal and sampling ac-
cording to these distributions can be done using the methods here.

A natural problem is estimating the probability of a convex region in d-space according
to a normal distribution. One technique to do this is rejection sampling. Let R be the
region defined by the inequality x1 + 2o + - + x4/2 < 24041 + -+ + x4. Pick a sample
according to the normal distribution and accept the sample if it satisfies the inequality. If
not, reject the sample and retry until one gets a number of samples satisfying the inequal-
ity. The probability of the region is approximated by the fraction of the samples that
satisfied the inequality. However, suppose R was the region 1+ x5+ -+ 241 < x4. The
probability of this region is exponentially small in d and so rejection sampling runs into
the problem that we need to pick exponentially many samples before we accept even one
sample. This second situation is typical. Imagine computing the probability of failure of
a system. The object of design is to make the system reliable, so the failure probability is
likely to be very low and rejection sampling will take a long time to estimate the failure
probability.

In general, there could be constrictions that prevent rapid convergence of a Markov
chain to its stationary probability. However, if the set is convex in any number of dimen-

148

sions, then there are no constrictions and there is rapid convergence although the proof
of this is beyond the scope of this book.

We define below a combinatorial measure of constriction for a Markov chain, called the
normalized conductance, and relate this quantity to the rate at which the chain converges
to the stationarity probability.

Definition 5.1 For a subset S of vertices, the normalized conductance ®(S) of S is
the probability of taking a step from S to outside S conditioned on starting in S in the
stationary probability distribution .

(z.y)
PS) = —=—
(5)= "5
zeS
[|
Definition 5.2 The normalized conductance of the Markov chain, denoted ®, is defined
by
® = min ¢(9).
W(S)Sg/z

The restriction to sets with 7 < 1/2 in the definition of ® is natural. The definition of
® guarantees that if ® is high, there is high probability of moving from S to S so it is
unlikely to get stuck in S provided 7(S) < L. If m(S) > 1, say 7(S) = 2, then since for
every edge m;pi; = T;pji

D ics Tilij o Eje? TjiPji

Zies T 3 Zje? Tk

Since ®(S) > @ , we still have at least ®/3 probability of moving out of S. The larger
7(S) is the smaller the probability of moving out, which is as it should be. We cannot
move out of the whole set! One does not need to escape from big sets. Note that a
constriction would mean a small ®.

P(9) = =d(9)/3

Definition 5.3 Fize > 0. The e-mixing time of a Markov chain is the minimum integert
such that for any starting distribution p®), the 1-norm distance between the t-step running
average probability distribution'® and the stationary distribution is at most . B

The theorem below states that if ®, the normalized conductance of the Markov chain,
is large, then there is fast convergence of the running average probability. Intuitively, if

10Recall that a® = 2(p(® + p(M) + ... 4+ pt=1)) is called the running average distribution.

149

® is large, the walk rapidly leaves any subset of states. Later we will see examples where
the mixing time is much smaller than the cover time. That is, the number of steps before
a random walk reaches a random state independent of its starting state is much smaller
than the average number of steps needed to reach every state. In fact for some graphs,
called expenders, the mixing time is logarithmic in the number of states.

Theorem 5.5 The e-mizing time of a random walk on an undirected graph is

o (1))

d2e3
where Ty, 15 the minimum stationary probability of any state.

Proof: Let
~cIn(1/7min)
t= P22 ’
for a suitable constant ¢. Let a = a® be the running average distribution for this value
of t. We need to show that |a — 7| < e.

Let v; denote the ratio of the long term average probability for state ¢ at time ¢ di-
vided by the stationary probability for state i. Thus, v; = 2. Renumber states so that
v1 > vy > ---. A state ¢ for which v; > 1 has more probabilitgf than its stationary proba-
bility. Execute one step of the Markov chain starting at probabilities a. The probability
vector after that step is aP. Now, a — aP is the net loss of probability for each state due
to the step. Let k be any integer with v, > 1. Let A ={1,2,...,k}. Ais a “heavy” set,
consisting of states with a; > ;. The net loss of probability for each state from the set
A in one step is Y.~ (a; — (aP);) < 2 as in the proof of Theorem 5.2.

Another way to reckon the net loss of probability from A is to take the difference of
the probability flow from A to A and the flow from A to A. For i < j,

net-flow(s, j) = flow(s, j) — flow(j, i) = mpi;vi — mjpjiv; = wipji(vi —v;) >0,

Thus, for any [> k, the flow from A to {k + 1,k + 2,...,l} minus the flow from {k +
1,k+2,...,1} to A is nonnegative. At each step, heavy sets loose probability. Since for
t <k and j > [, we have v; > v}, and v; < v;44, the net loss from A is at least

Z mipji(vi — vj) > (Vg — vig1) Z TiDji-
i<k i<k
G>1 >l

Thus,
2
(v — V1) Zﬂ'jpji < 7

i<k
j>l

150

If the total stationary probability 7({i|v; < 1}) of those states where the current proba-
bility is less than their stationary probability is less than /2, then

la— 7| = 22(1 —v)m < g,

(2
Uigl

so we are done. Assume 7({i|v; < 1}) > /2 so that 7(A) > e min(7(A), 7(A))/2. Choose
[to be the largest integer greater than or equal to k so that

Xl: 7, < ebr(A)/2.

j=k+1

Since

by the definition of P,

> mpji > @min(w(A), w(A)) > eOr(A).

i<k<j

Thus, > m;pj; > ePr(A)/2. Substituting into the inequality 5.4 gives
i<k
7>l

8

<) (5.3)

Vi — V41

This inequality says that v does not drop too much as we go from k£ to [+ 1. On the
other hand, the cumulative total of 7= will have increased, since, m + w9 + -+ + M1 >
p(my + my + -+ - + mg), where, p =1+ %. We will be able to use this repeatedly to argue
that overall v does not drop too much. If that is the case (in the extreme, for example,
if all the v; are 1 each), then intuitively, a &~ 7r, which is what we are trying to prove.
Unfortunately, the technical execution of this argument is a bit messy - we have to divide
{1,2,...,n} into groups and consider the drop in v as we move from one group to the
next and then add up. We do this now.

Divide {1,2,...} into groups as follows. The first group G; is {1}. In general, if the
r*" group G, begins with state k, the next group G,.; begins with state [4+ 1 where [is
as defined above. Let iy be the largest integer with v;, > 1. Stop with G,,, if G,,+1 would
begin with an ¢ > iy. If group G, begins in ¢, define u, = v;.

a—), <2 mvi—1) <> w(G)(ur—1) =Y w(G1UGU...UG,)(ty —),
=1

r=1 r=1

151

where the analog of integration by parts for sums is used in the last step using the
convention that u,, 1 = 1. Since u, — u, 41 < 8/edw (G U ... UG,), the sum is at most
8m/te®. Since 71 + mo + - + w1 > p(m + Mo+ -+ W),

m < In,(1/m) < In(1/m)/(p -).

Thus |a— 7|, < O(In(1/mmm)/tP%e?) < e for a suitable choice of ¢ and this completes
the proof. m

5.4.1 Using Normalized Conductance to Prove Convergence

We now apply Theorem 5.5 to some examples to illustrate how the normalized con-
ductance bounds the rate of convergence. Our first examples will be simple graphs. The
graphs do not have rapid converge, but their simplicity helps illustrate how to bound the
normalized conductance and hence the rate of convergence.

A 1-dimensional lattice

Consider a random walk on an undirected graph consisting of an n-vertex path with
self-loops at the both ends. With the self loops, the stationary probability is a uniform %
over all vertices. The set with minimum normalized conductance is the set with probability
T <= % and the maximum number of vertices with the minimum number of edges leaving
it. This set consists of the first n/2 vertices, for which total conductance of edges from
S to S is Tapn niy = Q(%) and 7(S5) = 3. (7= is the stationary probability of vertex
numbered .) Thus

(I)(S) = 271'% p%7%+1 = Q(l/n)

By Theorem 5.5, for € a constant such as 1/100, after O(n?logn) steps, |a®) —r|; < 1/100.
This graph does not have rapid convergence. The hitting time and the cover time are
O(n?). In many interesting cases, the mixing time may be much smaller than the cover
time. We will see such an example later.

A 2-dimensional lattice

Consider the n x n lattice in the plane where from each point there is a transition to
each of the coordinate neighbors with probability /4. At the boundary there are self-loops
with probability 1-(number of neighbors)/4. It is easy to see that the chain is connected.
Since p;; = pji, the function f; = 1/n? satisfies firij = fijpji and by Lemma 5.3 is the
stationary probability. Consider any subset S consisting of at most half the states. Index
states by their z and y coordinates. For at least half the states in S, either row z or
column y intersects S (Exercise 5.5). So at least Q(|S|/n) points in S are adjacent to
points in S. Each such point contributes m;p;; = Q(1/n?) to flow(S,S). So

Z Z mpy > c|S|/n®.

i€S je8

152

Thus, ® > Q(1/n). By Theorem 5.5, after O(n?Inn/2) steps, |a®®) — |, < 1/100.
A lattice in d-dimensions

Next consider the n x n x .-+ x n lattice in d-dimensions with a self-loop at each
boundary point with probability 1 — (number of neighbors)/2d. The self loops make all
7; equal to n~¢. View the lattice as an undirected graph and consider the random walk
on this undirected graph. Since there are n? states, the cover time is at least n¢ and thus
exponentially dependent on d. It is possible to show (Exercise 5.21) that ® is 2(1/dn).
Since all m; are equal to n~¢, the mixing time is O(d*n?Inn/e?), which is polynomially
bounded in n and d.

The d-dimensional lattice is related to the Metropolis-Hastings algorithm and Gibbs
sampling although in those constructions there is a nonuniform probability distribution at
the vertices. However, the d-dimension lattice case suggests why the Metropolis-Hastings
and Gibbs sampling constructions might converge fast.

A clique

Consider an n vertex clique with a self loop at each vertex. For each edge, p,, = -
and thus for each vertex, m, = % Let S be a subset of the vertices. Then

_ 15|
Zﬂ'm = 7

z€S
1 —
> by = SIS
(zy)
and —
2 (oy) TPy _ |9
a(s) = Zw P _ IS
ZxES Ta n
Now ® = min ®(S) for |S| < % and hence |S| > 2. Thus ® = min ®(S) = 3. This gives

S
w(9)<1/2
In ﬂl, Inn

A connected undirected graph

a mixing time of

Next consider a random walk on a connected n vertex undirected graph where at each
vertex all edges are equally likely. The stationary probability of a vertex equals the degree
of the vertex divided by the sum of degrees which equals twice the number of edges. The

153

sum of the vertex degrees is at most n? and thus, the steady state probability of each
vertex is at least % Since the degree of a vertex is at most n, the probability of each edge
at a vertex is at least % For any S, the total conductance of edges out of S is greater
than or equal to

111
n2n n3
Thus, ® is at least # Since Ty > n%, In mrl“_n = O(lnn). Thus, the mixing time is

O(n®Inn/e?).
The Gaussian distribution on the interval [-1,1]

Consider the interval [—1,1]. Let § be a “grid size” specified later and let G be the
graph consisting of a path on the % + 1 vertices {—1,—1+6,—1+24,...,1—46,1} having
self loops at the two ends. Let 7, = ce™®*" for z € {-1,-1+6,-1+24,...,1—0,1}
where o > 1 and ¢ has been adjusted so that > m, = 1.

We now describe a simple Markov chain with the 7, as its stationary probability and
argue its fast convergence. With the Metropolis-Hastings’ construction, the transition
probabilities are

1 p—a(a+0)? 1 e—a(z—0)?
Prass =—min | 1, ——— | and pp, s = —min | 1, ———— | .
’ 2 eaz ' 2 e~ oz

Let S be any subset of states with 7w (S) <
[k6,1] for k > 1. Tt is easy to see that

%. Consider the case when S is an interval

w(9) < / ce™ " dx

—(k—1)3

< /Oo Lce"”2 dx
(k—1)6 (k—1)0
0 (Cea((k1)6)2>
alk—1)48 |

Now there is only one edge from S to S and total conductance of edges out of S is
Z Z TiDij = ThsDhs,(k-1)5 = min(ce_ak2527 Ce—a(k—1)262) _ Ce—ak252.
i€S j¢s
Using 1 <k <1/ and o > 1, ®(5) is
W(S) - ce—((k—1)d)?
> Q(ak — 1)de 1) > (ge=0(9),

®(5)

154

For 0 < 1, we have ad < 1, so e (@) = Q(1), thus, ®(S) > Q(5). Now, Ty > ce ™ >
e /% so In(1/ M) < 1/6.

If S is not an interval of the form [k, 1] or [—1, k], then the situation is only better
since there is more than one “boundary” point which contributes to flow(S,S). We do
not present this argument here. By Theorem 5.5 in (1/3¢?) steps, a walk gets within e
of the steady state distribution.

In these examples, we have chosen simple probability distributions. The methods ex-
tend to more complex situations.

5.5 Electrical Networks and Random Walks

In the next few sections, we study the relationship between electrical networks and
random walks on undirected graphs. The graphs have nonnegative weights on each edge.
A step is executed by picking a random edge from the current vertex with probability
proportional to the edge’s weight and traversing the edge.

An electrical network is a connected, undirected graph in which each edge (z,y) has
a resistance r;, > 0. In what follows, it is easier to deal with conductance defined as the
reciprocal of resistance, ¢, = %, rather than resistance. Associated with an electrical
network is a random walk on the underlying graph defined by assigning a probability
Pzy = 2 to the edge (z,y) incident to the vertex x, where the normalizing constant c,

equals) ¢,y. Note that although c¢,, equals ¢, the probabilities p,, and p,, may not be

y
equal due to the normalization required to make the probabilities at each vertex sum to
one. We shall soon see that there is a relationship between current flowing in an electrical
network and a random walk on the underlying graph.

Since we assume that the undirected graph is connected, by Theorem 5.2 there is
a unique stationary probability distribution.The stationary probability distribution is 7
where 1, = Z—“g where ¢y = Y ¢,. To see this, for all x and y
x

Cy Co Co Cy Cux
TaPxy = o e L Ty Py
Co Cy Co Co Cy

and hence by Lemma 5.3, 7 is the unique stationary probability.

Harmonic functions

Harmonic functions are useful in developing the relationship between electrical net-
works and random walks on undirected graphs. Given an undirected graph, designate

155

\\/\/ \\/\/

Graph with boundary vertices Val‘ues. of harmonic functi.o‘n
dark and boundary conditions satisfying boundary conditions
specified where the edge weights at

each vertex are equal

Figure 5.5: Graph illustrating an harmonic function.

a nonempty set of vertices as boundary vertices and the remaining vertices as interior
vertices. A harmonic function g on the vertices is one in which the value of the function
at the boundary vertices is fixed to some boundary condition and the value of g at any
interior vertex x is a weighted average of the values at all the adjacent vertices y, with
weights p,, satisfying Ey pzy = 1 for each x. Thus, if at every interior vertex x for some
set of weights p,, satisfying >, puy =1, g» = J_ gyPay, then g is an harmonic function.

y

Example: Convert an electrical network with conductances c,, to a weighted, undirected

graph with probabilities p,,. Let f be a function satisfying fP = f where P is the matrix

of probabilities. It follows that the function g, = {—; is harmonic.

gxzi—Z:inypyx:CInycyz
nyczy Zi_ch_: =2 GyDay
Yy Yy

SIH

A harmonic function on a connected graph takes on its maximum and minimum on
the boundary. Suppose the maximum does not occur on the boundary. Let S be the
set of interior vertices at which the maximum value is attained. Since S contains no
boundary vertices, S is nonempty. Connectedness implies that there is at least one edge
(z,y) with z € S and y € S. The value of the function at x is the average of the value at
its neighbors, all of which are less than or equal to the value at x and the value at y is
strictly less, a contradiction. The proof for the minimum value is identical.

156

There is at most one harmonic function satisfying a given set of equations and bound-
ary conditions. For suppose there were two solutions, f(x) and g(z). The difference of two
solutions is itself harmonic. Since h(x) = f(z)—g(x) is harmonic and has value zero on the
boundary, by the min and max principles it has value zero everywhere. Thus f(z) = g(z).

The analogy between electrical networks and random walks

There are important connections between electrical networks and random walks on
undirected graphs. Choose two vertices a and b. For reference purposes let the voltage
v, equal zero. Attach a current source between a and b so that the voltage v, equals
one. Fixing the voltages at v, and v, induces voltages at all other vertices along with a
current flow through the edges of the network. The analogy between electrical networks
and random walks is the following. Having fixed the voltages at the vertices a and b, the
voltage at an arbitrary vertex x equals the probability of a random walk starting at x
reaching a before reaching b. If the voltage v, is adjusted so that the current flowing into
vertex a corresponds to one walk, then the current flowing through an edge is the net
frequency with which a random walk from a to b traverses the edge.

Probabilistic interpretation of voltages

Before showing that the voltage at an arbitrary vertex x equals the probability of a
random walk starting at = reaching a before reaching b, we first show that the voltages
form a harmonic function. Let z and y be adjacent vertices and let i,, be the current
flowing through the edge from x to y. By Ohm’s law,

loy = = (V2 — vy)Cay.

By Kirchhoff’s law the currents flowing out of each vertex sum to zero.
y
Replacing currents in the above sum by the voltage difference times the conductance

yields
> (0=)iy 0

Y

Uy g Cay = E VyCoy-
y y

Observing that > ¢,, = ¢, and that p,, = C;”—y, yields vyc, = > vypyyc,. Hence,
y

or

y
Uy = Y, UyPasy. Thus, the voltage at each vertex = is a weighted average of the volt-
y

ages at the adjacent vertices. Hence the voltages form a harmonic function with {a, b} as

157

the boundary.

Let p, be the probability that a random walk starting at vertex x reaches a before b.
Clearly p, = 1 and p, = 0. Since v, = 1 and v, = 0, it follows that p, = v, and p, = v.
Furthermore, the probability of the walk reaching a from x before reaching b is the sum
over all y adjacent to x of the probability of the walk going from z to y in the first step
and then reaching a from y before reaching b. That is

Pz = Zpa:ypy'
Yy

Hence, p, is the same harmonic function as the voltage function v, and v and p satisfy the
same boundary conditions at a and b.. Thus, they are identical functions. The probability
of a walk starting at x reaching a before reaching b is the voltage v,.

Probabilistic interpretation of current

In a moment, we will set the current into the network at a to have a value which we will
equate with one random walk. We will then show that the current i, is the net frequency
with which a random walk from a to b goes through the edge xy before reaching b. Let
u, be the expected number of visits to vertex x on a walk from a to b before reaching b.
Clearly u, = 0. Every time the walk visits x, x not equal to a, it must come to x from
some vertex y. Thus, the number of visits to x before reaching b is the sum over all y of
the number of visits u, to y before reaching b times the probability p,, of going from y
to x. For x not equal to b or a

Uy = Z UyPya-

y#b

CaxPzy
Uy = Uy
C

all y Y

Since up = 0 and ¢; Dy = CyPya

and hence %= = %~ 2¢p It follows that “= is harmonic with ¢ and b as the boundary
T Yy T
y

where the boundary conditions are u, = 0 and u, equals some fixed value. Now, Z—: =
Setting the current into a to one, fixed the value of v,. Adjust the current into a so that
Uq equals £¢. Now = and v, satisfy the same boundary conditions and thus are the same
harmonic function. Let the current into a correspond to one walk. Note that if the walk
starts at a and ends at b, the expected value of the difference between the number of times
the walk leaves a and enters a must be one. This implies that the amount of current into
a corresponds to one walk.

Next we need to show that the current i,, is the net frequency with which a random
walk traverses edge xy.

, Uy Uy Cay Cay
bzy = (Vp — Uy)Cay = (c_ - c_> Cay = Uz — Uy - = UgPzy — UyDya
x y

The quantity w,p,, is the expected number of times the edge zy is traversed from z to y
and the quantity w,p,, is the expected number of times the edge zy is traversed from y to
x. Thus, the current i,, is the expected net number of traversals of the edge zy from x to y.

Effective resistance and escape probability

Set v, = 1 and v, = 0. Let 7, be the current flowing into the network at vertex a and
out at vertex b. Define the effective resistance rorr between a and b to be refp = ;’—Z and
the effective conductance c.ss to be c.pp = ﬁ Define the escape probability, pescape, tO
be the probability that a random walk starting at a reaches b before returning to a. We
now show that the escape probability is % For convenience, assume that a and b are
not adjacent. A slight modification of the argument suffices for the case when a and b are

adjacent.

o= 3" (00— v)cuy

Since v, = 1,

For each y adjacent to the vertex a, p,, is the probability of the walk going from vertex
a to vertex y. Earlier we showed that v, is the probability of a walk starting at y going
to a before reaching b. Thus,) p,,v, is the probability of a walk starting at a returning

y
to a before reaching b and 1 — > pg, v, is the probability of a walk starting at a reaching
y

b before returning to a. Thus, i, = CaPescape- Since v, = 1 and cepp = L=, it follows that

Va
iy . _ Ceff
Ceff = Ug - Thus, Cefr = CoDescape a0 hence pescape = .

Ca

For a finite connected graph, the escape probability will always be nonzero. Now
consider an infinite graph such as a lattice and a random walk starting at some vertex
a. Form a series of finite graphs by merging all vertices at distance d or greater from a
into a single vertex b for larger and larger values of d. The limit of pescape as d goes to
infinity is the probability that the random walk will never return to a. If pegseape — 0, then
eventually any random walk will return to a. If pescape — ¢ Where ¢ > 0, then a fraction
of the walks never return. Thus, the escape probability terminology.

5.6 Random Walks on Undirected Graphs with Unit Edge Weights

We now focus our discussion on random walks on undirected graphs with uniform
edge weights. At each vertex, the random walk is equally likely to take any edge. This

159

corresponds to an electrical network in which all edge resistances are one. Assume the
graph is connected. We consider questions such as what is the expected time for a random
walk starting at a vertex x to reach a target vertex y, what is the expected time until the
random walk returns to the vertex it started at, and what is the expected time to reach
every vertex?

Hitting time

The hitting time hy,, sometimes called discovery time, is the expected time of a ran-
dom walk starting at vertex x to reach vertex y. Sometimes a more general definition is
given where the hitting time is the expected time to reach a vertex y from a given starting
probability distribution.

One interesting fact is that adding edges to a graph may either increase or decrease
hsy, depending on the particular situation. Adding an edge can shorten the distance from
x to y thereby decreasing h,, or the edge could increase the probability of a random walk
going to some far off portion of the graph thereby increasing h,,. Another interesting
fact is that hitting time is not symmetric. The expected time to reach a vertex y from a
vertex x in an undirected graph may be radically different from the time to reach x from y.

We start with two technical lemmas. The first lemma states that the expected time
to traverse a path of n vertices is © (n?).

Lemma 5.6 The expected time for a random walk starting at one end of a path of n
vertices to reach the other end is © (n?).

Proof: Consider walking from vertex 1 to vertex n in a graph consisting of a single path
of n vertices. Let h;;, ¢ < j, be the hitting time of reaching j starting from i. Now his =1
and

M1 =5+ 51 +hi—ri) =1+ 5 (hici+higa) 2<i<n-—1

Solving for h;;; yields the recurrence
hiig1 =2+ hi1;.

Solving the recurrence yields
hiiv1 =21 — 1.

160

To get from 1 to n, go from 1 to 2, 2 to 3, etc. Thus

n—1 n—1
hin =3 higa =Y (2i—1)
i=1 i=1
n—1 n—1
=2 Zz — Z 1
=1 =1
n(n—1)
=2 -1
)
=(n— 1)2

The lemma says that in a random walk on a line where we are equally likely to take
one step to the right or left each time, the farthest we will go away from the start in n

steps is O(y/n).

The next lemma shows that the expected time spent at vertex ¢ by a random walk
from vertex 1 to vertex n in a chain of n vertices is 2(— 1) for 2 <i <mn — 1.

Lemma 5.7 Consider a random walk from vertex 1 to vertex n in a chain of n vertices.
Let t(i) be the expected time spent at vertex i. Then

n—1 1 =1
t(i)=14 2(n—1i) 2<i<n-—1
1 7 =n.

Proof: Now t (n) = 1 since the walk stops when it reaches vertex n. Half of the time when
the walk is at vertex n — 1 it goes to vertex n. Thus ¢t (n —1) = 2. For 3 <i<n—1,
t(i) = 5[t(i—1)+t(i+1)] and ¢ (1) and ¢(2) satisfy ¢ (1) = 3¢(2) + 1 and t(2) =
(1) 4 3t (3). Solving for t(i + 1) for 3 <i <n — 1 yields

t(i+1) = 2t(i) — t(i — 1)

which has solution ¢(i) = 2(n — i) for 3 <i < n — 1. Then solving for ¢(2) and ¢(1) yields
t(2)=2(n—2)and t(1) =n — 1. Thus, the total time spent at vertices is

(n—1)(n—2)
2

n—14+21+24---4n-2)+1=(n—-1)+2 +1=(n—-1°+1
which is one more than hy, and thus is correct.]
Adding edges to a graph might either increase or decrease the hitting time h,,. Con-

sider the graph consisting of a single path of n vertices. Add edges to this graph to get the
graph in Figure 5.6 consisting of a clique of size n/2 connected to a path of n/2 vertices.

161

clique of
size n/2

\@ <

@ @ i i
n/2

Figure 5.6: Illustration that adding edges to a graph can either increase or decrease hitting
time.

Then add still more edges to get a clique of size n. Let x be the vertex at the midpoint of
the original path and let y be the other endpoint of the path consisting of n/2 vertices as
shown in the figure. In the first graph consisting of a single path of length n, h,, = © (n?).
In the second graph consisting of a clique of size n/2 along with a path of length n/2,
hey = © (n?). To see this latter statement, note that starting at x, the walk will go down
the path towards y and return to x n/2 times on average before reaching y for the first
time. Each time the walk in the path returns to x, with probability (n/2 — 1)/(n/2) it
enters the clique and thus on average enters the clique ©(n) times before starting down
the path again. Each time it enters the clique, it spends ©(n) time in the clique before
returning to x. Thus, each time the walk returns to x from the path it spends ©(n?) time
in the clique before starting down the path towards y for a total expected time that is
O(n?) before reaching y. In the third graph, which is the clique of size n, hy, = © (n).
Thus, adding edges first increased h,, from n? to n® and then decreased it to n.

Hitting time is not symmetric even in the case of undirected graphs. In the graph of
Figure 5.6, the expected time, h,,, of a random walk from x to y, where x is the vertex of
attachment and y is the other end vertex of the chain, is ©(n?). However, h,, is O(n?).

Commute time

The commute time, commute(z, y), is the expected time of a random walk starting at
x reaching y and then returning to x. So commute(x,y) = hyy, + hy,. Think of going
from home to office and returning home. We now relate the commute time to an electrical
quantity, the effective resistance. The effective resistance between two vertices x and y in
an electrical network is the voltage difference between x and y when one unit of current
is inserted at vertex x and withdrawn from vertex y.

Theorem 5.8 Given an undirected graph, consider the electrical network where each edge
of the graph is replaced by a one ohm resistor. Given vertices x and y, the commute time,

162

commute(z,y), equals 2mry, where ., is the effective resistance from x toy and m is the
number of edges in the graph.

Proof: Insert at each vertex i a current equal to the degree d; of vertex i. The total
current inserted is 2m where m is the number of edges. Extract from a specific vertex j
all of this 2m current. Let v;; be the voltage difference from i to j. The current into i
divides into the d; resistors at vertex ¢. The current in each resistor is proportional to the
voltage across it. Let k be a vertex adjacent to ¢. Then the current through the resistor
between ¢ and k is v;; — vy, the voltage drop across the resister. The sum of the currents
out of ¢ through the resisters must equal d;, the current injected into .

di =Y (vij — o) = divij — Y vk

k adj k adj
to 1 to 1

Solving for v;;

Vi = 1+ Z diivkj = Z dll(l +Ukj)- (54)

k adj k adj
to @ to i

Now the hitting time from ¢ to j is the average time over all paths from i to k adjacent
to ¢ and then on from k to j. This is given by

hij =Y +(1+ huy). (5.5)

k adj
to i

Subtracting (5.5) from (5.4), gives vij—hy; = % = (vkj — hy;). Thus, the function v;;— h;;
kadj

is harmonic. Designate vertex j as the only boundary vertex. The value of v;; — h;; at
i = j, namely v;; — hj;, is zero, since both v;; and h;; are zero. So the function v;; — h;;
must be zero everywhere. Thus, the voltage v;; equals the expected time h;; from i to j.

To complete the proof, note that h;; = v;; is the voltage from ¢ to j when currents are
inserted at all vertices in the graph and extracted at vertex j. If the current is extracted
from 7 instead of j, then the voltages change and v;; = hj; in the new setup. Finally,
reverse all currents in this latter step. The voltages change again and for the new voltages
—Vy; = h]z Since —Vj; = V45, WE get hjz' = Vjj-

Thus, when a current is inserted at each vertex equal to the degree of the vertex
and the current is extracted from j, the voltage v;; in this set up equals h;;. When we
extract the current from 7 instead of j and then reverse all currents, the voltage v;; in
this new set up equals hj;. Now, superpose both situations, i.e., add all the currents and

163

Insert current at each vertex
equal to degree of the vertex.

Extract 2m at vertex j. vy; = hy;

(a) (®)

Extract current from ¢ instead of j.
For new voltages vj; = hj;.

om & J 2m
— et
Reverse currents in (b). Superpose currents in (a) and (c).
For new voltages —vj; = hj;. 2mri; = vy = hy; + hy; = commute(i, j)

Since —Uj; = Viy, hji = Vij-

(© (d)

Figure 5.7: Illustration of proof that commute(z,y) = 2mr,, where m is the number of
edges in the undirected graph and r,, is the effective resistance between x and y.

voltages. By linearity, for the resulting v;;, which is the sum of the other two v;;’s, is
v;; = hij + hj;. All currents cancel except the 2m amps injected at ¢ and withdrawn at j.
Thus, 2mr;; = v;; = hij + hj; = commute(i, j) or commute(s, j) = 2mr;; where r;; is the
effective resistance from 7 to j. B

The following corollary follows from Theorem 5.8 since the effective resistance ry, is
less than or equal to one when u and v are connected by an edge.

Corollary 5.9 If vertices x and y are connected by an edge, then hyy + hy, < 2m where
m 1s the number of edges in the graph.

Proof: If x and y are connected by an edge, then the effective resistance r,,, is less than
or equal to one. m

Corollary 5.10 For vertices x andy in an n vertex graph, the commute time, commute(x,y),
is less than or equal to n?.

Proof: By Theorem 5.8 the commute time is given by the formula commute(z,y) =
2mry, where m is the number of edges. In an n vertex graph there exists a path from x

164

to y of length at most n. Since the resistance can not be greater than that of any path
from z to y, ry, < n. Since the number of edges is at most (g)

n
commute(x,y) = 2mry, < 2(2)n =§s

Again adding edges to a graph may increase or decrease the commute time. To see
this consider three graphs: the graph consisting of a chain of n vertices, the graph of
Figure 5.6, and the clique on n vertices.

Cover time

The cover time, cover(z,) , is the expected time of a random walk starting at vertex z
in the graph G to reach each vertex at least once. We write cover(z) when G is understood.
The cover time of an undirected graph G, denoted cover(G), is

cover(G) = max cover(z, G).

For cover time of an undirected graph, increasing the number of edges in the graph
may increase or decrease the cover time depending on the situation. Again consider three
graphs, a chain of length n which has cover time ©(n?), the graph in Figure 5.6 which has
cover time O(n?), and the complete graph on n vertices which has cover time ©(nlogn).
Adding edges to the chain of length n to create the graph in Figure 5.6 increases the
cover time from n? to n?® and then adding even more edges to obtain the complete graph
reduces the cover time to nlogn.

Note: The cover time of a clique is f(nlogn) since this is the time to select every
integer out of n integers with high probability, drawing integers at random. This is called
the coupon collector problem. The cover time for a straight line is ©(n?) since it is the
same as the hitting time. For the graph in Figure 5.6, the cover time is ©(n?) since one
takes the maximum over all start states and cover(z,G) = © (n3) where z is the vertex
of attachment.

Theorem 5.11 Let G be a connected graph with n vertices and m edges. The time for a
random walk to cover all vertices of the graph G is bounded above by 4m(n — 1).

Proof: Consider a depth first search of the graph G starting from some vertex z and let
T be the resulting depth first search spanning tree of G. The depth first search covers
every vertex. Consider the expected time to cover every vertex in the order visited by the
depth first search. Clearly this bounds the cover time of G starting from vertex z. Note
that each edge in T is traversed twice, once in each direction.

cover (z,G) < Z Py

(z,y)eT
(y,x)€T

165

If (z,y) is an edge in 7', then = and y are adjacent and thus Corollary 5.9 implies h,, <
2m. Since there are n — 1 edges in the dfs tree and each edge is traversed twice, once
in each direction, cover(z) < 4m(n — 1). This holds for all starting vertices z. Thus,
cover(G) < 4m(n —1). m

The theorem gives the correct answer of n? for the n/2 clique with the n/2 tail. It
gives an upper bound of n? for the n-clique where the actual cover time is nlog n.

Let r,, be the effective resistance from z to y. Define the resistance r.r;(G) of a graph
G by 1ef(G) = max(ry,).
x’y

Theorem 5.12 Let G be an undirected graph with m edges. Then the cover time for G
1s bounded by the following inequality

mres(G) < cover(G) < 2e*mrepp(G)Inn +n
where e=2.71 is Euler’s constant and r.;¢(G) is the resistance of G.

Proof: By definition r.;;(G) = max(rs,). Let w and v be the vertices of G for which
@y

Tzy 18 maximum. Then r.ss(G) = ry,. By Theorem 5.8, commute(u,v) = 2mry,. Hence
MYy = %commute(u, v). Clearly the commute time from u to v and back to w is less than
twice the max(hyy, hyy). Finally, max(hy,, by) is less than max(cover(u, G), cover(v, G))
which is clearly less than the cover time of G. Putting these facts together gives the first
inequality in the theorem.

mrepp(G) = mry, = geommute(u,v) < max(hyy, hy,) < cover(G)

For the second inequality in the theorem, by Theorem 5.8, for any x and y, commute(z, y)
equals 2mr,, which is less than or equal to 2mr.f¢(G), implying h,, < 2mr.;;(G). By
the Markov inequality, since the expected time to reach y starting at any z is less than
2mr.s(G), the probability that y is not reached from x in 2mr.;;(G)e® steps is at most
% Thus, the probability that a vertex y has not been reached in 2e*mr¢(G) log n steps
is at most e%,hm = n—lg, because a random walk of length 2e3mr(G)logn is a sequence of
logn independent random walks, each of length 2e*mr(G)res;(G). Suppose after a walk
of 2e*mrq;¢(G)logn steps, vertices vy, v, ...,y had not been reached. Walk until v; is
reached, then vy, etc. By Corollary 5.10 the expected time for each of these is n?, but
since each happens only with probability 1/n3, we effectively take O(1) time per v;, for a
total time at most n. More precisely,

cover(G) < 2¢*mr s 4(G)logn + Z Prob (v was not visited in the first 2e*mre;;(G) steps) n*

(2

1
< 2e’mrq;p(G) logn + Z En?’ < 2¢’mresp(G) + n.

166

5.7 Random Walks in Euclidean Space

Many physical processes such as Brownian motion are modeled by random walks.
Random walks in Fuclidean d-space consisting of fixed length steps parallel to the coor-
dinate axes are really random walks on a d-dimensional lattice and are a special case of
random walks on graphs. In a random walk on a graph, at each time unit an edge from
the current vertex is selected at random and the walk proceeds to the adjacent vertex.
We begin by studying random walks on lattices.

Random walks on lattices

We now apply the analogy between random walks and current to lattices. Consider
a random walk on a finite segment —n, ..., —1,0,1,2,...,n of a one dimensional lattice
starting from the origin. Is the walk certain to return to the origin or is there some prob-
ability that it will escape, i.e., reach the boundary before returning? The probability of
reaching the boundary before returning to the origin is called the escape probability. We
shall be interested in this quantity as n goes to infinity.

Convert the lattice to an electrical network by replacing each edge with a one ohm
resister. Then the probability of a walk starting at the origin reaching n or —n before
returning to the origin is the escape probability given by

Ceff
Ca

Pescape =

where c.y is the effective conductance between the origin and the boundary points and ¢,
is the sum of the conductance’s at the origin. In a d-dimensional lattice, ¢, = 2d assuming
that the resistors have value one. For the d-dimensional lattice

1

Pescape = m

In one dimension, the electrical network is just two series connections of n one ohm re-
sistors connected in parallel. So as n goes to infinity, r.r; goes to infinity and the escape
probability goes to zero as n goes to infinity. Thus, the walk in the unbounded one
dimensional lattice will return to the origin with probability one. This is equivalent to
flipping a balanced coin and keeping tract of the number of heads minus the number of
tails. The count will return to zero infinitely often. By Hoffding-Chernoff inequality, in n
steps with high probability, the walk will be within O(y/n) of the origin. in n steps with
high probability the walk will be within y/n distance of the origin.

Two dimensions
For the 2-dimensional lattice, consider a larger and larger square about the origin for
the boundary as shown in Figure 5.8a and consider the limit of r.;¢ as the squares get

larger. Shorting the resistors on each square can only reduce r.¢;. Shorting the resistors

167

0 1 2 3

‘4'12'20'

Number of resistors
in parallel

(a) (b)

Figure 5.8: 2-dimensional lattice along with the linear network resulting from shorting
resistors on the concentric squares about the origin.

results in the linear network shown in Figure 5.8b. As the paths get longer, the number
of resistors in parallel also increases. The resistor between vertex ¢ and ¢ 4+ 1 is really
4(2i+ 1) unit resistors in parallel. The effective resistance of 4(2i + 1) resistors in parallel
is 1/4(2i 4+ 1). Thus,

Tegf 231+ 5 +5+-=11+3+2+---)=0(nn).

Since the lower bound on the effective resistance and hence the effective resistance goes
to infinity, the escape probability goes to zero for the 2-dimensional lattice.

Three dimensions

In three dimensions, the resistance along any path to infinity grows to infinity but
the number of paths in parallel also grows to infinity. It turns out there are a sufficient
number of paths that r.;s remains finite and thus there is a nonzero escape probability.
We will prove this now. First note that shorting any edge decreases the resistance, so
we do not use shorting in this proof, since we seek to prove an upper bound on the
resistance. Instead we remove some edges, which increases their resistance to infinity and
hence increases the effective resistance, giving an upper bound. To simplify things we
consider walks on on quadrant rather than the full grid. The resistance to infinity derived
from only the quadrant is an upper bound on the resistance of the full grid.

The construction used in three dimensions is easier to explain first in two dimensions.

Draw dotted diagonal lines at z +y = 2" — 1. Consider two paths that start at the origin.
One goes up and the other goes to the right. Each time a path encounters a dotted

168

Figure 5.9: Paths in a 2-dimensional lattice obtained from the 3-dimensional construction
applied in 2-dimensions.

diagonal line, split the path into two, one which goes right and the other up. Where
two paths cross, split the vertex into two, keeping the paths separate. By a symmetry
argument, splitting the vertex does not change the resistance of the network. Remove
all resistors except those on these paths. The resistance of the original network is less
than that of the tree produced by this process since removing a resistor is equivalent to
increasing its resistance to infinity.

The distances between splits increase and are 1, 2, 4, etc. At each split the number
of paths in parallel doubles. See Figure 5.10. Thus, the resistance to infinity in this two
dimensional example is

1 1 1 1

1 1
L9 =S LS4 D4 = 0.
2+4 +8—|— 2+2+2—|— 00

In the analogous three dimensional construction, paths go up, to the right, and out of
the plane of the paper. The paths split three ways at planes given by x +y + z = 2" — 1.

169

e

1 2 4

Figure 5.10: Paths obtained from 2-dimensional lattice. Distances between splits double
as do the number of parallel paths.

Each time the paths split the number of parallel segments triple. Segments of the paths
between splits are of length 1, 2, 4, etc. and the resistance of the segments are equal to
the lengths. The resistance out to infinity for the tree is

1 1 1 _ 1 2 4 _1_1 _
ste2tmdt=5(0+3+5+)=3-2=1

The resistance of the three dimensional lattice is less. It is important to check that the
paths are edge-disjoint and so the tree is a subgraph of the lattice. Going to a subgraph is
equivalent to deleting edges which only increases the resistance. That is why the resistance
of the lattice is less than that of the tree. Thus, in three dimensions the escape probability
is nonzero. The upper bound on 7.y gives the lower bound

_ 11
Pescape = 2dross Z

D=

A lower bound on 7.s¢ gives an upper bound on peseape. To get the upper bound on
Descape, Short all resistors on surfaces of boxes at distances 1,2, 3,, etc. Then

1 1,1 1.23
repp>e[l+s+55+-]>12>02
['his gives

1 <
Teff —

(=[]

_ 1
pescape — 2

5.8 The Web as a Markov Chain

A modern application of random walks on directed graphs comes from trying to es-
tablish the importance of pages on the World Wide Web. One way to do this would be
to take a random walk on the web viewed as a directed graph with an edge correspond-
ing to each hypertext link and rank pages according to their stationary probability. A
connected, undirected graph is strongly connected in that one can get from any vertex to
any other vertex and back again. Often the directed case is not strongly connected. One
difficulty occurs if there is a vertex with no out edges. When the walk encounters this
vertex the walk disappears. Another difficulty is that a vertex or a strongly connected
component with no in edges is never reached. One way to resolve these difficulties is to
introduce a random restart condition. At each step, with some probability r, jump to a
vertex selected uniformly at random and with probability 1 — r select an edge at random

170

£0.857;

N\ P g 50.85m; m; = 0.85m;pj; + 22,
J i
0.157; 0.15m; T TiD;

Figure 5.11: Impact on page rank of adding a self loop

and follow it. If a vertex has no out edges, the value of r for that vertex is set to one.
This has the effect of converting the graph to a strongly connected graph so that the
stationary probabilities exist.

Page rank and hitting time

The page rank of a vertex in a directed graph is the stationary probability of the vertex,
where we assume a positive restart probability of say » = 0.15. The restart ensures that
the graph is strongly connected. The page rank of a page is the fractional frequency with
which the page will be visited over a long period of time. If the page rank is p, then
the expected time between visits or return time is 1/p. Notice that one can increase the
pagerank of a page by reducing the return time and this can be done by creating short
cycles.

Consider a vertex ¢ with a single edge in from vertex j and a single edge out. The
stationary probability 7 satisfies wP = 7, and thus
T = ijji.
Adding a self-loop at 7, results in a new equation

T = 7ijji -+ 577'1'

or
T = 2 TjPji-

Of course, m; would have changed too, but ignoring this for now, pagerank is doubled by
the addition of a self-loop. Adding k self loops, results in the equation

T = TjPji

Lk
T,
k+1

and again ignoring the change in 7;, we now have m; = (k + 1)m;p;;. What prevents
one from increasing the page rank of a page arbitrarily? The answer is the restart. We

171

neglected the 0.15 probability that is taken off for the random restart. With the restart
taken into account, the equation for m; when there is no self-loop is

T — 0.857ijji

whereas, with k self-loops, the equation is

T = O.857ijji + 0.85

k
T 1 i
Solving for m; yields

~ 0.85k +0.85
T 05k + 1
which for k = 1is m; = 1.487;P;; and in the limit as k — oo is m; = 5.677;p;;. Adding a
single loop only increases pagerank by a factor of 1.74 and adding k loops increases it by
at most a factor of 6.67 for arbitrarily large k.

TjiPji

Hitting time

Related to page rank is a quantity called hitting time. Hitting time is closely related
to return time and thus to the reciprocal of page rank. One way to return to a vertex
v is by a path in the graph from v back to v. Another way is to start on a path that
encounters a restart, followed by a path from the random restart vertex to v. The time
to reach v after a restart is the hitting time. Thus, return time is clearly less than the
expected time until a restart plus hitting time. The fastest one could return would be if
there were only paths of length two since self loops are ignored in calculating page rank. If
r is the restart value, then the loop would be traversed with at most probability (1 — r)Q.
With probability » + (1 —)7 = (2 — r) r one restarts and then hits v. Thus, the return
time is at least 2 (1 — r)* 4 (2 — r) r x (hitting time). Combining these two bounds yields

2(1—7r)° + (2 — r)rE (hitting time) < E (return time) < E (hitting time) .

The relationship between return time and hitting time can be used to see if a vertex has
unusually high probability of short loops. However, there is no efficient way to compute
hitting time for all vertices as there is for return time. For a single vertex v, one can com-
pute hitting time by removing the edges out of the vertex v for which one is computing
hitting time and then run the page rank algorithm for the new graph. The hitting time
for v is the reciprocal of the page rank in the graph with the edges out of v removed.
Since computing hitting time for each vertex requires removal of a different set of edges,
the algorithm only gives the hitting time for one vertex at a time. Since one is probably
only interested in the hitting time of vertices with low hitting time, an alternative would
be to use a random walk to estimate the hitting time of low hitting time vertices.

Spam

172

Suppose one has a web page and would like to increase its page rank by creating some
other web pages with pointers to the original page. The abstract problem is the following.
We are given a directed graph G and a vertex v whose page rank we want to increase.
We may add new vertices to the graph and add edges from v or from the new vertices
to any vertices we want. We cannot add edges out of other vertices. We can also delete
edges from v.

The page rank of v is the stationary probability for vertex v with random restarts. If
we delete all existing edges out of v, create a new vertex u and edges (v,u) and (u,v),
then the page rank will be increased since any time the random walk reaches v it will
be captured in the loop v — u — v. A search engine can counter this strategy by more
frequent random restarts.

A second method to increase page rank would be to create a star consisting of the
vertex v at its center along with a large set of new vertices each with a directed edge to
v. These new vertices will sometimes be chosen as the target of the random restart and
hence the vertices increase the probability of the random walk reaching v. This second
method is countered by reducing the frequency of random restarts.

Notice that the first technique of capturing the random walk increases page rank but
does not effect hitting time. One can negate the impact of someone capturing the random
walk on page rank by increasing the frequency of random restarts. The second technique
of creating a star increases page rank due to random restarts and decreases hitting time.
One can check if the page rank is high and hitting time is low in which case the page
rank is likely to have been artificially inflated by the page capturing the walk with short
cycles.

Personalized page rank

In computing page rank, one uses a restart probability, typically 0.15, in which at each
step, instead of taking a step in the graph, the walk goes to a vertex selected uniformly
at random. In personalized page rank, instead of selecting a vertex uniformly at random,
one selects a vertex according to a personalized probability distribution. Often the distri-
bution has probability one for a single vertex and whenever the walk restarts it restarts
at that vertex.

Algorithm for computing personalized page rank
First, consider the normal page rank. Let a be the restart probability with which
the random walk jumps to an arbitrary vertex. With probability 1 — « the random walk

selects a vertex uniformly at random from the set of adjacent vertices. Let p be a row
vector denoting the page rank and let A be the adjacency matrix with rows normalized

173

to sum to one. Then

p=2(L1,....,)[I—(1—a)A]"".

Thus, in principle, p can be found by computing the inverse of [I — (1 — a)A]~!. But
this is far from practical since for the whole web one would be dealing with matrices with
billions of rows and columns. A more practical procedure is to run the random walk and
observe using the basics of the power method in Chapter 3 that the process converges to
the solution p.

For the personalized page rank, instead of restarting at an arbitrary vertex, the walk
restarts at a designated vertex. More generally, it may restart in some specified neighbor-
hood. Suppose the restart selects a vertex using the probability distribution s. Then, in
the above calculation replace the vector % (1,1,...,1) by the vector s. Again, the compu-
tation could be done by a random walk. But, we wish to do the random walk calculation
for personalized pagerank quickly since it is to be performed repeatedly. With more care
this can be done, though we do not describe it here.

5.9 Bibliographic Notes

The material on the analogy between random walks on undirected graphs and electrical
networks is from [DS84] as is the material on random walks in Euclidean space. Addi-
tional material on Markov chains can be found in [MR95b], [MUO5], and [perl0]. For
material on Markov Chain Monte Carlo methods see [Jer98] and [Liu01].

The use of normalized conductance to prove convergence of Markov Chains is by
Sinclair and Jerrum, [SJ] and Alon [Alo86]. A polynomial time bounded Markov chain
based method for estimating the volume of convex sets was developed by Dyer, Frieze and
Kannan [DFK91].

174

5.10 Exercises

Exercise 5.1 The Fundamental Theorem of Markov chains proves that for a connected
Markov chain, the long-term average distribution a®® converges to a stationary distribu-
tion. Does the t step distribution p® also converge for every connected Markov Chain ?
Consider the following examples: (i) A two-state chain with p1o = pey = 1. (i) A three
state chain with p1o = pes = p31 = 1 and the other p;; = 0. Generalize these examples to
produce Markov Chains with many states.

Exercise 5.2

Exercise 5.3 Letl p(x), where x = (x1,x2,...,2q4) z; € {0,1}, be a multivariate proba-
bility distribution. For d = 100, how would you estimate the marginal distribution

p(zy) = Z p(x1, T, ..., 2q)?

2,...,Td

Exercise 5.4 Prove Proposition 5.4 that for two probability distributions p,q, |p—ql1 =

2 Zz(pz - Qi)+-

Ezercise 5.5 Suppose S is a subset of at most n?/2 points in the n x n lattice. Show
that

‘{(z’,j) € S|all elements in row i and all elements in column j are in S}| < [S|/2.

Ezxercise 5.6 Show that the stationary probabilities of the chain described in the Gibbs
sampler is the correct p.

Exercise 5.7 A Markov chain is said to be symmetric if for all i and j, p;j = pj;. What
is the stationary distribution of a connected symmetric chain? Prove your answer.

Exercise 5.8 How would you integrate a multivariate polynomaial distribution over some
region?

Ezxercise 5.9 Given a time-reversible Markov chain, modify the chain as follows. At the
current state, stay put (no move) with probability 1/2. With the other probability 1/2,
move as in the old chain. Show that the new chain has the same stationary distribution.
What happens to the convergence time in this modification?

Ezxercise 5.10 Using the Metropolis-Hasting Algorithm create a Markov chain whose
stationary probability is that given in the following table.

ziwa | 00 | 0L] 02 | 10 | 11 | 12 | 20 | 21 | 22
Prob | 1/16 | 1/8 | 1/16 | 1/8 | 1/4 | 1/8 | 1/16 | 1/8 | 1/16

175

Ezxercise 5.11 Let p be a probability vector (nonnegative components adding up to 1) on
the vertices of a connected graph. Set p;; (the transition probability from i to j) to p; for
all i # j which are adjacent in the graph. Show that the stationary probability vector for
the chain is p. Is running this chain an efficient way to sample according to a distribution
close to p? Think, for example, of the graph G being the n X n X n X ---n grid.

Ezxercise 5.12 Construct the edge probability for a three state Markov chain where each

pair of states is connected by an edge so that the stationary probability is (%, %, %)

Exercise 5.13 Consider a three state Markov chain with stationary probability (%, %, %)
Consider the Metropolis-Hastings algorithm with G the complete graph on these three
vertices. What is the expected probability that we would actually make a move along a

selected edge?

What happens? How does the Metropolis Hasting Algorithm do?

[@sX NI
= O

Exercise 5.14 Try Gibbs sampling on p (z) = (

Ezxercise 5.15 Consider p(x), where, x = (z1,...,x100) and p (0) = %, p(x) = moy X =+

0. How does Gibbs sampling behave?

Exercise 5.16 Construct, program, and execute an algorithm to compute the volume of
a unit radius sphere in 20 dimensions by carrying out a random walk on a 20 dimensional
grid with 0.1 spacing.

Exercise 5.17 Given a graph G and an integer k how would you generate connected
subgraphs of G with k vertices with probability proportional to the number of edges in the
subgraph induced on those vertices? The probabilities need not be exactly proportional to
the number of edges and you are not expected to prove your algorithm for this problem.

Ezxercise 5.18 Suppose one wishes to generate uniformly at random regular, degree three
undirected, connected multi-graphs each with 1,000 vertices. A multi-graph may have
multiple edges between a pair of vertices and self loops. One decides to do this by a Markov
Chain Monte Carlo technique. They design a network where each vertex is a reqular degree
three, 1,000 vertex multi-graph. For edges they say that the vertices corresponding to two
graphs are connected by an edge if one graph can be obtained from the other by a flip of a
pair of disjoint edges. In a flip, a pair of edges (a,b) and (c,d) are replaced by (a,c) and
(b,d).

1. Prove that a swap on a connected multi-graph results in a connected multi-graph.
2. Prove that the network whose vertices correspond to the desired graphs is connected.

3. Prove that the stationary probability of the random walk is uniform.

176

4. Give an upper bound on the diameter of the network.

In order to use a random walk to generate the graphs uniformly at random, the ran-
dom walk must rapidly converge to the stationary probability. Proving this is beyond the
material in this book.

Exercise 5.19 What is the mixing time for
1. Two cliques connected by a single edge?

2. A graph consisting of an n vertex clique plus one additional vertex connected to one
vertex in the clique.

Exercise 5.20 What is the mixing time for
1. G(n,p) with p = k’%?

2. a circle with n vertices where at each vertex an edge has been added to another vertex
chosen at random. On average each vertex will have degree four, two circle edges,
and edge from that vertex to a verter chosen at random, and possible some edges
that are the ends of the random edges from other vertices.

Exercise 5.21 Show that for the n xn x ---xn grid in d space, the normalized conduc-
tance is Q(1/dn).

Hint: The argument is a generalization of the argument in Exercise 5.5. Argue that for
any subset S containing at most 1/2 the grid points, for at least 1/2 the grid points in S,
among the d coordinate lines through the point, at least one intersects S.

1. What is the set of possible harmonic functions on a connected graph if there are only
interior vertices and no boundary vertices that supply the boundary condition?

2. Let q, be the stationary probability of vertex x in a random walk on an undirected
graph where all edges at a vertex are equally likely and let d, be the degree of vertex
x. Show that g—z s a harmonic function.

3. If there are multiple harmonic functions when there are no boundary conditions, why
is the stationary probability of a random walk on an undirected graph unique?

4. What is the stationary probability of a random walk on an undirected graph?

Exercise 5.22 [In Section 7?7 we associate a graph and edge probabilities with an electric
network such that voltages and currents in the electrical network corresponded to properties
of random walks on the graph. Can we go in the reverse order and construct the equivalent
electrical network from a graph with edge probabilities?

Exercise 5.23 Given an undirected graph consisting of a single path of five vertices num-
bered 1 to 5, what s the probability of reaching vertex 1 before vertex 5 when starting at
vertex 4.

177

Rl R3

i

Ry

i2

Figure 5.12: An electrical network of resistors.

Exercise 5.24 Consider the electrical resistive network in Figure 5.12 consisting of ver-
tices connected by resistors. Kirchoff’s law states that the currents at each vertex sum to
zero. Ohm’s law states that the voltage across a resistor equals the product of the resis-
tance times the current through it. Using these laws calculate the effective resistance of
the network.

Exercise 5.25 Consider the electrical network of Figure 5.13.
1. Set the voltage at a to one and at b to zero. What are the voltages at ¢ and d?
What is the current in the edges a to ¢, a to d, ¢ to d. ¢ to b and d to b?

What is the effective resistance between a and b?

Convert the electrical network to a graph. What are the edge probabilities at each
vertexr?

5. What is the probability of a walk starting at ¢ reaching a before b? a walk starting
at d reaching a before b/?

6. What is the net frequency that a walk from a to b goes through the edge from c to
a?

7. What is the probability that a random walk starting at a will return to a before

reaching b?

Exercise 5.26 Consider a graph corresponding to an electrical network with vertices a
and b. Prove directly that Ceff must be less than or equal to one. We know that this is the
escape probability and must “be at most 1. But, for this exercise, do not use that fact.

Exercise 5.27 (Thomson’s Principle) The energy dissipated by the resistance of edge xy
wmn an electrical network is given by iiymy. The total energy dissipation in the network

178

—{R=1}—%—{R=2
a if{l b
==

Figure 5.13: An electrical network of resistors.

U v :u U ‘\>U—<U
o—0 ©°

Figure 5.14: Three graphs

s B = %Ziiyrw where the ; accounts for the fact that the dissipation in each edge
z,y
1s counted twice in the summation. Show that the actual current distribution is that

distribution satisfying Ohm’s law that minimizes energy dissipation.

Exercise 5.28 (Rayleigh’s law) Prove that reducing the value of a resistor in a network
cannot increase the effective resistance. Prove that increasing the value of a resistor cannot
decrease the effective resistance. You may use Thomson’s principle Ezercise 5.27.

Exercise 5.29 What is the hitting time hy, for two adjacent vertices on a cycle of length
n? What is the hitting time if the edge (u,v) is removed?

Exercise 5.30 What is the hitting time h,, for the three graphs if Figure 5.14.

Exercise 5.31 Show that adding an edge can either increase or decrease hitting time by
calculating hoy for the three graphs in Figure 5.15.

Exercise 5.32 Consider the n vertex connected graph shown in Figure 5.16 consisting
of an edge (u,v) plus a connected graph on m — 1 wvertices and m edges. Prove that
huw = 2m + 1 where m s the number of edges in the n — 1 vertex subgraph.

Exercise 5.33 What is the most general solution to the difference equation t(i + 2) —
5t(i + 1) + 6t(i) = 0. How many boundary conditions do you need to make the solution
unique?

179

=)

O
ONONO

&)

Figure 5.15: Three graph

n—1
vertices
m edges

Figure 5.16: A connected graph consisting of n — 1 vertices and m edges along with a
single edge (u,v).

180

Exercise 5.34 Given the difference equation apt(i + k) + ap—1t(i +k — 1)+ -+ art(i +
1)+aot(i) = 0 the polynomial apt* +ay_* 1 +---+ayt+ag = 0 is called the characteristic
polynomial.

1. If the equation has a set of r distinct roots, what is the most general form of the
solution?

2. If the roots of the characteristic polynomial are not unique what is the most general
form of the solution?

3. What is the dimension of the solution space?

4. If the difference equation is not homogeneous and f(i) is a specific solution to the
nonhomogeneous difference equation, what is the full set of solutions to the difference
equation?

Exercise 5.35 Given the integers 1 to n, what is the expected number of draws with
replacement until the integer 1 is drawn.

Exercise 5.36 Consider the set of integers {1,2,...,n}. What is the expected number
of draws d with replacement so that every integer is drawn?

Exercise 5.37 Consider a random walk on a clique of size n. What is the expected
number of steps before a given vertex is reached?

Exercise 5.38 Show that adding an edge to a graph can either increase or decrease com-
mute time.

Exercise 5.39 For each of the three graphs below what is the return time starting at
vertex A? FExpress your answer as a function of the number of vertices, n, and then
express it as a function of the number of edges m.

A
A
A B
o—0 0 0 0 B
n vertices
—n—2—
a b c

Exercise 5.40 Suppose that the clique in Fxercise 5.39 was an arbitrary graph with m—1
edges. What would be the return time to A in terms of m, the total number of edges.

Exercise 5.41 Suppose that the clique in FExercise 5.39 was an arbitrary graph with m—d
edges and there were d edges from A to the graph. What would be the expected length of
a random path starting at A and ending at A after returning to A exactly d times.

181

Exercise 5.42 Given an undirected graph with a component consisting of a single edge
find two eigenvalues of the Laplacian L = D — A where D is a diagonal matriz with vertex
degrees on the diagonal and A is the adjacency matriz of the graph.

Exercise 5.43 A researcher was interested in determining the importance of various
edges in an undirected graph. He computed the stationary probability for a random walk
on the graph and let p; be the probability of being at vertex i. If vertex i was of degree
d;, the frequency that edge (i, j) was traversed from i to j would to diipi and the frequency

that the edge was traversed in the opposite direction would be %pj. Thus, he assigned an
J

importance of to the edge. What is wrong with his idea?

1 1
o Pi — d_jpj

Exercise 5.44 Prove that two independent random walks starting at the origin on a two
dimensional lattice will eventually meet with probability one.

Exercise 5.45 Suppose two individuals are flipping balanced coins and each is keeping
tract of the number of heads minus the number of tails. Will both individual’s count return
to zero at the same time?

Exercise 5.46 Consider the lattice in 2-dimensions. In each square add the two diagonal
edges. What is the escape probability for the resulting graph?

Exercise 5.47 Determine by simulation the escape probability for the 3-dimensional lat-
tice.

Exercise 5.48 What is the escape probability for a random walk starting at the root of
an infinite binary tree?

Exercise 5.49 Consider a random walk on the positive half line, that is the integers
0,1,2,.... At the origin, always move right one step. At all other integers move right
with probability 2/3 and left with probability 1/3. What is the escape probability?

Exercise 5.50 Consider the graphs in Figure 5.17. Calculate the stationary distribution
for a random walk on each graph and the flow through each edge. What condition holds
on the flow through edges in the undirected graph? In the directed graph?

Exercise 5.51 Create a random directed graph with 200 vertices and roughly eight edges
per vertex. Add k new vertices and calculate the page rank with and without directed edges
from the k added vertices to vertex 1. How much does adding the k edges change the page
rank of vertices for various values of k and restart frequency? How much does adding
a loop at vertex 1 change the page rank? To do the experiment carefully one needs to
consider the page rank of a vertex to which the star is attached. If it has low page rank
its page rank is likely to increase a lot.

182

o
oNGENOY0
oo e"@

Figure 5.17: An undirected and a directed graph.

Exercise 5.52 Repeat the experiment in Ezercise 5.51 for hitting time.

Exercise 5.53 Search engines ignore self loops in calculating page rank. Thus, to increase
page rank one needs to resort to loops of length two. By how much can you increase the
page rank of a page by adding a number of loops of length two?

Exercise 5.54 Number the vertices of a graph {1,2,...,n}. Define hitting time to be the
expected time from vertex 1. In (2) assume that the vertices in the cycle are sequentially
numbered.

1. What is the hitting time for a vertex in a complete directed graph with self loops?

2. What is the hitting time for a vertex in a directed cycle with n vertices?

Create exercise relating strongly connected and full rank
Full rank implies strongly connected.
Strongly connected does not necessarily imply full rank

0 01

00 1

1 10
Is graph aperiodic iff A\; > A\y?

Exercise 5.55 Using a web browser bring up a web page and look at the source hitml.
How would you extract the url’s of all hyperlinks on the page if you were doing a crawl
of the web? With Internet Fxplorer click on “source” under “view” to access the html
representation of the web page. With Firefox click on “page source” under “view”.

183

Exercise 5.56 Sketch an algorithm to crawl the World Wide Web. There is a time delay
between the time you seek a page and the time you get it. Thus, you cannot wait until the
page arrives before starting another fetch. There are conventions that must be obeyed if
one were to actually do a search. Sites specify information as to how long or which files
can be searched. Do not attempt an actual search without guidance from a knowledgeable
person.

184

6 Machine Learning

6.1 Introduction

Machine learning algorithms are general purpose tools that solve problems from many
disciplines without detailed domain-specific knowledge. They have proven to be very
effective in a large number of contexts, including computer vision, speech recognition,
document classification, automated driving, computational science, and decision support.

The core problem. A core problem underlying many machine learning applications
is learning a good classification rule from labeled data. This problem consists of a do-
main of interest X', called the instance space, such as email messages or patient records,
and a classification task, such as classifying email messages into spam versus non-spam
or determining which patients will respond well to a given medical treatment. We will
typically assume our instance space X = {0,1}% or X = R¢, corresponding to data that is
described by d Boolean or real-valued features. Features for email messages could be the
presence or absence of various types of words, and features for patient records could be
the results of various medical tests. To perform the learning task, our learning algorithm
is given a set S of labeled training eramples, which are points in X along with their
correct classification. This training data could be a collection of email messages, each
labeled as spam or not spam, or a collection of patients, each labeled by whether or not
they responded well to the given medical treatment. Our algorithm then aims to use the
training examples to produce a classification rule that will perform well over new data.
Thus, a key feature of machine learning, which distinguishes it from other algorithmic
tasks, is that our goal is generalization: to use one set of data in order to perform well
on new data we have not seen yet. We focus on binary classification where items in the
domain of interest are classified into two categories, as in the medical and spam-detection
examples above.

How to learn. A high-level approach to solving this problem that many algorithms
we discuss will follow is to try to find a “simple” rule with good performance on the
training data. For instance in the case of classifying email messages, we might find a set
of highly indicative words such that every spam email in the training data has at least
one of these words, and yet none of the non-spam emails has any of them; in this case,
the rule “if the message has any of these words then it is spam, else it is not” would be a
simple rule that performs well on the training data. Or, we might find a way of weighting
words with positive and negative weights such that the total weighted sum of words in
the email message is positive on the spam emails in the training data, and negative on the
non-spam emails. We will then argue that so long as the training data is representative
of what future data will look like, we can be confident that any sufficiently “simple” rule
that performs well on the training data will also perform well on future data. To make
this into a formal mathematical statement, we will need to be precise about what we
mean by “simple” as well as what it means for training data to be “representative” of

185

future data. In fact, we will see several notions of complexity, including bit-counting and
VC-dimension, that will allow us to make mathematical statements of this form. These
statements can be viewed as formalizing the intuitive philosophical notion of Occam’s
razor.

Formalizing the problem. To formalize the learning problem, we assume there is
some probability distribution D over the instance space X', such that (a) our training
set S consists of points drawn independently at random from D, and (b) our objective
is to predict well on new points that are also drawn from D. This is the sense in which
we will assume that our training data is representative of future data. Let ¢*, called the
target concept, denote the subset of X corresponding to the positive class for the binary
classification we are aiming to make. For example, ¢* would correspond to the set of
all patients who respond well to the treatment in the medical example, or the set of all
spam emails in the spam-detection setting. So, each point in our training set S is labeled
according to whether or not it belongs to ¢* and our goal is to produce a set h C X, called
our hypothesis, which is close to ¢* with respect to distribution D. The true error of h
is errp(h) = Pr(hAc*) where “A” denotes symmetric difference, and probability mass is
according to D. In other words, the true error of h is the probability it incorrectly clas-
sifies a data point drawn at random from D. Our goal is to produce h of low true error.
The training error of h, denoted errg(h), is the fraction of points in S on which A and
c* disagree. That is, errg(h) = |S N (hAc*)|/|S|. Training error is also called empirical
error. Note that even though S' is assumed to consist of points randomly drawn from D, it
is possible for a hypothesis h to have low empirical error or even to completely agree with
c* over the training sample, and yet have high true error. This is called overfitting the
training data. For instance, a hypothesis h that simply consists of listing the positive ex-
amples in S, which is equivalent to a rule that memorizes the training sample and predicts
positive on an example if and only if it already appeared positively in the training sample,
would have zero training error. However, this hypothesis likely would have high true error
and therefore would be highly overfitting the training data. More generally, overfitting is
a concern because algorithms will typically be optimizing over the training sample. To
design and analyze algorithms for learning, we will have to address the issue of overfitting.

To be able to formally analyze overfitting, we introduce the notion of an hypothesis
class, also called a concept class or set system. An hypothesis class H over X is a collection
of subsets of X', called hypotheses. For instance, the class of intervals over X = R is the
collection {[a,b] : a < b}. The class of linear separators over X = R? is the collection

{{xeR":w-x>w}:weR w € R};

that is, it is the collection of all sets in R? that are linearly separable from their comple-
ment. In the case that X is the set of 4 points in the plane {(—1, —1),(=1,1), (1, —1),(1,1)},
the class of linear separators contains 14 of the 2* = 16 possible subsets of X.!'' Given an

"The only two subsets that are not in the class are the sets {(—1,—1),(1,1)} and {(—1,1), (1, —1)}.

186

hypothesis class H and training set S, what we typically aim to do algorithmically is to
find the hypothesis in H that most closely agrees with ¢* over S. To address overfitting,
we argue that if S is large enough compared to some property of H, then with high prob-
ability all h € H have their empirical error close to their true error, so that if we find a
hypothesis whose empirical error is low, we can be confident its true error will be low as
well.

Before giving our first result of this form, we note that it will often be convenient to
associate each hypotheses with its {—1, 1}-valued indicator function

wo-{ 22

In this notation the true error of h is errp(h) = Prob,.p[h(z) # ¢*(x)] and the training
error is errg(h) = Prob,.s[h(z) # c*(x)].

6.2 Overfitting and Uniform Convergence

We now present two results that explain how one can guard against overfitting. Given
a class of hypotheses H, the first result states that for any given e greater than zero,
so long as the training data set is large compared to %1n(|7-[\), it is unlikely any h € ‘H
will have zero training error but have true error greater than e. This means that with
high probability, any hypothesis that our algorithms finds that agrees with the target
hypothesis on the training data will have low true error. The second result states that if
the training data set is large compared to % In(|#|), then it is unlikely that the training
error and true error will differ by more than € for any hypothesis in H. This means that if
we find an hypothesis in ‘H whose training error is low, we can be confident its true error
will be low as well, even if its training error is not zero.

The basic idea is the following. If we consider some h with large true error, and we
select an element x € X at random according to D, there is a reasonable chance that
x will belong to the symmetric difference hAc*. If we select a large enough training
sample S with each point drawn independently from X according to D, the chance that
S is completely disjoint from hAAc* will be incredibly small. This is just for a single
hypothesis h but we can now apply the union bound over all A € H of large true error,
when H is finite. We formalize this below.

Theorem 6.1 Let H be an hypothesis class and let € and § be greater than zero. If a
training set S of size

1
n > E(ln|7{| +1In(1/9)),
1s drawn from distribution D, then with probability greater than or equal to 1 — 9 every h
in H with with true error errp(h) > € has training error errg(h) > 0. Equivalently, with

probability greater than or equal to 1 — 9, every h € H with training error zero has true
error less than e.

187

Proof: Let hq, hs,... be the hypotheses in H with true error greater than or equal to e.
These are the hypotheses that we don’t want to output. Consider drawing the sample S
of size n and let A; be the event that h; is consistent with S. Since every h; has true error

greater than or equal to €
Prob(4;) < (1—¢)™

In other words, if we fix h; and draw a sample S of size n, the chance that h; makes no
mistakes on S is at most the probability that a coin of bias € comes up tails n times in a
row, which is (1 — €)”. By the union bound over all i we have

Prob (U1A1> S |H|(1 —E)n.

Using the fact that (1—e¢) < e™¢, the probability that any hypothesis in ‘H with true error
greater than or equal to € has training error zero is at most |H|e~“". Replacing n by the
sample size bound from the theorem statement, this is at most |H|e~ ™ HI=n(1/9) = § a5
desired.]

The conclusion of Theorem 6.1 is sometimes called a “PAC-learning guarantee” since
it states that if we can find an h € H consistent with the sample, then this h is Probably
Approximately Correct.

Theorem 6.1 addressed the case where there exists a hypothesis in H with zero train-
ing error. What if the best h; in H has 5% error on S? Can we still be confident that
its true error is low, say at most 10%? For this, we want an analog of Theorem 6.1 that
says for a sufficiently large training set, every h; € ‘H has training error within 4 of the
true error with high probability. Such a statement is called uniform convergence because
we are asking that the training set errors converge to their true errors uniformly over all
sets in H. To see intuitively why such a statement should be true for sufficiently large
S and a single hypothesis h;, consider two strings that differ in 10% of the positions and
randomly select a large sample of positions. The number of positions that differ in the
sample will be close to 10%.

To prove uniform convergence bounds, we use a tail inequality for sums of independent
Bernoulli random variables (i.e., coin tosses). The following is particularly convenient and
is a variation on the Chernoff bounds in Section 12.4.11 of the appendix.

Theorem 6.2 (Hoeffding bounds) Let z1,xs,. .., x, be independent {0, 1}-valued ran-
dom variables with probability p that x; equals one. Let s = Y . x; (equivalently, flip n
coins of bias p and let s be the total number of heads). For any 0 < o <1,

—2na?

Prob(s/n > p+ «) e

<
Prob(s/n <p—a) <

6—2n0c2.

Theorem 6.2 implies the following uniform convergence analog of Theorem 6.1.

188

Theorem 6.3 (Uniform convergence) Let H be a hypothesis class and let € and § be
greater than zero. If a training set S of size

1
n > @(ln]"ﬂ\ + ln(2/5)),

s drawn from distribution D, then with probability greater than or equal to 1 — 0, every h
in H satisfies |lerrg(h) —errp(h)| < e.

Proof: First, fix some h € H and let X; be the indicator random variable for the event
that h makes a mistake on the j example in S. The X; are independent {0, 1} random
variables and the probability that X; equals 1 is the true error of h, and the fraction of the
X,’s equal to 1 is exactly the training error of h. Therefore, Hoeffding bounds guarantee
that the probability of the event Aj, that |errp(h) — errg(h)| > € is less than or equal to
2¢~2n<* Applying the union bound to the events A, over all h € H, the probability that
there exists an h € H with the difference between true error and empirical error greater
than € is less than or equal to 2|7—[|e_2”62. Using the value of n from the theorem statement,
the right-hand-side of the above inequality is at most § as desired. B

Theorem 6.3 justifies the approach of optimizing over our training sample S even if we
are not able to find a rule of zero training error. If our training set S is sufficiently large,
with high probability, good performance on S will translate to good performance on D.

Note that Theorems 6.1 and 6.3 require || to be finite in order to be meaningful.
The notion of growth functions and VC-dimension in Section 6.9, extend Theorem 6.3 to
infinite hypothesis classes.

6.3 Illustrative Examples and Occam’s Razor

We now present some examples to illustrate the use of Theorem 6.1 and 6.3 and also
use these theorems to give a formal connection to the notion of Occam’s razor.

6.3.1 Learning disjunctions

Consider the instance space X = {0,1}¢ and suppose we believe that the target concept
can be represented by a disjunction (an OR) over features, such as ¢* = {z : 27 = 1Vzy =
1V zg = 1}, or more succinctly, ¢* = 21 V24 V xg. For example, if we are trying to predict
whether an email message is spam or not, and our features correspond to the presence
or absence of different possible indicators of spam-ness, then this would correspond to
the belief that there is some subset of these indicators such that every spam email has at
least one of them and every non-spam email has none of them. Formally, let H denote
the class of disjunctions, and notice that |H| = 2¢. So, by Theorem 6.1, it suffices to find
a consistent disjunction over a sample S of size

n= %(dln(Z) +In(1/9)).

How can we efficiently find a consistent disjunction when one exists? Here is a simple
algorithm.

189

Simple Disjunction Learner: Given sample S, discard all features that are set to 1 in
any negative example in S. Output the concept h that is the OR of all features that remain.

Lemma 6.4 The Simple Disjunction Learner produces a disjunction h that is consis-
tent with the sample S (i.e., with errg(h) = 0) whenever the target concept is indeed a
disjunction.

Proof: Suppose target concept ¢* is a disjunction. Then for any z; that is listed in ¢*,
x; will not be set to 1 in any negative example by definition of an OR. Therefore, h will
include x; as well. Since h contains all variables listed in ¢*, this ensures that A will
correctly predict positive on all positive examples in S. Furthermore, h will correctly
predict negative on all negative examples in S since by design all features set to 1 in any
negative example were discarded. Therefore, h is correct on all examples in S.]

Thus, combining Lemma 6.4 with Theorem 6.1, we have an efficient algorithm for
PAC-learning the class of disjunctions.

6.3.2 Occam’s razor

Occam’s razor is the notion, stated by William of Occam around AD 1320, that in general
one should prefer simpler explanations over more complicated ones.'> Why should one
do this, and can we make a formal claim about why this is a good idea? What if each of
us disagrees about precisely which explanations are simpler than others? It turns out we
can use Theorem 6.1 to make a mathematical statement of Occam’s razor that addresses
these issues.

First, what do we mean by a rule being “simple”? Let’s assume that each of us has
some way of describing rules, using bits (since we are computer scientists). The methods,
also called description languages, used by each of us may be different, but one fact we can
say for certain is that in any given description language, there are at most 2 rules that
can be described using fewer than b bits (because 1+ 2+ 4 + ...+ 271 < 2°). Therefore,
by setting H to be the set of all rules that can be described in fewer than b bits and
plugging into Theorem 6.1, yields the following:

Theorem 6.5 (Occam’s razor) Fiz any description language, and consider a training
sample S drawn from distribution D. With probability at least 1 — 6, any rule h consistent
with S that can be described in this language using fewer than b bits will have errp(h) < e

for |S] = 1[bIn(2) + In(1/6)]. Equivalently, with probability at least 1 — 6, all rules that
< bIn@)+In(1/6)

can be described in fewer than b bits will have errp(h) < 5]

For example, using the fact that In(2) < 1 and ignoring the low-order In(1/6) term, this
means that if the number of bits it takes to write down a rule consistent with the training
data is at most 10% of the number of data points in our sample, then we can be confident

12The statement more explicitly was that “Entities should not be multiplied unnecessarily.”

190

Figure 6.1: A decision tree with three internal nodes and four leaves. This tree corresponds
to the boolean function #1203 V 212223 V T2T3.

it will have error at most 10% with respect to D. What is perhaps surprising about this
theorem is that it means that we can each have different ways of describing rules and yet
all use Occam’s razor. Note that the theorem does not say that complicated rules are
necessarily bad, or even that given two rules consistent with the data that the complicated
rule is necessarily worse. What it does say is that Occam’s razor is a good policy in that
simple rules are unlikely to fool us since there are just not that many simple rules.

6.3.3 Application: learning decision trees

One popular practical method for machine learning is to learn a decision tree; see Figure
6.1. While finding the smallest decision tree that fits a given training sample S is NP-
hard, there are a number of heuristics that are used in practice.!® Suppose we run such
a heuristic on a training set S and it outputs a tree with k nodes. Such a tree can be
described using O(klogd) bits: log,(d) bits to give the index of the feature in the root,
O(1) bits to indicate for each child if it is a leaf and if so what label it should have, and
then O(kr logd) and O(kglogd) bits respectively to describe the left and right subtrees,
where kj, is the number of nodes in the left subtree and kg is the number of nodes in the
right subtree. So, by Theorem 6.5, we can be confident the true error is low if we can
produce a consistent tree with fewer than €|S|/log(d) nodes.

13For instance, one popular heuristic, called ID3, selects the feature to put inside any given node v
by choosing the feature of largest information gain, a measure of how much it is directly improving
prediction. Formally, using S,, to denote the set of examples in S that reach node v, and supposing that
feature x; partitions S, into SO and S} (the examples in S, with z; = 0 and z; = 1, respectively), the
information gain of x; is defined as: Ent(S,) — [Ig?i Ent(SY) + }gi’IEnt(Sé)] Here, Ent(S’) is the binary
entropy of the label proportions in set S’; that is, if a p fraction of the examples in S’ are positive, then
Ent(S") = plogy(1/p) + (1 —p)log,(1/(1 —p)), defining 0log,(0) = 0. This then continues until all leaves

are pure—they have only positive or only negative examples.

191

6.4 Regularization: penalizing complexity

Theorems 6.3 and 6.5 suggest the following idea. Suppose that there is no simple rule
that is perfectly consistent with the training data, but we notice there are very sim-
ple rules with training error 20%, say, and then some less simple rules with training error
10%, and so on. In this case, perhaps we should optimize some combination of training er-
ror and simplicity. This is the notion of reqularization, also called complexity penalization.

Specifically, a reqularizer is a penalty term that penalizes more complex hypotheses.
Given our theorems so far, a natural measure of complexity of a hypothesis is the number
of bits we need to write it down.!* Consider now fixing some description language, and let
H; denote those hypotheses that can be described in i bits in this language, so |H,;| < 2°.
Let 6; = §/2°. Rearranging the bound of Theorem 6.3, we know that with probability at

least 1 — 9;, all h € H,; satisty errp(h) < errg(h) + W

union bound over all 7, using the fact that d; + do + 03 + ... = 9, and also the fact that
In(|H;|) + In(2/6;) <iln(4) 4+ In(2/6), gives the following corollary.

. Now, applying the

Corollary 6.6 Fiz any description language, and consider a training sample S drawn
from distribution D. With probability greater than or equal to 1 — 9, all hypotheses h
satisfy

size(h)In(4) + 1n(2/0)
errp(h) < errg(h)+ \/ 29|

where size(h) denotes the number of bits needed to describe h in the given language.

Corollary 6.6 gives us the tradeoff we were looking for. It tells us that rather than
searching for a rule of low training error, we instead may want to search for a rule with
a low right-hand-side in the displayed formula. If we can find one for which this quantity
is small, we can be confident true error will be low as well.

6.5 Online learning and the Perceptron algorithm

So far we have been considering what is often called the batch learning scenario. You are
given a “batch” of data—the training sample S—and your goal is to use it to produce
a hypothesis h that will have low error on new data, under the assumption that both S
and the new data are sampled from some fixed distribution D. We now switch to the
more challenging online learning scenario where we remove the assumption that data is
sampled from a fixed probability distribution, or from any probabilistic process at all.

Specifically, the online learning scenario proceeds as follows. At each timet=1,2,...:

M ater we will see Support Vector Machines that use a regularizer for linear separators based on the
margin of separation of data.

192

1. The algorithm is presented with an arbitrary example z; € X and is asked to make
a prediction /; of its label.

2. The algorithm is told the true label of the example ¢*(x;) and is charged for a
mistake if ¢*(z;) # 4.

The goal of the learning algorithm is to make as few mistakes as possible in total. For
example, consider an email classifier that when a new email message arrives must classify
it as “important” or “it can wait”. The user then looks at the email and informs the
algorithm if it was incorrect. We might not want to model email messages as independent
random objects from a fixed probability distribution, because they often are replies to
previous emails and build on each other. Thus, the online learning model would be more
appropriate than the batch model for this setting.

Intuitively, the online learning model is harder than the batch model because we have
removed the requirement that our data consists of independent draws from a fixed proba-
bility distribution. Indeed, we will see shortly that any algorithm with good performance
in the online model can be converted to an algorithm with good performance in the batch
model. Nonetheless, the online model can sometimes be a cleaner model for design and
analysis of algorithms.

6.5.1 An example: learning disjunctions

As a simple example, let’s revisit the problem of learning disjunctions in the online model.
We can solve this problem by starting with a hypothesis h = x1 V25 V...V 24 and using
it for prediction. We will maintain the invariant that every variable in the target disjunc-
tion is also in our hypothesis, which is clearly true at the start. This ensures that the
only mistakes possible are on examples x for which h(zx) is positive but ¢*(z) is negative.
When such a mistake occurs, we simply remove from h any variable set to 1 in x. Since
such variables cannot be in the target function (since x was negative), we maintain our
invariant and remove at least one variable from h. This implies that the algorithm makes
at most d mistakes total on any series of examples consistent with a disjunction.

In fact, we can show this bound is tight by showing that no deterministic algorithm
can guarantee to make fewer than d mistakes.

Theorem 6.7 For any deterministic algorithm A there exists a sequence of examples o
and disjunction ¢* such that A makes at least d mistakes on sequence o labeled by c*.

Proof: Let o be the sequence ey, e, . .., g where ¢; is the example that is zero everywhere
except for a 1 in the jth position. Imagine running A on sequence ¢ and telling A it made
a mistake on every example; that is, if A predicts positive on e; we set ¢*(e;) = —1 and if
A predicts negative on e; we set ¢*(e;) = +1. This target corresponds to the disjunction
of all z; such that A predicted negative on e;, so it is a legal disjunction. Since A is

193

Figure 6.2: Margin of a linear separator.

deterministic, the fact that we constructed ¢* by running A is not a problem: it would
make the same mistakes if re-run from scratch on the same sequence and same target.
Therefore, A makes d mistakes on this o and c*. B

6.5.2 The Halving algorithm

If we are not concerned with running time, a simple algorithm that guarantees to make at
most log,(|H|) mistakes for a target belonging to any given class H is called the halving
algorithm. This algorithm simply maintains the version space ¥V C H consisting of all
h € H consistent with the labels on every example seen so far, and predicts based on
majority vote over these functions. Each mistake is guaranteed to reduce the size of the
version space V by at least half (hence the name), thus the total number of mistakes is
at most log,(|H]). Note that this can be viewed as the number of bits needed to write a
function in ‘H down.

6.5.3 The Perceptron algorithm

The Perceptron algorithm is an efficient algorithm for learning a linear separator in d-
dimensional space, with a mistake bound that depends on the margin of separation of
the data. Specifically, the assumption is that the target function can be described by a
vector w* such that for each positive example x we have x’w* > 1 and for each negative
example x we have x’w* < —1. Note that if we think of the examples x as points in
space, then xTw*/|w*| is the distance of x to the hyperplane x!w* = 0. Thus, we can
view our assumption as stating that there exists a linear separator through the origin
with all positive examples on one side, all negative examples on the other side, and all
examples at distance at least v = 1/|w*| from the separator. This quantity ~ is called
the margin of separation (see Figure 6.2).

The guarantee of the Perceptron algorithm will be that the total number of mistakes is
at most (R/v)? where R = max; |x;| over all examples x; seen so far. Thus, if there exists

194

a hyperplane through the origin that correctly separates the positive examples from the
negative examples by a large margin relative to the radius of the smallest ball enclosing
the data, then the total number of mistakes will be small. The algorithm is very simple
and proceeds as follows.

The Perceptron Algorithm: Start with the all-zeroes weight vector w = 0. Then, for
t=1,2,... do:

1. Given example x;, predict sgn(x! w).
2. If the prediction was a mistake, then update:

(a) If x; was a positive example, let w < w + x;.

(b) If x; was a negative example, let w < w — x;.

While simple, the Perceptron algorithm enjoys a strong guarantee on its total number
of mistakes.

Theorem 6.8 On any sequence of examples X1,Xa, ..., if there exists a vector w* such
that xI'w* > 1 for the positive examples and xI w* < —1 for the negative examples (i.e.,
a linear separator of margin v = 1/|w*|), then the Perceptron algorithm makes at most
R%*|w*|? mistakes, where R = max; |xy|.

To get a feel for this bound, notice that if we multiply all entries in all the x; by 100, we
can divide all entries in w* by 100 and it will still satisfy the “if” condition. So the bound
is invariant to this kind of scaling, i.e., to what our “units of measurement” are.

Proof of Theorem 6.8: Fix some consistent w*. We will keep track of two quantities,
wlw* and |w|?. First of all, each time we make a mistake, w/ w* increases by at least 1.

That is because if x; is a positive example, then

(w+x)'w =ww +x]w" >wlw"+1,

by definition of w*. Similarly, if x; is a negative example, then

T T

(w—x)'w'=wlw" —x]w*>wiw"+1.

Next, on each mistake, we claim that |w|? increases by at most R?. Let us first consider
mistakes on positive examples. If we make a mistake on a positive example x; then we
have

(W4 x0)" (W %) = [W]* o+ 2w+ [x|* < [wl? o+ [xe* < [w + R,

where the middle inequality comes from the fact that we made a mistake, which means
that xI'w < 0. Similarly, if we make a mistake on a negative example x; then we have

(w—x) (w—x;) = [w]* —2x[w + |x;|* < |[W]* + x> < |[w]* + R

195

Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then w/w* > M, and |w|?> < MR? or equivalently,
|lw| < RV M. Finally, we use the fact that w’w*/|w*| < |w| which is just saying that
the projection of w in the direction of w* cannot be larger than the length of w. This
gives us:

M/lw*| < RVM
VM < R|w7|
M é R2’W*‘2
as desired.]

6.5.4 Extensions: inseparable data and hinge-loss

We assumed above that there existed a perfect w* that correctly classified all the exam-
ples, e.g., correctly classified all the emails into important versus non-important. This
is rarely the case in real-life data. What if even the best w* isn’t quite perfect? We
can see what this does to the above proof: if there is an example that w* doesn’t cor-
rectly classify, then while the second part of the proof still holds, the first part (the dot
product of w with w* increasing) breaks down. However, if this doesn’t happen too of-
ten, and also x! w* is just a “little bit wrong” then we will only make a few more mistakes.

To make this formal, define the hinge-loss of w* on a positive example x; as max(0, 1 —
x] w*). In other words, if x; w* > 1 as desired then the hinge-loss is zero; else, the hinge-
loss is the amount the LHS is less than the RHS.!® Similarly, the hinge-loss of w* on a
negative example x; is max(0, 1 +x! w*). Given a sequence of labeled examples .S, define
the total hinge-loss Lynge(W*,S) as the sum of hinge-losses of w* on all examples in S.

We now get the following extended theorem.

Theorem 6.9 On any sequence of examples S = Xi,Xa,..., the Perceptron algorithm
makes at most
min (RQ\W*\2 + 2Lpinge (W, S))

mistakes, where R = max; |xy|.

Proof: As before, each update of the Perceptron algorithm increases |w|? by at most R?,
so if the algorithm makes M mistakes, we have |w|* < MR

What we can no longer say is that each update of the algorithm increases ww* by
at least 1. Instead, on a positive example we are “increasing” w’w* by x!w* (it could
be negative), which is at least 1 — Ly;nge(W*,x;). Similarly, on a negative example we
“increase” w!w* by —xfw*, which is also at least 1 — Lppnge(W*,x;). If we sum this up

over all mistakes, we get that at the end we have w/w* > M — Lynge(W*,S), where we

15This is called “hinge-loss” because as a function of x} w* it looks like a hinge.

196

Figure 6.3: Data that is not linearly separable in the input space R? but that is linearly
separable in the “¢-space” corresponding to the kernel function K(x,x’) = (1 + x'x’)%

are using here the fact that hinge-loss is never negative so summing over all of S is only
larger than summing over the mistakes that w made.

Finally, we just do some algebra. Let L = Lyng.(W*,.S). So we have:

wiw'/[w < |w
(WTW*)Z S |W’2‘W*|2
(M —L)> < MR*w*?
M? —2ML+L* < MR*w*?
M —-2L+L*/M < R*w*?
M < RAwW*|*+2L—-L*/M < R}w*|*+2L
as desired.]

6.6 Kernel functions

What if even the best w* has high hinge-loss? E.g., perhaps instead of a linear separator
decision boundary, the boundary between important emails and unimportant emails looks
more like a circle, for example as in Figure 6.3.

A powerful idea for addressing situations like this is to use what are called kernel
functions, or sometimes the “kernel trick”. Here is the idea. Suppose you have a function
K, called a “kernel”, over pairs of data points such that for some function ¢ : R* — RV,
where perhaps N > d, we have K(x,x') = ¢(x)T¢(x’). In that case, if we can write
the Perceptron algorithm so that it only interacts with the data via dot-products, and
then replace every dot-product with an invocation of K, then we can act as if we had
performed the function ¢ explicitly without having to actually compute ¢.

For example, consider K (x,x) = (1 +x?x/)* for some integer k¥ > 1. It turns out this
corresponds to a mapping ¢ into a space of dimension N ~ d*. For example, in the case

197

d =2,k = 2 we have (using x; to denote the ith coordinate of x):

K(x,x') = (14212} + z92))?
= 14217 + 2x07h, + 2] + 271107 T + T3

= 6(x)"o(x)

for p(x) = (1,v2x1,V2xs, 23, V21129, 23). Notice also that a linear separator in this
space could correspond to a more complicated decision boundary such as an ellipse in
the original space. For instance, the hyperplane ¢(x)"w* = 0 for w* = (—4,0,0,1,0,1)
corresponds to the circle 2 + x3 = 4 in the original space, such as in Figure 6.3.

The point of this is that if in the higher-dimensional “¢-space” there is a w* such that
the bound of Theorem 6.9 is small, then the algorithm will perform well and make few
mistakes. But the nice thing is we didn’t have to computationally perform the mapping ¢!

So, how can we view the Perceptron algorithm as only interacting with data via dot-
products? Notice that w is always a linear combination of data points. For example, if we
made mistakes on the first, second and fifth examples, and these examples were positive,
positive, and negative respectively, we would have w = x; +x5 —X5. So, if we keep track of
w this way, then to predict on a new example x;, we can write X! w = X} X +X} X3 — X! X5.
So if we just replace each of these dot-products with “K” | we are running the algorithm
as if we had explicitly performed the ¢ mapping. This is called “kernelizing” the algorithm.

Many different pairwise functions on examples are legal kernel functions. One easy
way to create a kernel function is by combining other kernel functions together, via the
following theorem.

Theorem 6.10 Suppose Ky and Ky are kernel functions. Then

1. For any constant ¢ > 0, cKy is a legal kernel. In fact, for any scalar function f,
the function K3(x,x") = f(x)f(x")K1(x,X') is a legal kernel.

2. The sum Ky + Ko, 1s a legal kernel.

3. The product, K1K5, is a legal kernel.

You will prove Theorem 6.10 in Exercise 6.9. Notice that this immediately implies that
the function K (x,x’) = (1+x7x')* is a legal kernel by using the fact that K;(x,x’) = 1 is
a legal kernel, K5(x,x’) = xTx’ is a legal kernel, then adding them, and then multiplying
that by itself k£ times. Another popular kernel is the Gaussian kernel, defined as:

K(X,X,) _ €—c|x—xl‘2‘

If we think of a kernel as a measure of similarity, then this kernel defines the similarity
between two data objects as a quantity that decreases exponentially with the squared

198

distance between them. The Gaussian kernel can be shown to be a true kernel func-
tion by first writing it as f(x)f(x)e2* ¥ for f(x) = e’ and then taking the Taylor
expansion of 62CXTX', applying the rules in Theorem 6.10. Technically, this last step re-
quires considering countably infinitely many applications of the rules and allowing for
infinite-dimensional vector spaces.

6.7 Online to Batch Conversion

Suppose we have an online algorithm with a good mistake bound, such as the Perceptron
algorithm. Can we use it to get a guarantee in the distributional (batch) learning setting?
Intuitively, the answer should be yes since the online setting is only harder. Indeed, this
intuition is correct. We present here two natural approaches for such online to batch
conversion.

Conversion procedure 1: Random Stopping. Suppose we have an online algorithm
A with mistake-bound M. Say we run the algorithm in a single pass on a sample S of size
M /e. Let X; be the indicator random variable for the event that A makes a mistake on the
tth example. Since Zﬁ'l X: < M for any set S, we certainly have that E[Zﬁ'l X <M
where the expectation is taken over the random draw of S from D¥l. By linearity of

expectation, and dividing both sides by |S| we therefore have:

|S|

% S EX] < M/IS| =« (6.1)

Let h; denote the hypothesis used by algorithm A to predict on the tth example. Since
the tth example was randomly drawn from D, we have E[errp(h;)] = E[X;]. This means
that if we choose t at random from 1 to |S|, i.e., stop the algorithm at a random time, the
expected error of the resulting prediction rule, taken over the randomness in the draw of
S and the choice of ¢, is at most € as given by equation (6.1). Thus we have:

Theorem 6.11 (Online to Batch via Random Stopping) If an online algorithm A
with mistake-bound M is run on a sample S of size M /e and stopped at a random time
between 1 and |S|, the expected error of the hypothesis h produced satisfies Elerrp(h)] < e.

Conversion procedure 2: Controlled Testing. A second natural approach to us-
ing an online learning algorithm A in the distributional setting is to just run a series of
controlled tests. Specifically, suppose that the initial hypothesis produced by algorithm
A is hy. Define 6; = 0/(i + 2)? so we have Y ;° §; = (%2 —1)d < 4. We draw a set of
ny = %log(%) random examples and test to see whether h; gets all of them correct. Note
that if errp(hy) > € then the chance h; would get them all correct is at most (1—¢)™ < ;.
So, if hy indeed gets them all correct, we output h; as our hypothesis and halt. If not,
we choose some example z; in the sample on which A; made a mistake and give it to

algorithm A. Algorithm A then produces some new hypothesis hy and we again repeat,

199

testing hs on a fresh set of ny = %log(é) random examples, and so on.

In general, given h; we draw a fresh set of n, = élog(a—lt) random examples and test
to see whether h; gets all of them correct. If so, we output h; and halt; if not, we choose
some x; on which h;(z,;) was incorrect and give it to algorithm A. By choice of n,, if h,
had error rate e or larger, the chance we would mistakenly output it is at most d;. By
choice of the values d;, the chance we ever halt with a hypothesis of error € or larger is at
most d; + d2 + ... < . Thus, we have the following theorem.

Theorem 6.12 (Online to Batch via Controlled Testing) Let A be an online learn-
ing algorithm with mistake-bound M. Then this procedure will halt after O(% log(4h))
examples and with probability at least 1 — § will produce a hypothesis of error at most e.

Note that in this conversion we cannot re-use our samples: since the hypothesis h; depends
on the previous data, we need to draw a fresh set of n; examples to use for testing it.

6.8 Support-Vector Machines

In a batch setting, rather than running the Perceptron algorithm and adapting it via
one of the methods above, another natural idea would be just to solve for the vector w
that minimizes the right-hand-side in Theorem 6.9 on the given dataset S. This turns
out to have good guarantees as well, though they are beyond the scope of this book. In
fact, this is the Support Vector Machine (SVM) algorithm. Specifically, SVMs solve the
following convex optimization problem over a sample S = {x1,Xs,...X,} where ¢ is a
constant that is determined empirically.

minimize c|w|* + Z Si
i

subject to w - X; > 1 —s; for all positive examples x;
w-x; < —1+ s; for all negative examples x;
s; > 0 for all .

Notice that the sum of slack variables is the total hinge loss of w. So, this convex
optimization is minimizing a weighted sum of 1/4%, where 7 is the margin, and the total
hinge loss. If we were to add the constraint that all s; = 0 then this would be solving for
the maximum margin linear separator for the data. However, in practice, optimizing a
weighted combination generally performs better.

6.9 VC-Dimension

In Section 6.2 we presented several theorems showing that so long as the training set
S is large compared to 1 log(|H|), we can be confident that every h € H with errp(h) > €

200

will have errg(h) > 0, and if S is large compared to % log(|#]), then we can be confident
that every h € H will have |errp(h) —errg(h)| < e. In essence, these results used log(|H])
as a measure of complexity of class H. VC-dimension is a different, tighter measure of
complexity for a concept class, and as we will see, is also sufficient to yield confidence
bounds. For any class ‘H, VCdim(H) < log,(|#|) but it can also be quite a bit smaller.
Let’s introduce and motivate it through an example.

Consider a database consisting of the salary and age for a random sample of the adult
population in the United States. Suppose we are interested in using the database to an-
swer questions of the form: “what fraction of the adult population in the United States
has age between 35 and 45 and salary between $50,000 and $70,0007” That is, we are
interested in queries that ask about the fraction of the adult population within some axis-
parallel rectangle. What we can do is calculate the fraction of the database satistying
this condition and return this as our answer. This brings up the following question: How
large does our database need to be so that with probability > 1 — §, our answer will be
within 4e€ of the truth for every possible rectangle query of this form?

If we assume our values are discretized such as 100 possible ages and 1,000 possible
salaries, then there are at most (100 x 1,000)% = 10 possible rectangles. This means we
can apply Theorem 6.3 with |H| < 10%°. Specifically, we can think of the target concept
c* as the empty set so that errg(h) is exactly the fraction of the sample inside rectangle
h and errp(h) is exactly the fraction of the whole population inside h.'® This would tell
us that a sample size of 555 (101010 + In(2/48)) would be sufficient.

However, what if we do not wish to discretize our concept class? Another approach
would be to say that if there are only N adults total in the United States, then there
are at most N4 rectangles that are truly different with respect to D and so we could use
|H| < N*. Still, this suggests that S needs to grow with N, albeit logarithmically, and
one might wonder if that is really necessary. VC-dimension, and the notion of the growth
function of concept class H, will give us a way to avoid such discretization and avoid any
dependence on the size of the support of the underlying distribution D.

6.9.1 Definitions and Key Theorems

Definition 6.1 Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels all examples in A
as positive and all examples in S\ A as negative.

Definition 6.2 The VC-dimension of H s the size of the largest set shattered by H.

For example, there exist sets of four points that can be shattered by rectangles with
axis-parallel edges, e.g., four points at the vertices of a diamond (see Figure 6.4). Given

16Technically D is the uniform distribution over the adult population of the United States, and we
want to think of S as an iid sample from this D.

201

| Jw)

(a) (b)

Figure 6.4: (a) shows a set of four points that can be shattered by rectangles along with
some of the rectangles that shatter the set. Not every set of four points can be shattered
as seen in (b). Any rectangle containing points A, B, and C must contain D. No set of five
points can be shattered by rectangles with axis-parallel edges. No set of three collinear
points can be shattered, since any rectangle that contains the two end points must also
contain the middle point. More generally, since rectangles are convex, a set with one point
inside the convex hull of the others cannot be shattered.

such a set S, for any A C S, there exists a rectangle with the points in A inside the rect-
angle and the points in S\ A outside the rectangle. However, rectangles with axis-parallel
edges cannot shatter any set of five points. To see this, assume for contradiction that
there is a set of five points shattered by the family of axis-parallel rectangles. Find the
minimum enclosing rectangle for the five points. For each edge there is at least one point
that has stopped its movement. Identify one such point for each edge. The same point
may be identified as stopping two edges if it is at a corner of the minimum enclosing rect-
angle. If two or more points have stopped an edge, designate only one as having stopped
the edge. Now, at most four points have been designated. Any rectangle enclosing the
designated points must include the undesignated points. Thus, the subset of designated
points cannot be expressed as the intersection of a rectangle with the five points. There-
fore, the VC-dimension of axis-parallel rectangles is four.

We now need one more definition, which is the growth function of a concept class H.

Definition 6.3 Given a set S of examples and a concept class H, let H[S] = {hN S :
h € H}. That is, H[S] is the concept class H restricted to the set of points S. For integer
n and class H, let H[n] = max|g—, |H[S]|; this is called the growth function of H.

For example, we could have defined shattering by saying that S is shattered by H
if [H[S]| = 2/°!, and then the VC-dimension of H is the largest n such that H[n] = 2".
Notice also that for axis-parallel rectangles, H[n] = O(n*). The growth function of a class
is sometimes called the shatter function or shatter coefficient.

What connects these to learnability are the following three remarkable theorems. The
first two are analogs of Theorem 6.1 and Theorem 6.3 respectively, showing that one can

202

replace |H| with its growth function. This is like replacing the number of concepts in H
with the number of concepts “after the fact”, i.e., after S is drawn, and is subtle because
we cannot just use a union bound after we have already drawn our set S. The third
theorem relates the growth function of a class to its VC-dimension. We now present the
theorems, give examples of VC-dimension and growth function of various concept classes,
and then prove the theorems.

Theorem 6.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

n > Zlogy(2M[2n]) +logy(1/0)

then with probability > 1—0, every h € H with errp(h) > € has errg(h) > 0 (equivalently,
every h € H with errs(h) =0 has errp(h) < €).

Theorem 6.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

8

n > 6—2[ln(2?{[2n])+ln(1/5)]

then with probability > 1 — 9§, every h € H will have |errg(h) — errp(h)| < e.

Theorem 6.15 (Sauer’s lemma) [f VCdim(H) = d then H[n] < 3¢, (7) < (&)

Notice that Sauer’s lemma was fairly tight in the case of axis-parallel rectangles,
though in some cases it can be a bit loose. E.g., we will see that for linear separators
in the plane, their VC-dimension is 3 but H[n] = O(n?). An interesting feature about
Sauer’s lemma is that it implies the growth function switches from taking the form 2" to
taking the form nVOed™™) when n reaches the VC-dimension of the class H.

Putting Theorems 6.13 and 6.15 together, with a little algebra we get the following
corollary (a similar corollary results by combining Theorems 6.14 and 6.15):

Corollary 6.16 (VC-dimension sample bound) For any class H and distribution D,
a training sample S of size

0) (%[VCdim("H) log(1/€) + log<1/6)]>

is sufficient to ensure that with probability > 1 — &, every h € H with errp(h) > € has
errg(h) > 0 (equivalently, every h € H with errg(h) =0 has errp(h) < €).

For any class H, VCdim(H) < log,(|H|) since H must have at least 2* concepts in
order to shatter k points. Thus Corollary 6.16 is never too much worse than Theorem 6.1
and can be much better.

203

6.9.2 Examples: VC-Dimension and Growth Function

Rectangles with axis-parallel edges

As we saw above, the class of axis-parallel rectangles in the plane has VC-dimension
4 and growth function C[n] = O(n?).

Intervals of the reals

Intervals on the real line can shatter any set of two points but no set of three points
since the subset of the first and last points cannot be isolated. Thus, the VC-dimension
of intervals is two. Also, C[n] = O(n?) since we have O(n?) choices for the left and right
endpoints.

Pairs of intervals of the reals

Consider the family of pairs of intervals, where a pair of intervals is viewed as the set
of points that are in at least one of the intervals, in other words, their set union. There
exists a set of size four that can be shattered but no set of size five since the subset of first,
third, and last point cannot be isolated. Thus, the VC-dimension of pairs of intervals is
four. Also we have C[n] = O(n?).

Convex polygons

Consider the set system of all convex polygons in the plane. For any positive integer
n, place n points on the unit circle. Any subset of the points are the vertices of a convex
polygon. Clearly that polygon will not contain any of the points not in the subset. This
shows that convex polygons can shatter arbitrarily large sets, so the VC-dimension is
infinite. Notice that this also implies that C[n] = 2™.

Half spaces in d-dimensions

Define a half space to be the set of all points on one side of a hyper plane, i.e., a set
of the form {x|w”x > wp}. The VC-dimension of half spaces in d-dimensions is d + 1.

There exists a set of size d + 1 that can be shattered by half spaces. Select the d
unit-coordinate vectors plus the origin to be the d 4+ 1 points. Suppose A is any subset
of these d + 1 points. Without loss of generality assume that the origin is in A. Take
a 0-1 vector w which has 1’s precisely in the coordinates corresponding to vectors not
in A. Clearly A lies in the half-space w/x < 0 and the complement of A lies in the
complementary half-space.

We now show that no set of d + 2 points in d-dimensions can be shattered by linear

204

separators. This is done by proving that any set of d+2 points can be partitioned into two
disjoint subsets A and B of points whose convex hulls intersect. This establishes the claim
since any linear separator with A on one side must have its entire convex hull on that
side,'” so it is not possible to have a linear separator with A on one side and B on the other.

Let convex(S) denote the convex hull of point set S.

Theorem 6.17 (Radon): Any set S C R* with |S| > d + 2, can be partitioned into two
disjoint subsets A and B such that convex(A) N convex(B) # ¢.

Proof: Without loss of generality, assume |S| = d+2. Form a d x (d+2) matrix with one
column for each point of S. Call the matrix A. Add an extra row of all 1’s to construct a
(d+1) x (d+2) matrix B. Clearly the rank of this matrix is at most d+1 and the columns
are linearly dependent. Say x = (x1,29,...,%442) 1S a nonzero vector with Bx = 0.
Reorder the columns so that xy,xs,...,2s > 0 and x411,Tsi0,...,2412 < 0. Normalize

x 50 Y |z5] = 1. Let by (respectively a;) be the i* column of B (respectively A). Then,
i=1

s d+2 s d+2 s
Y lzilbi = > |xi|b; from which it follows that Y |x;lai = > |zi]la; and > || =
i=1 i=st1 i=1 i=st1 i=1

d+2 s d+2 s d+2

> |ay|. Since Y |x;] = 1and) |z;| = leachsideof) |z;|lai = > |z;]a; is a convex
i=s+1 i=1 1=s+1 i=1 1=s+1

combination of columns of A which proves the theorem. Thus, S can be partitioned into
two sets, the first consisting of the first s points after the rearrangement and the second
consisting of points s + 1 through d + 2 . Their convex hulls intersect as required.]

Radon’s theorem immediately implies that half-spaces in d-dimensions do not shatter
any set of d + 2 points.

Spheres in d-dimensions

A sphere in d-dimensions is a set of points of the form {x| |[x —xo| < r}. The VC-
dimension of spheres is d + 1. It is the same as that of half spaces. First, we prove that
no set of d + 2 points can be shattered by spheres. Suppose some set S with d + 2 points
can be shattered. Then for any partition A; and A, of S, there are spheres By and B,
such that B1 NS = A; and B, NS = Ay. Now B; and By may intersect, but there is no
point of S in their intersection. It is easy to see that there is a hyperplane perpendicular
to the line joining the centers of the two spheres with all of A; on one side and all of A,
on the other and this implies that half spaces shatter S, a contradiction. Therefore no
d + 2 points can be shattered by hyperspheres.

It is also not difficult to see that the set of d+1 points consisting of the unit-coordinate
vectors and the origin can be shattered by spheres. Suppose A is a subset of the d + 1

I7If any two points x; and X, lie on the same side of a separator, so must any convex combination: if
w-x1 > band w-xo > b then w- (ax; + (1 — a)xa) > .

205

points. Let a be the number of unit vectors in A. The center ag of our sphere will be
the sum of the vectors in A. For every unit vector in A, its distance to this center will
be v/a — 1 and for every unit vector outside A, its distance to this center will be v/a + 1.
The distance of the origin to the center is \/a. Thus, we can choose the radius so that
precisely the points in A are in the hypersphere.

Finite sets

The system of finite sets of real numbers can shatter any finite set of real numbers
and thus the VC-dimension of finite sets is infinite.

6.9.3 Proof of Main Theorems

We begin with a technical lemma. Consider drawing a set S of n examples from D and
let A denote the event that there exists h € H with zero training error on S but true
error greater than or equal to e. Now draw a second set S” of n examples from D and let
B denote the event that there exists h € ‘H with zero error on S but error greater than
or equal to €/2 on S’

Lemma 6.18 Let H be a concept class over some domain X and let S and S be sets of
n elements drawn from some distribution D on X, where n > 8/e. Let A be the event that
there exists h € ‘H with zero error on S but true error greater than or equal to €. Let B
be the event that there exists h € H with zero error on S but error greater than or equal

to 5 on S'. Then Prob(B) > Prob(A)/2.

Proof: Clearly, Prob(B) > Prob(A, B) = Prob(A)Prob(B|A). Consider drawing set S
and suppose event A occurs. Let h be in H with errp(h) > € but errg(h) = 0. Now,
draw set S’. E(error of h on S") = errp(h) > €. So, by Chernoff bounds, since n > 8/,
Prob(errs/(h) > €/2) > 1/2. Thus, Prob(B|A) > 1/2 and Prob(B) > Prob(A)/2 as
desired. B

We now prove Theorem 6.13, restated here for convenience.

Theorem 6.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

2 logy (2H[2n]) + logy (1/6)]

n > -
€

then with probability > 1—0, every h € H with errp(h) > € has errg(h) > 0 (equivalently,
every h € H with errs(h) =0 has errp(h) < €).

Proof: Consider drawing a set S of n examples from D and let A denote the event that
there exists h € H with true error greater than e but training error zero. Our goal is to

206

prove that Prob(A) < §.

By Lemma 6.18 it suffices to prove that Prob(B) < ¢/2. Consider a third experiment.
Draw a set S” of 2n points from D and then randomly partition S” into two sets S and
S” of n points each. Let B* denote the event that there exists h € H with errg(h) = 0
but errg (h) > €/2. Prob(B*) = Prob(B) since drawing 2n points from D and randomly
partitioning them into two sets of size n produces the same distribution on (.S, S") as does
drawing S and S’ directly. The advantage of this new experiment is that we can now
argue that Prob(B*) is low by arguing that for any set S” of size 2n, Prob(B*|S”) is low,
with probability now taken over just the random partition of S” into S and S’. The key
point is that since S” is fixed, there are at most |H[S"]| < H[2n] events to worry about.
Specifically, it suffices to prove that for any fixed h € H[S”], the probability over the
partition of S” that h makes zero mistakes on S but more than en/2 mistakes on S’ is at
most 0/(2H[2n]). We can then apply the union bound over H[S"] = {h N S"|h € H}.

To make the calculations easier, consider the following specific method for partitioning
S” into S and S’. Randomly put the points in S” into pairs: (ai,b1), (az,bs), ..., (an, by).
For each index i, flip a fair coin. If heads put a; into .S and b; into S’, else if tails put a;
into S” and b; into S. Now, fix some partition h € H[S”] and consider the probability over
these n fair coin flips that A makes zero mistakes on S but more than en/2 mistakes on S’
First of all, if for any index 7, h makes a mistake on both a; and b; then the probability is
zero (because it cannot possibly make zero mistakes on S). Second, if there are fewer than
en/2 indices i such that h makes a mistake on either a; or b; then again the probability is
zero because it cannot possibly make more than en/2 mistakes on S’. So, assume there
are r > en/2 indices ¢ such that h makes a mistake on exactly one of a; or b;. In this case,
the chance that all of those mistakes land in S’ is exactly 1/2". This quantity is at most
1/27/2 < §/(2H[2n]) as desired for n as given in the theorem statement. N

We now prove Theorem 6.14, restated here for convenience.

Theorem 6.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

8

n > 6—2[ln(27{[2n])+ln(1/5)]

then with probability > 1 — 9, every h € H will have |errg(h) — errp(h)| < e.

Proof: This proof is identical to the proof of Theorem 6.13 except B* is now the event
that there exists a set h € H[S”] such that the error of h on S differs from the error of h on
S’ by more than €/2. We again consider the experiment where we randomly put the points
in S” into pairs (a;, b;) and then flip a fair coin for each index i, if heads placing a; into S
and b; into S, else placing a; into S" and b; into S. Consider the difference between the
number of mistakes h makes on S and the number of mistakes A makes on S’ and observe
how this difference changes as we flip coins for ¢ = 1,2,...,n. Initially, the difference

207

is zero. If h makes a mistake on both or neither of (a;, b;) then the difference does not
change. Else, if h makes a mistake on exactly one of a; or b;, then with probability 1/2
the difference increases by one and with probability 1/2 the difference decreases by one.
If there are » < n such pairs, then if we take a random walk of r < n steps, what is the
probability that we end up more than en/2 steps away from the origin? This is equivalent
to asking: if we flip » < n fair coins, what is the probability the number of heads differs
from its expectation by more than en/4. By Hoeffding bounds, this is at most 26~ n/8,
This quantity is at most §/(2H[2n]) as desired for n as given in the theorem statement.

Finally, we prove Sauer’s lemma, relating the growth function to the VC-dimension.

Theorem 6.15 (Sauer’s lemma) If VCdim(H) = d then H[n] < 30, (") < (2

Proof: Let d = VCdim(#). Our goal is to prove for any set S of n points that
[H[S]| < (Z,), where we are defining () = PR ("); this is the number of distinct
ways of choosing d or fewer elements out of n. We will do so by induction on n. As a

base case, our theorem is trivially true if n < d.

As a first step in the proof, notice that:

<Snd) - (ns_dl) " (snd_—11> (6.2)

because we can partition the ways of choosing d or fewer items into those that do not
include the first item (leaving < d to be chosen from the remainder) and those that do
include the first item (leaving < d — 1 to be chosen from the remainder).

Now, consider any set S of n points and pick some arbitrary point x € S. By induc-
tion, we may assume that |H[S\ {z}]| < ("2,)). So, by equation (6.2) all we need to show

is that [H[S]] — |H[S\ {=}]] < (2). Thus, our problem has reduced to analyzing how

<d-1
many more partitions there are of S than there are of S\ {x} using sets in H.

If H[S] is larger than H[S \ {x}], it is because of pairs of sets in H[S] that differ only
on point x and therefore collapse to the same set when z is removed. For set h € H[S]
containing point x, define twin(h) = h \ {z}; this may or may not belong to H[S]. Let
T ={h € H[S] : x € h and twin(h) € H[S]}. Notice |H[S]| — |[H[S \ {z}]| = |T].

Now, what is the VC-dimension of 77 If ' = VCdim(7), this means there is some set
R of d points in S\ {z} that are shattered by 7. By definition of 7, all 2¢ subsets of R
can be extended to either include z, or not include x and still be a set in H[S]. In other
words, R U {x} is shattered by H. This means, d' + 1 < d. Since VCdim(7) < d — 1, by

induction we have |T] < (7)) as desired. B

208

6.9.4 VC-dimension of combinations of concepts

Often one wants to create concepts out of other concepts. For example, given several
linear separators, one could take their intersection to create a convex polytope. Or given
several disjunctions, one might want to take their majority vote. We can use Sauer’s
lemma to show that such combinations do not increase the VC-dimension of the class by
too much.

Specifically, given k concepts hq, ho, ..., h; and a Booelan function f define the set
combg(hy, ... hy) ={z € X: f(hi(z),..., hg(x)) = 1}, where here we are using h;(z) to
denote the indicator for whether or not x € h;. For example, f might be the AND function
to take the intersection of the sets h;, or f might be the majority-vote function. This can
be viewed as a depth-two neural network. Given a concept class H, a Boolean function f,
and an integer k, define the new concept class COM By (H) = {combs(hq, ..., hy) : h; €
H}. We can now use Sauer’s lemma to produce the following corollary.

Corollary 6.19 If the concept class H has VC-dimension d, then for any combination
function f, the class COMBy i (H) has VC-dimension O(kdlog(k'd)).

Proof: Let n be the VC-dimension of COMBy ;(#), so by definition, there must exist
a set S of n points shattered by COMBy,(#H). We know by Sauer’s lemma that there
are at most n? ways of partitioning the points in S using sets in H. Since each set in
COMB;y 4 (H) is determined by k sets in H, and there are at most (n?)* = n*¢ different
k-tuples of such sets, this means there are at most n*® ways of partitioning the points
using sets in COMB/ ;. (H). Since S is shattered, we must have 2" < n* or equivalently
n < kdlog,(n). We solve this as follows. First, assuming n > 16 we have log,(n) < 1/n so
kdlog,(n) < kdy/n which implies that n < (kd)?. To get the better bound, plug back into
the original inequality. Since n < (kd)?, it must be that log,(n) < 2log,(kd). substituting
logn < 2log,(kd) into n < kdlog,n gives n < 2kdlog,(kd). B

This result will be useful for our discussion of Boosting in Section 6.10.

6.9.5 Other measures of complexity

V(C-dimension and number of bits needed to describe a set are not the only measures
of complexity one can use to derive generalization guarantees. There has been significant
work on a variety of measures. One measure called Rademacher complexity measures
the extent to which a given concept class H can fit random noise. Given a set of n
examples S = {xy,...,2,}, the empirical Rademacher complexity of H is defined as
Rs(H) =E,, o, max LS L oih(z;), where 0; € {—1,1} are independent random labels

with Problo; = 1] = % E.g., if you assign random =1 labels to the points in S and the
best classifier in H on average gets error 0.45 then Rg(H) = 0.55 — 0.45 = 0.1. One can
prove that with probability greater than or equal to 1 — ¢, every h € H satisfies true error

less than or equal to training error plus Rg(H) + 34/ %. For more on results such as

this, see, e.g., [?].

209

6.10 Strong and Weak Learning - Boosting

We now describe boosting, which is important both as a theoretical result and as a
practical and easy-to-use learning method.

A strong learner for a problem is an algorithm that with high probability is able to
achieve any desired error rate € using a number of samples that may depend polynomially
on 1/e. A weak learner for a problem is an algorithm that does just a little bit better than
random guessing. It is only required to get with high probability an error rate less than
or equal to % — v for some 0 < v < % We show here that a weak-learner for a problem
that achieves the weak-learning guarantee for any distribution of data can be boosted to a
strong learner, using the technique of boosting. At the high level, the idea will be to take
our training sample S, and then to run the weak-learner on different data distributions
produced by weighting the points in the training sample in different ways. Running the
weak learner on these different weightings of the training sample will produce a series of
hypotheses hi, hs, ..., and the idea of our reweighting procedure will be to focus attention
on the parts of the sample that previous hypotheses have performed poorly on. At the

end we will combine the hypotheses together by a majority vote.

Assume the weak learning algorithm A outputs hypotheses from some class H. Our
boosting algorithm will produce hypotheses that will be majority votes over ¢ty hypotheses
from H, for ¢ty defined below. This means that we can apply Corollary 6.19 to bound the
VC-dimension of the class of hypotheses our boosting algorithm can produce in terms of
the VC-dimension of . In particular, the class of rules that can be produced by the
booster running for ¢y rounds has VC-dimension O(t,VCdim(H) log(toVCdim(#))). This
in turn gives a bound on the number of samples needed, via Corollary 6.16, to ensure that
high accuracy on the sample will translate to high accuracy on new data.

To make the discussion simpler, we will assume that the weak learning algorithm A,
when presented with a weighting of the points in our training sample, always (rather than
with high probability) produces a hypothesis that performs slightly better than random
guessing with respect to the distribution induced by weighting. Specificially:

Definition 6.4 (-Weak learner on sample) A weak learner is an algorithm that given
examples, their labels, and a nonnegative real weight w; on each erample x;, produces a

classifier that correctly labels a subset of examples with total weight at least (% +) > w;.
i=1

At the high level, boosting makes use of the intuitive notion that if an example was
misclassified, one needs to pay more attention to it. The boosting procedure is in Figure
6.5.

Theorem 6.20 Let A be a y-weak learner for sample S. Then ty = O(Vi2 logn) is suffi-

cient so that the classifier MAJ(hy, ..., hy,) produced by the boosting procedure has training
error zero.

210

Boosting Algorithm

Given a sample S of n labeled examples x,...,x,, initialize each
example x; to have a weight w; = 1. Let w = (wy,...,wy,).
Fort=1,2,...,ty do

Call the weak learner on the weighted sample (S, w), receiving
hypothesis h;.

Multiply the We|ght of each example that was misclassified by

h; by a = 2t - Leave the other weights as they are.

2

End

Output the classifier MAJ(hy, ..., hy,) which takes the majority vote
of the hypotheses returned by the weak learner. Assume %, is odd so
there is no tie.

Figure 6.5: The boosting algorithm

Proof: Suppose m is the number of examples the final classifier gets wrong. Each of
these m examples was misclassified at least t,/2 times so each has weight at least af/2.
Thus the total weight is at least ma’®/2. On the other hand, at time ¢+ 1, only the weights
of examples misclassified at time ¢ were increased. By the property of weak learning, the
total weight of misclassified examples is at most (3 —<) of the total weight at time ¢. Let
weight(t) be the total weight at time ¢. Then

weight(t + 1) < <a G-M+G+7)) x weight(t)
= (1 4+ 2v) x weight(t).
Since weight(0) = n, the total weight at the end is at most n(1 + 27)". Thus
ma'®/? < total weight at end < n(1 + 27)™.

/24y _ 142y

Ty = T2y and rearranging terms

Substituting a =

m < n(l—29)02(1 4 27)0/2 = [l — 4y3h/2,

Usingl—xz <e*, m < ne2007’ For t, > 12‘”;, m < 1, so the number of misclassified

items must be zero.]

Having completed the proof of the boosting result, here are two interesting observa-
tions:

Connection to Hoeffding bounds: The boosting result applies even if our weak learn-
ing algorithm is “adversarial”, giving us the least helpful classifier possible subject

211

to Definition 6.4. This is why we don’t want the « in the boosting algorithm to be
too large, otherwise the weak learner could return the negation of the classifier it
gave the last time. Suppose that the weak learning algorithm gave a classifier each
time that for each example, flipped a coin and produced the correct answer with
probability % + v and the wrong answer with probability % — 7, so it is a y-weak
learner in expectation. In that case, if we called the weak learner ¢, times, for any
fixed x;, Hoeffding bounds imply the chance the majority vote of those classifiers is
incorrect on x; is at most e~207*, So, the expected total number of mistakes m is
at most ne~207’ What is interesting is that this is the exact bound we get from
boosting without the expectation for an adversarial weak-learner.

A minimax view: Consider a 2-player zero-sum game ® with one row for each example
x; and one column for each hypothesis h; that the weak-learning algorithm might
output. If the row player chooses row i and the column player chooses column j,
then the column player gets a payoff of one if h;(x;) is correct and gets a payoff
of zero if h;(x;) is incorrect. The y-weak learning assumption implies that for any
randomized strategy for the row player (any “mixed strategy” in the language of
game theory), there exists a response h; that gives the column player an expected
payoff of at least 3 + . The von Neumann minimax theorem '? states that this
implies there exists a probability distribution on the columns (a mixed strategy for
the column player) such that for any x;, at least a % + 7 probability mass of the
columns under this distribution is correct on x;. We can think of boosting as a
fast way of finding a very simple probability distribution on the columns (just an
average over O(logn) columns, possibly with repetitions) that is nearly as good (for
any x;, more than half are correct) that moreover works even if our only access to
the columns is by running the weak learner and observing its outputs.

We argued above that ty, = O(=logn) rounds of boosting are sufficient to produce a
majority-vote rule h that will classify all of S correctly. Using our VC-dimension bounds,
this implies that if the weak learner is choosing its hypotheses from concept class H, then

a sample size
0O (1 (VCdlrzn(H)))
€ v

is sufficient to conclude that with probability 1 — 4§ the error is less than or equal to e,
where we are using the O notation to hide logarithmic factors. It turns out that running
the boosting procedure for larger values of t; i.e., continuing past the point where S is

I8 A two person zero sum game consists of a matrix whose columns correspond to moves for Player 1
and whose rows correspond to moves for Player 2. The ij*" entry of the matrix is the payoff for Player
1 if Player 1 choose the j** column and Player 2 choose the i*" row. Player 2’s payoff is the negative of
Player1’s.

9The von Neumann minimax theorem states that there exists a mixed strategy for each player so that
given Player 2’s strategy the best payoff possible for Player 1 is the negative of given Player 1’s strategy
the best possible payoff for Player 2. A mixed strategy is one in which a probability is assigned to every
possible move for each situation a player could be in.

212

classified correctly by the final majority vote, does not actually lead to greater overfitting.
The reason is that using the same type of analysis used to prove Theorem 6.20, one can
show that as ty increases, not only will the majority vote be correct on each x € S, but
in fact each example will be correctly classified by a % + ~/ fraction of the classifiers,
where v/ — 7 as tyg — o0. lL.e., the vote is approaching the minimax optimal strategy for
the column player in the minimax view given above. This in turn implies that h can be
well-approximated over S by a vote of a random sample of O(1/+?) of its component weak
hypotheses h;. Since these small random majority votes are not overfitting by much, our
generalization theorems imply that h cannot be overfitting by much either.

6.11 Stochastic Gradient Descent

We now describe a widely-used algorithm in machine learning, called stochastic gradi-
ent descent (SGD). The Perceptron algorithm we examined in Section 6.5.3 can be viewed
as a special case of this algorithm, as can methods for deep learning.

Let F be a class of real-valued functions fy, : R? — R where w = (wy,wa, ..., wy,)is a
vector of parameters. For example, we could think of the class of linear functions where
n=d and f,(x) = wlxz, or we could have more complicated functions where n > d. For
each such function fy we can define an associated set hy, = {x : fw(x) > 0}, and let
Hr = {hw : fw € F}. For example, if F is the class of linear functions then Hz is the
class of linear separators.

To apply stochastic gradient descent, we also need a loss function L(fy(x),c*(x)) that
describes the real-valued penalty we will associate with function f,, for its prediction on
an example x whose true label is ¢*(x). The algorithm is then the following:

Stochastic Gradient Descent:
Given: starting point w = w;,,;; and learning rates \;, Ao, A3, ...
(e.g., Winit = 0 and \, = 1 for all t, or A\, = 1//1).
Consider a sequence of random examples (x1, ¢*(x1)), (X2, ¢*(x2)),

1. Given example (xy,c*(x;)), compute the gradient VL(fw(x;),c*(x;)) of the loss of
fw(x;) with respect to the weights w. This is a vector in R™ whose ith component is
OL(fw (x1)c* (xt))
ow; :
2. Update: w < w — M VL(fo(xt), " (x¢)).
Let’s now try to understand the algorithm better by seeing a few examples of instan-
tiating the class of functions F and loss function L.

213

First, consider n = d and fy(x) = w’x, so F is the class of linear predictors. Consider
the loss function L(fw(x), ¢*(x)) = max(0, —c*(x) fw (X)), and recall that ¢*(x) € {—1,1}.
In other words, if fy(x) has the correct sign, then we have a loss of 0, otherwise we have
a loss equal to the magnitude of fy(x). In this case, if fi(x) has the correct sign and is
non-zero, then the gradient will be zero since an infinitesimal change in any of the weights
will not change the sign. So, when hy(x) is correct, the algorithm will leave w alone.
On the other hand, if fy(x) has the wrong sign, then g—zﬁi = —c*(x)ag,"’T':‘ = —c*(x)x;. So,
using \; = 1, the algorithm will update w < w + ¢*(x)x. Note that this is exactly the
Perceptron algorithm. (Technically we must address the case that fy (x) = 0; in this case,

we should view fy as having the wrong sign just barely.)

As a small modification to the above example, consider the same class of linear predic-
tors F but now modify the loss function to the hinge-loss L(fw(x),c*(x)) = max(0,1 —
c*(x) fw(x)). This loss function now requires fy(x) to have the correct sign and have mag-
nitude at least 1 in order to be zero. Hinge loss has the useful property that it is an upper
bound on error rate: for any sample S, the training error is at most Y ¢ L(fw(x), ¢*(x)).
With this loss function, stochastic gradient descent is called the margin perceptron algo-
rithm.

More generally, we could have a much more complex class F. For example, consider
a layered circuit of soft threshold gates. Each node in the circuit computes a linear func-
tion of its inputs and then passes this value through an “activation function” such as
a(z) = tanh(z) = (e — e *)/(e* + e~ *). This circuit could have multiple layers with
the output of layer ¢ being used as the input to layer ¢ + 1. The vector w would be the
concatenation of all the weight vectors in the network. This is the idea of deep neural
networks discussed further in Section 6.13.

While it is difficult to give general guarantees on when stochastic gradient descent will
succeed in finding a hypothesis of low error on its training set S, Theorems 6.5 and 6.3
imply that if it does and if S is sufficiently large, we can be confident that its true error
will be low as well. Suppose that stochastic gradient descent is run on a machine where
each weight is a 64-bit floating point number. This means that its hypotheses can each
be described using 64n bits. If S has size at least £[64nIn(2) + In(1/§)], by Theorem 6.5
it is unlikely any such hypothesis of true error greater than e will be consistent with the
sample, and so if it finds a hypothesis consistent with S, we can be confident its true error
is at most €. Or, by Theorem 6.3, if |S| > 55 (64n1n(2) 4+ 1n(2/4)) then almost surely the
final hypothesis h produced by stochastic gradient descent satisfies true error leas than
or equal to training error plus e.

6.12 Combining (Sleeping) Expert Advice

Imagine you have access to a large collection of rules-of-thumb that specify what to
predict in different situations. For example, in classifying news articles, you might have

214

one that says “if the article has the word ‘football’; then classify it as sports” and another
that says “if the article contains a dollar figure, then classify it as business”. In predicting
the stock market, these could be different economic indicators. These predictors might
at times contradict each other, e.g., a news article that has both the word “football” and
a dollar figure, or a day in which two economic indicators are pointing in different direc-
tions. It also may be that no predictor is perfectly accurate with some much better than
others. We present here an algorithm for combining a large number of such predictors
with the guarantee that if any of them are good, the algorithm will perform nearly as well
as each good predictor on the examples on which that predictor fires.

Formally, define a “sleeping expert” to be a predictor A that on any given example x
either makes a prediction on its label or chooses to stay silent (asleep). We will think of
them as black boxes. Now, suppose we have access to n such sleeping experts hq, ..., h,,
and let S; denote the subset of examples on which h; makes a prediction (e.g., this could
be articles with the word “football” in them). We consider the online learning model,
and let mistakes(A,S) denote the number of mistakes of an algorithm A on a sequence
of examples S. Then the guarantee of our algorithm A will be that for all ¢

E(mistakes(A, S;)) < (1+ ¢€) - mistakes(h;, S;) + O (*22)
where € is a parameter of the algorithm and the expectation is over internal randomness
in the randomized algorithm A.

As a special case, if hq,...,h, are concepts from a concept class H, and so they all
make predictions on every example, then A performs nearly as well as the best concept
in H. This can be viewed as a noise-tolerant version of the Halving Algorithm of Section
6.5.2 for the case that no concept in H is perfect. The case of predictors that make
predictions on every example is called the problem of combining expert advice, and the
more general case of predictors that sometimes fire and sometimes are silent is called the

215

sleeping experts problem.

Combining Sleeping Experts Algorithm:

Initialize each expert h; with a weight w; = 1. Let € € (0,1). For each example z, do the
following:

1. [Make prediction] Let H, denote the set of experts h; that make a prediction on x, and

let w, = > wj;. Choose h; € H, with probability p;;, = w;/w, and predict h;(z).
thHz

2. [Receive feedback]| Given the correct label, for each h; € H, let my, = 1 if h;(z) was
incorrect, else let m;, = 0.

3. [Update weights] For each h; € H,, update its weight as follows:

o et Tiw = (Zh]‘EHm pjzmjx> /(1 + E) — My

o Update W; < UJZ(l + E)Tm.
Note that ZhjeHz PjzMjs represents the algorithm’s probability of making a mis-
take on example x. So, h; is rewarded for predicting correctly (m;, = 0) especially
when the algorithm had a high probability of making a mistake, and h; is penal-

ized for predicting incorrectly (m;, = 1) especially when the algorithm had a low
probability of making a mistake.

For each h; ¢ H,, leave w; alone.

Theorem 6.21 For any set of n sleeping experts hy,..., h,, and for any sequence of
examples S, the Combining Sleeping Experts Algorithm A satisfies for all i:

E(mistakes(A, SZ)) < (1 +¢€) - mistakes(h;, S;) + O (bgn)

€

where S; ={x € S : h; € H,}.

Proof: Consider sleeping expert h;. The weight of h; after the sequence of examples S
is exactly:

w; = (1+E)Zzesi[(ZhjeHzpjzmjz)/(l"‘f)_mm}

(1 + 6) E[mistakes(A,S;)]/(14+€)—mistakes(h;,S;))

Let w =) ;wj. Clearly w; < w. Therefore, taking logs, we have:
E(mistakes(A, S;)) /(1 + €) — mistakes(h;, S;) < logy, w.
So, using the fact that log,, w = O(logTW),

E(mistakes(A, Sz)) < (1 +e¢)-mistakes(h;, S;) + O (10%) :

216

Initially, w = n. To prove the theorem, it is enough to prove that w never increases. To
do so, we need to show that for each =, », _p wi(1+¢€)"= <37, - w;, or equivalently
dividing both sides by 32, . w; that 37, pi(1 + €)™ < 1, where for convenience we
define p;, = 0 for h; € H,.

For this we will use the inequalities that for 5,z € [0,1], f* < 1 — (1 —)z and
B2 <1+ (1 - B)z/B. Specifically, we will use 3 = (1 + ¢)~!. We now have:

pr(l e Zpixﬂmm—(szmmjx)ﬂ

= 1-(1=B)Y_ pimic+(1=5)D_ pamijs
i J

= 1,

IN

IA

where the second-to-last line follows from using » . p;; = 1 in two places. So w never
increases and the bound follows as desired.]

6.13 Deep learning

Deep learning, or deep neural networks, refers to training many-layered networks of
nonlinear computational units. The input to the network is an example x € R? The
first layer of the network transforms the example into a new vector fi(x). Then the
second layer transforms fi(x) into a new vector fo(fi(x)), and so on. Finally, the k"
layer outputs the final prediction fi(fi—1(...(f1(x)))). When the learning is supervised
the output is typically a vector of probabilities. The motivation for deep learning is that
often we are interested in data, such as images, that are given to us in terms of very
low-level features, such as pixel intensity values. Our goal is to achieve some higher-
level understanding of each image, such as what objects are in the image and what are
they doing. To do so, it is natural to first convert the given low-level representation into
one of higher-level features. That is what the layers of the network aim to do. Deep
learning is also motivated by multi-task learning, with the idea that a good higher-level
representation of data should be useful for a wide range of tasks. Indeed, a common use
of deep learning for multi-task learning is to share initial levels of the network across tasks.

A typical architecture of a deep neural network consists of layers of logic units. In a

fully connected layer, the output of each gate in the layer is connected to the input of
every gate in the next layer. However, if the input is an image one might like to recognize

217

Each gate is connected to a
k x k grid. Weights are tied

together.
< .
=)
e NN
<< =
< X .
<
NN
Second set of gates each
BN :
S connected to a k x k grid.

Weights are tied together.

Figure 6.6: Convolution layers

features independent of where they are located in the image. To achieve this one often
uses a couple of convolution layers. In a convolution layer, each gate gets inputs from a
small £ x k grid where k£ may be 5 to 10. There is a gate for each k x k square array of
the image. The weights on each gate are tied together so that each gate recognizes the
same feature. There will be several such collections of gates, so several different features
can be learned. Such a level is called a convolution level and the fully connected layers
are called autoencoder levels.

Deep learning networks are trained by stochastic gradient descent (Section 6.11), some-
times called back propagation in the network context. An error function is constructed
and the weights are adjusted using the derivative of the error function. This requires that
the error function be differentiable. A smooth threshold is used such as

T _ ,—x aq;_ —x A 2
tanh(az) = c-° where or -r - =1 (L)

er f e 7 0er 4= i S
o 1 0 si id
sigmoid(z) = Ty where % = sigmoid(z) (1 — sigmoid(z))
In fact the function
oz x>0 OReLU(z) [1 2>0
ReLU(z) = { 0 otherwise where Or N { 0 otherwise

218

7 W

D 4
DN S e " Y Y
LA AR BB

AN Y N\ AN v‘v \AAY v,',l(v
Y WA AW N

¢

Figure 6.7: A deep learning fully connected network.

seems to work well even though typically its derivative at x = 0 is undefined.

Training a deep learning network of 7 or 8 levels using gradient descent can be compu-
tationally expensive. To address this issue one trains one level at a time on unlabeled data
using an idea called autoencoding. There are three levels, the input, a middle level called
the hidden level, and an output level as shown in Figure 6.8. There are two sets of weights.
W, is the weights of the hidden level gates and W5 is W{. Let x be the input pattern
and y be the output. The error is |x —y|*. One uses gradient descent to reduce the error.
once the weights S| are determined they are frozen and a second hidden level of gates is
added as in Figure 6.8 b. In this network W3 = W and stochastic gradient descent is
again used this time to determine W5. In this way one level of weights is trained at a time.

The output of the hidden gates is an encoding of the input. An image might be a
10® dimensional input and there may only be 10° hidden gates. However, the number of
images might be 107 so even though the dimension of the hidden layer is smaller than the
dimension of the input, the number of possible codes far exceeds the number of inputs
and thus the hidden layer is a compressed representation of the input.. If the hidden layer
were the same dimension as the input layer one might get the identity mapping. This
does not happen for gradient descent starting with random weights.

The output layer of a deep network typically uses a softmax procedure. Softmax is
a generalization of logistic regression where given a set of vectors {x1,Xa,...X,} with
labels 11,1y, ... 1, I; € {0,1} and with a weight vector w we define the probability that
the label [equals 0 or 1 given = by
1
14 e W

=o(wTx)

Prob(l = 1|x) =

and
Prob(l = 0|x) =1 — Prob(l = 1/x)

219

NS &7 S-S
/>
RS

/™ N\
YT TNA S e O ge O
O KD \"42{.\0‘" (),;0&'

0> XX
@S :,5%"%‘61‘)‘ 3

Z Z
LIS

N\ NN ,'," =
Wi DS NN

Figure 6.8: Autoencoder technique used to train one level at a time. In the Figure 6.8 (a)
train W, and Ws. Then in Figure 6.8 (b), freeze Wy and train Wy and Ws. In this way
one trains one set of weights at a time.

where o is the sigmoid function.

Define a cost function
Jw) =Y (li log(Prob(l = 1|x)) + (1 — ;) log(1 — Prob(i = Hx)))

and compute x to minimize J(x). Then

J(w) = 3" (tlog(o(w™)) + (1= 1) log(1 — o(w™)))

)

Since 80(8‘:';’() =o(wTx)(1 — o(wrx))z;, it follows that alog(gfu‘;'Tx)) = U(WTX)Cf(l;;S’TX))xja
Thus

aJ Z o(wTx)(1 — o(wTx)) (1-1)(1 — o(wTx))o(wTx)

. i Ty — — b

ow; o(wTx) ! 1 —o(wTx) !

T

(
= <(lixj —lLio(W'x)z; —o(w
(

Tx)x; + liU(WTX)x])

220

Softmax is a generalization of logistic regression to multiple classes. Thus, the labels
l; take on values {1,2,...,k}. For an input x softmax estimates the probability of each
label. The hypothesis is of the form

Prob(l = 1|x, wy) ewix

Prob(l = 2|x, wa) 1 eWa X
hu () = : TS i |
: i=1%" :

PI"Ob(l = k’|X, Wk) eWEx

where the matrix formed by the weight vectors is

Wi
W2
W =

Wk

W is a matrix since for each label [;, there is a vector w; of weights.

Consider a set of n inputs {x1,Xa,...,Xpn}. Define
1 ifl=k
o= k)= { 0 otherwise
and i
Wit
J(w) = 0(l; = k)log =

The derivative of the cost function with respect to the weights is

Vi J(W) = — in (6(1; = k) — Prob(l; = k)|x;, W)

Jj=1

Note V,J(W) is a vector. Since wj is a vector, each component of V., JJ(WW) is the
derivative with respect to one component of the vector wyj.
For more information about deep learning, see [?].2

6.14 Further Current directions

We now briefly discuss a few additional current directions in machine learning, focusing
on semi-supervised learning, active learning, and multi-task learning.

20Gee also the tutorials: http://deeplearning.net/tutorial/deeplearning.pdf and
http://deeplearning.stanford.edu/tutorial/.

221

6.14.1 Semi-supervised learning

Semi-supervised learning refers to the idea of trying to use a large unlabeled data set U to
augment a given labeled data set L in order to produce more accurate rules than would
have been achieved using just L alone. The motivation is that in many settings (e.g.,
document classification, image classification, speech recognition), unlabeled data is much
more plentiful than labeled data, so one would like to make use of it if possible. Of course,
unlabeled data is missing the labels! Nonetheless it often contains information that an
algorithm can take advantage of.

As an example, suppose one believes the target function is a linear separator that
separates most of the data by a large margin. By observing enough unlabeled data to es-
timate the probability mass near to any given linear separator, one could in principle then
discard separators in advance that slice through dense regions and instead focus attention
on just those that indeed separate most of the distribution by a large margin. This is the
high level idea behind a technique known as Semi-Supervised SVMs. Alternatively, sup-
pose data objects can be described by two different “kinds” of features (e.g., a webpage
could be described using words on the page itself or using words on links pointing to the
page), and one believes that each kind should be sufficient to produce an accurate classi-
fier. Then one might want to train a pair of classifiers (one on each type of feature) and
use unlabeled data for which one is confident but the other is not to bootstrap, labeling
such examples with the confident classifier and then feeding them as training data to the
less-confident one. This is the high-level idea behind a technique known as Co-Training.
Or, if one believes “similar examples should generally have the same label”, one might
construct a graph with an edge between examples that are sufficiently similar, and aim for
a classifier that is correct on the labeled data and has a small cut value on the unlabeled
data; this is the high-level idea behind graph-based methods.

A formal model: The batch learning model introduced in Sections 6.1 and 6.3 in essence
assumes that one’s prior beliefs about the target function be described in terms of a class
of functions H. In order to capture the reasoning used in semi-supervised learning, we
need to also describe beliefs about the relation between the target function and the data
distribution. A clean way to do this is via a notion of compatibility x between a hypoth-
esis h and a distribution D. Formally, x maps pairs (h, D) to [0,1] with x(h,D) = 1
meaning that h is highly compatible with D and x(h,D) = 0 meaning that h is very
incompatible with D. The quantity 1 — x(h, D) is called the unlabeled error rate of h, and
denoted err,,;(h). Note that for x to be useful, it must be estimatable from a finite sam-
ple; to this end, let us further require that x is an expectation over individual examples.
That is, overloading notation for convenience, we require x(h, D) = E,p[x(h, z)], where
X:HxX—][0,1].

For instance, suppose we believe the target should separate most data by margin .
We can represent this belief by defining x(h,z) = 0 if is within distance ~y of the de-

222

cision boundary of h, and x(h,z) = 1 otherwise. In this case, err,, (h) will denote the
probability mass of D within distance v of h’s decision boundary. As a different exam-
ple, in co-training, we assume each example can be described using two “views” that
each are sufficient for classification; that is, there exist ¢}, c; such that for each example
x = (x1,x2) we have ¢f(x;) = ¢5(x2). We can represent this belief by defining a hypothesis
h = (hi, ha) to be compatible with an example (z1, x2) if hy(x1) = ho(z2) and incompatible
otherwise; err,,;(h) is then the probability mass of examples on which h; and hy disagree.

As with the class #H, one can either assume that the target is fully compatible (i.e.,
erryn(c*) = 0) or instead aim to do well as a function of how compatible the target is.
The case that we assume ¢* € H and erry,(c*) = 0 is termed the “doubly realizable
case”. The concept class ‘H and compatibility notion y are both viewed as known.

Intuition: In this framework, the way that unlabeled data helps in learning can be in-
tuitively described as follows. Suppose one is given a concept class H (such as linear
separators) and a compatibility notion x (such as penalizing h for points within distance
~ of the decision boundary). Suppose also that one believes ¢* € H (or at least is close)
and that err,,(c*) = 0 (or at least is small). Then, unlabeled data can help by allowing
one to estimate the unlabeled error rate of all h € H, thereby in principle reducing the
search space from #H (all linear separators) down to just the subset of H that is highly
compatible with D. The key challenge is how this can be done efficiently (in theory,
in practice, or both) for natural notions of compatibility, as well as identifying types of
compatibility that data in important problems can be expected to satisfy.

A theorem: The following is a semi-supervised analog of our basic sample complexity
theorem, Theorem 6.1. First, fix some set of functions H and compatibility notion Y.
Given a labeled sample L, define érr(h) to be the fraction of mistakes of h on L. Given
an unlabeled sample U, define x(h,U) = E,y[x(h, x)] and define érr,(h) = 1—x(h,U).
That is, err(h) and érr,, (h) are the empirical error rate and unlabeled error rate of h,
respectively. Finally, given o > 0, define Hp , (a) to be the set of functions f € H such
that erryu(f) < a.

Theorem 6.22 If ¢* € H then with probability at least 1 — §, for labeled set L and
unlabeled set U drawn from D, the h € H that optimizes érry,(h) subject to érr(h) =0
will have errp(h) < € for

4

J

2
|U|26—2[ln|7-l|+ln 5

1 2
} , and |L| > - {1n|7—[p7x(e7"runl(c*) + 2¢)| + In —} :
€
Equivalently, for |U| satisfying this bound, for any |L|, whp the h € H that minimizes
erruni(h) subject to érr(h) =0 has

errp(h) < ﬁ {ln |Hp(erTym(c’) + 2€)| + In %] :

223

Proof: By Hoeffding bounds, |U] is sufficiently large so that with probability at least
1—6/2, all h € H have |erryn(h) — erryu(h)| < e. Thus we have:

{f et erruyu(f) <erruu(c”) + e} C Hp(erryu(c’) + 2e¢).

The given bound on |L| is sufficient so that with probability at least 1 — 4§, all h € H with
err(h) = 0 and érryn(h) < erry,(c®) 4+ € have errp(h) < € furthermore, érr,(c¢*) <
erryn(c*) + €, so such a function h exists. Therefore, with probability at least 1 — ¢, the
h € H that optimizes err,,(h) subject to érr(h) = 0 has errp(h) < ¢, as desired. B

One can view Theorem 6.22 as bounding the number of labeled examples needed to learn
well as a function of the “helpfulness” of the distribution D with respect to y. Namely,
a helpful distribution is one in which Hp, () is small for a slightly larger than the
compatibility of the true target function, so we do not need much labeled data to identify a

good function among those in Hp , (a). For more information on semi-supervised learning,
see [7,7,7,7,7].

6.14.2 Active learning

Active learning refers to algorithms that take an active role in the selection of which ex-
amples are labeled. The algorithm is given an initial unlabeled set U of data points drawn
from distribution D and then interactively requests for the labels of a small number of
these examples. The aim is to reach a desired error rate € using much fewer labels than
would be needed by just labeling random examples (i.e., passive learning).

As a simple example, suppose that data consists of points on the real line and H =
{fa: falx) = 1iff x > a} for a € R. That is, H is the set of all threshold functions on
the line. It is not hard to show (see Exercise 6.2) that a random labeled sample of size
O(¢{log(s)) is sufficient to ensure that with probability > 1 — 4, any consistent threshold
o’ has error at most e. Moreover, it is not hard to show that (%) random examples are
necessary for passive learning. However, with active learning we can achieve error € using
only O(log(%) + log log(%)) labels. Specifically, first draw an unlabeled sample U of size
O(% log(%)). Then query the leftmost and rightmost points: if these are both negative
then output a’ = oo, and if these are both positive then output @’ = —oo. Otherwise (the
leftmost is negative and the rightmost is positive), perform binary search to find two ad-
jacent examples x, 2’ such that z is negative and z’ is positive, and output o’ = (z+2")/2.
This threshold o’ is consistent with the labels on the entire set U, and so by the above
argument, has error < e with probability > 1 — 9.

The agnostic case, where the target need not belong in the given class H is quite a bit

more subtle, and addressed in a quite general way in the “A%?” Agnostic Active learning
algorithm [?]. For more information on active learning, see [?, ?].

224

6.14.3 Multi-task learning

In this chapter we have focused on scenarios where our goal is to learn a single target
function c¢*. However, there are also scenarios where one would like to learn multiple target

*

functions cj, c3, ..., c;. If these functions are related in some way, then one could hope to

do so with less data per function than one would need to learn each function separately.
This is the idea of multi-task learning.

One natural example is object recognition. Given an image x, ¢j(x) might be 1 if x
is a coffee cup and 0 otherwise; ¢f(x) might be 1 if x is a pencil and 0 otherwise; ¢§(x)
might be 1 if x is a laptop and 0 otherwise. These recognition tasks are related in that
image features that are good for one task are likely to be helpful for the others as well.
Thus, one approach to multi-task learning is to try to learn a common representation
under which each of the target functions can be described as a simple function. Another
natural example is personalization. Consider a speech recognition system with n different
users. In this case there are n target tasks (recognizing the speech of each user) that are
clearly related to each other. Some good references for multi-task learning are [?, ?].

6.15 Bibliographic Notes
[TO BE FILLED IN]

225

6.16 Exercises

Exercise 6.1 (Section 6.2 and 6.3) Consider the instance space X = {0,1}% and let
H be the class of 3-CNF formulas. That is, H is the set of concepts that can be described
as a conjunction of clauses where each clause is an OR of up to 3 literals. (These are also
called 3-SAT formulas). For example ¢* might be (x1VZaVxs)(x2Viay)(T1Vas)(zaVasVay).
Assume we are in the PAC learning setting, so examples are drawn from some underlying
distribution D and labeled by some 3-CNF' formula c*.

1. Give a number of samples m that would be sufficient to ensure that with probability
> 1—20, all 3-CNF formulas consistent with the sample have error at most € with
respect to D.

2. Give a polynomial-time algorithm for PAC-learning the class of 3-CNF formulas.

Exercise 6.2 (Section 6.2) Consider the instance space X = R, and the class of func-
tions H = {fa : folx) =1 iff x > a} for a € R. That is, H is the set of all threshold
functions on the line. Prove that for any distribution D, a sample S of size O(+1log(5))
is sufficient to ensure that with probability > 1 — 0, any fo such that errs(f,) = 0 has
errp(fo) < €. Note that you can answer this question from first principles, without using
the concept of VC-dimension.

Exercise 6.3 (Perceptron; Section 6.5.3) Consider running the Perceptron algorithm
in the online model on some sequence of examples S. Let S’ be the same set of examples
as S but presented in a different order. Does the Perceptron algorithm necessarily make
the same number of mistakes on S as it does on S'? If so, why? If not, show such an S
and S’ (consisting of the same set of examples in a different order) where the Perceptron
algorithm makes a different number of mistakes on S’ than it does on S.

Exercise 6.4 (representation and linear separators) Show that any disjunction (see
Section 6.3.1) over {0,1}¢ can be represented as a linear separator. Show that moreover
the margin of separation is Q(1/v/d).

Exercise 6.5 (Linear separators; easy) Show that the parity function on d > 2
Boolean variables cannot be represented by a linear threshold function. The parity function
1s 1 if and only if an odd number of inputs is 1.

Exercise 6.6 (Perceptron; Section 6.5.3) We know the Perceptron algorithm makes
at most 1/+* mistakes on any sequence of examples that is separable by margin v (we
assume all examples are normalized to have length 1). However, it need not find a sep-
arator of large margin. If we also want to find a separator of large margin, a natural
alternative is to update on any example x such that f*(x)(w -x) < 1; this is called the
margin perceptron algorithm.

1. Argue why margin perceptron is equivalent to running stochastic gradient descent on
the class of linear predictors (fw(X) = W - x) using hinge loss as the loss function
and using Ay = 1.

226

2. Prove that on any sequence of examples that are separable by margin vy, this algorithm
will make at most 3/~* updates.

3. In part 2 you probably proved that each update increases |w|* by at most 3. Use
this (and your result from part 2) to conclude that if you have a dataset S that
1s separable by margin v, and cycle through the data until the margin perceptron
algorithm makes no more updates, that it will find a separator of margin at least

/3.

Exercise 6.7 (Decision trees, regularization; Section 6.3) Pruning a decision tree:
Let S be a labeled sample drawn iid from some distribution D over {0,1}", and suppose
we have used S to create some decision tree T'. However, the tree T is large, and we are
concerned we might be overfitting. Give a polynomial-time algorithm for pruning T' that
finds the pruning h of T that optimizes the right-hand-side of Corollary 6.6, i.e., that for
a giwen 0 > 0 minimizes:

size(h)In(4) + In(2/9)
errs(h) + \/ 21| .
To discuss this, we need to define what we mean by a “pruning” of T and what we mean
by the “size” of h. A pruning h of T is a tree in which some internal nodes of T" have been
turned into leaves, labeled “+7 or “—7 depending on whether the majority of examples in
S that reach that node are positive or negative. Let size(h) = L(h)log(n) where L(h) is
the number of leaves in h.

Hint #1: it is sufficient, for each integer L = 1,2,..., L(T), to find the pruning of T
with L leaves of lowest empirical error on S, that is, hy = argminy,,)_rerrs(h). Then
you can just plug them all into the displayed formula above and pick the best one.

Hint #2: use dynamic programming.

Exercise 6.8 (Decision trees, sleeping experts; Sections 6.3, 6.12) “Pruning” a
Decision Tree Online via Sleeping Fxperts: Suppose that, as in the above problem, we are
giwen a decision tree T, but now we are faced with a sequence of examples that arrive
online. One interesting way we can make predictions is as follows. For each node v of
T (internal node or leaf) create two sleeping experts: one that predicts positive on any
example that reaches v and one that predicts negative on any example that reaches v. So,
the total number of sleeping experts is O(L(T)).

1. Say why any pruning h of T, and any assignment of {+, —} labels to the leaves of h,
corresponds to a subset of sleeping experts with the property that exactly one sleeping
expert in the subset makes a prediction on any given example.

2. Prove that for any sequence S of examples, and any given number of leaves L, if

Llog(L(T)

we run the sleeping-experts algorithm using € = 5]), then the expected error

rate of the algorithm on S (the total number of mistakes of the algorithm divided by

227

|S|) will be at most errg(hr) + O(%), where hy, = argming, ;y_rerrs(h)

1s the pruning of T with L leaves of lowest error on S.

3. In the above question, we assumed L was given. Ezplain how we can remove this as-

sumption and achieve a bound of miny, [errg(hL) + O(%)} by instantiating

L(T) copies of the above algorithm (one for each value of L) and then combining
these algorithms using the experts algorithm (in this case, none of them will be

sleeping).
Exercise 6.9 Kernels; (Section 6.6) Prove Theorem 6.10.

Exercise 6.10 (VC-dimension; Section 6.9) What is the VC-dimension V of the
class H of axis-parallel bozes in R*? That is, H = {hap : a,b € R} where hap(x) =1
ifa; <wz; <b; foralli=1,...,d and han(x) = —1 otherwise.

1. Prove that the VC-dimension is at least your chosen V' by giving a set of V' points
that is shattered by the class (and explaining why it is shattered).

2. Prove that the VC-dimension is at most your chosen V by proving that no set of
V + 1 points can be shattered.

Exercise 6.11 (VC-dimension, Perceptron, and Margins; Sections 6.5.3, 6.9)
Say that a set of points S is shattered by linear separators of margin v if every labeling
of the points in S is achievable by a linear separator of margin at least v. Prove that no
set of 1/4* + 1 points in the unit ball is shattered by linear separators of margin 7.

Hint: think about the Perceptron algorithm and try a proof by contradiction.

Exercise 6.12 (Linear separators) Suppose the instance space X is {0,1}¢ and con-
sider the target function c* that labels an example x as positive if the least index i for
which x; = 1 is odd, else labels x as negative. In other words, ¢*(x) = “if xt; = 1 then
positive else if o = 1 then negative else if x3 = 1 then positive else ... else negative”.
Show that the rule can be represented by a linear threshold function.

Exercise 6.13 (Linear separators; harder) Prove that for the problem of Ezercise
6.12, we cannot have a linear separator with margin at least 1/ f(d) where f(d) is bounded
above by a polynomial function of d.

Exercise 6.14 VC-dimension Prove that the VC-dimension of circles in the plane is
three.

Exercise 6.15 VC-dimension Show that the VC-dimension of arbitrary right triangles
in the plane is seven.

Exercise 6.16 VC-dimension Prove that the VC-dimension of triangles in the plane
18 seven.

Exercise 6.17 VC-dimension Prove that the VC dimension of convex polygons in the
plane s infinite.

228

stream ay, as, ..., a, — {Algorithm|{ gome output
(low space)

Figure 7.1: High-level representation of the streaming model

7 Algorithms for Massive Data Problems: Stream-
ing, Sketching, and Sampling

7.1 Introduction

This chapter deals with massive data problems where the input data is too large to be
stored in random access memory. One model for such problems is the streaming model,
where n data items aj,as,...,a, arrive one at a time. For example, the a; might be
IP addresses being observed by a router on the Internet. The goal is for our algorithm
to compute some statistics, property, or summary of these data items without using too
much memory—much less than n. More specifically, we assume each a; itself is a b-bit
quantity where b is not too large; for example, each a; might be an integer in {1,...,m}
where m = 2°. Our goal will be to produce some desired output using space polynomial
in b and logn; see Figure 7.1.

For example, a very easy problem to solve in the streaming model is to compute the
sum of all the a;. If each a; is an integer between 1 and m = 2°, then the sum of all the a;
is an integer between 1 and mn and so the number of bits of memory needed to maintain
the sum is O(b + logn). A harder problem, which we will discuss shortly, is computing
the number of distinct numbers in the input sequence.

One natural approach for tackling a number of problems in the streaming model is
to perform random sampling of the input “on the fly”. To introduce the basic flavor of
sampling on the fly, consider the following problem. Suppose that each a; is a pair (w;, £;),
and our goal is to select one ¢; with probability proportional to w;. For example, in the
(sleeping) experts problem considered in Chapter 6, w; could be the weight of expert i and
¢; could be its prediction. We can solve this problem as follows. We begin with W = w,
and ¢ = /y; in general, W will be the sum of all weights w; seen so far and ¢ will be (by
induction) correctly distributed among the previous ¢;. Now, given a new pair (w;, ¢;) we
set ¢ = {; with probability ﬁwl It is clear that ¢; is chosen with the correct probability
by definition. In addition, since each previous ¢; was chosen with probability %, the new
probability that £ = ¢; is $£(1 — W) = Wlfwi as desired. Finally, we update the sum:

229

7.2 Frequency Moments of Data Streams

An important class of problems concerns the frequency moments of data streams. As
mentioned above, a data stream aq,aso,...,a, of length n consists of symbols a; from
an alphabet of m possible symbols which for convenience we denote as {1,2,...,m}.
Throughout this section, n,m, and a; will have these meanings and s (for symbol) will
denote a generic element of {1,2,...,m}. The frequency fs of the symbol s is the number
of occurrences of s in the stream. For a nonnegative integer p, the p'* frequency moment

of the stream is
m

(fs)P
s=1
Note that the p = 0 frequency moment corresponds to the number of distinct symbols
occurring in the stream. The first frequency moment is just n, the length of the string.
The second frequency moment, Y f2, is useful in computing the variance of the stream,
i.e., the average squared difference from the average frequency:

P e S (e () - (R50)

s=1

m 1/p
In the limit as p becomes large, <Z ff) is the frequency of the most frequent ele-
s=1

ment(s).

We will describe sampling based algorithms to compute these quantities for streaming
data shortly. But first a note on the motivation for these various problems. The identity
and frequency of the the most frequent item or more generally, items whose frequency
exceeds a fraction of n, is clearly important in many applications. If the items are packets
on a network with source and destination addresses, the high frequency items identify
the heavy bandwidth users. If the data is purchase records in a supermarket, the high
frequency items are the best-selling items. Determining the number of distinct symbols
is the abstract version of determining such things as the number of accounts, web users,
or credit card holders. The second moment and variance are useful in networking as well
as in database and other applications. Large amounts of network log data are generated
by routers that can record the source address, destination address, and the number of
packets for all the messages passing through them. This massive data cannot be easily
sorted or aggregated into totals for each source/destination. But it is important to know
if some popular source-destination pairs have a lot of traffic for which the variance is one
natural measure.

7.2.1 Number of Distinct Elements in a Data Stream

Consider a sequence ay, as, . . . , a, of n elements, each a; an integer in the range 1 to m
where n and m are very large. Suppose we wish to determine the number of distinct a; in

230

the sequence. Each a; might represent a credit card number extracted from a sequence of
credit card transactions and we wish to determine how many distinct credit card accounts
there are. Note that this is easy to do in O(m) space by just storing a bit-vector that
records which symbols have been seen so far and which have not. It is also easy to do in
O(nlogm) space by storing a list of all distinct symbols that have been seen. However,
our goal is to use space logarithmic in m and n. We first show that this is impossible
using exact deterministic algorithms: we will show that any deterministic algorithm that
determines the number of distinct elements exactly must use at least m bits of memory
on some input sequence of length O(m). We then will show how we can get around this
problem using randomization and approximation.

Lower bound on memory for exact deterministic algorithm

We show that any exact deterministic algorithm must use at least m bits of memory
on some sequence of length m-+1. Suppose we have seen the first m symbols, and suppose
for sake of contradiction that our algorithm uses less than m bits of memory on all such
sequences. There are 2 — 1 possible subsets of {1,2,...,m} that the sequence could
contain and yet only 2™~ ! possible states of our algorithm’s memory. Therefore there
must be two different subsets 57, S5 that lead to the same memory state. If S7 and S, are
of different sizes, then clearly this implies an error for one of the input sequences. On the
other hand, if they are the same size, then if the next symbol is in S \ Ss, the algorithm
will give the same answer in both cases and therefore must give an incorrect answer on
at least one of them.

Algorithm for the Number of distinct elements

Intuition: To beat the above lower bound, we will look at approzimating the number of
distinct elements—our algorithm will produce a number that is within a constant factor
of the correct answer—and we will use randomization, allowing a small probability of
failure. First, the idea: suppose the set S of distinct elements was itself chosen uniformly
at random from {1,...,m}. Let min denote the minimum element in S. What is the
expected value of min? If there was 1 distinct element, then its expected value would be
roughly % . If there were 2 distinct elements, the expected value of the minimum would
be roughly . More generally, for a random set S, the expected value of the minimum
is approximately ‘S‘% See Figure 7.2. Solving min = ISI% yields |S| = - — 1. This
suggests keeping track of the minimum element, which can be done in O(logm) space,
and then using this equation to give us an estimate of |.S]|.

Converting the intuition into an algorithm via hashing: Of course, in general the
set S might not have been chosen uniformly at random. For instance, if the elements of S
were obtained by selecting the |S| smallest elements of {1,2,...,m}, the above technique
would give a very bad answer. However, we can convert our intuition into an algorithm
that works well with high probability on every sequence via hashing. Specifically, we will

231

|S| + 1 subsets

A

\
m

[S]+1

Figure 7.2: Estimating the size of S from the minimum element in S which has value
approximately 5. The elements of S partition the set {1,2,...,m} into | S|+ 1 subsets
each of size approximately \SI%

use a hash function h where
h:{1,2,...,m} -{0,1,2,... , M — 1},

and then instead of keeping track of the minimum element a; € S, we will keep track of
the minimum hash value. The question now is: what properties of a hash function do
we need? Since we need to store h, we cannot use a totally random mapping since that
would take too many bits. Luckily, we can do well with just a pairwise independent hash
function which can be stored much more compactly.

We recall the formal definition of 2-way independence below. But first recall that a
hash function is always chosen at random from a family of hash functions and phrases
like “probability of collision” refer to the probability in the choice of hash function.

2-Universal (aka Pairwise Independent) Hash Functions

A set of hash functions
H={h|h:{1,2,....m} —{0,1,2,...,M — 1}}

is 2-universal or pairwise independent if for all x and y in {1,2,...,m}, x # y, and for
all z and win {0,1,2,..., M — 1}

Probjy (h(z) =z and h(y) = w) = 7>
for a randomly chosen h. The concept of a 2-universal family of hash functions is that
given x, h(z) is equally likely to be any element of {0,1,2,..., M — 1} (which can be

seen by summing the above probability over all M values of w) and for z # y, h (x) and
h (y) are independent.

We now give an example of a 2-universal family of hash functions. Let M > m be a
prime. For each pair of integers a and b in the range [0, M — 1], define a hash function

hay () = az +b (mod M)

232

To store the hash function h,p, store the two integers a and b. This requires only O(log M)
space. To see that the family is 2-universal note that h(z) = z and h(y) = w if and only

(3 1) () =(0) morm

If x # y, the matrix A = (z 1) is invertible modulo M: here, we are using the

primality of M to ensure that inverses of elements exist in Z;, and we are using the fact
that M > m to ensure that if z # y then # y (mod M). This means that ({) = A7*(?)

(mod M). Since cach (3) yields some (?) and each () solves to a unique (}), we have
a 1-1 correspondence. Thus, for a and b chosen uniformly at random, the probability of
the equation holding is exactly 5.

Analysis of distinct element counting algorithm

Let by,bo,...,bq be the distinct values that appear in the input. Then the set S =
{h(b1), h(b2),...,h(bqg)} is a set of d random and 2-way independent values from the set
{0,1,2,...,M — 1}. We now show that % is a good estimate for d, the number of
distinct elements in the input, where min=min(S).

Lemma 7.1 With probability at least % — %, we have
smallest element of S.

(o] {SH

< M < 6d, where min is the
min

Proof: First, we show that Prob (% > 6d) < %4— %. This part does not require pairwise
independence.

M M M
Prob (— > Gd) = Prob <min < @) = Prob (Elk, h(by) < —)

min 6d
d M
M [11\ 1 d
< Prob () < = | <d) <d(—+—) <4
—;m <<)<6d)_ <M>_ <6d+M)_6+M

Next, we show that Prob (% < % < %. This part will use pairwise independence.
First, we can write Prob (2 < ¢) = Prob [min > 8] = Prob (Vk, h(b;) > %t). For
0 if h(b;) >t d
1 otherwise and let y = 1:21 Yi-

We want to show that with good probability, we do see some hash value in [0, %], ie.,
that Prob(y = 0) is small. Now Prob (y; =1) > £ E(y;) > %, and E (y) > 6. For 2-way
independent random variables, the variance of their sum is the sum of their variances.
So Var(y) = dVar (y;). Further, it is easy to see since y; is 0 or 1 that Var(y;) =
E (1 — Ew))’] = E(y}) — E* (1) = E(y1) — E*(y1) < E (y1) . Thus Var(y) < E (y).

1 =1,2,...,d define the indicator variable y; = {

233

Now by the Chebyshev inequality,

M d 6M
Prob (— < 6) = Prob (min > %) = Prob (Vk h(b;) > —)

min d
= Prob (y = 0) < Prob(ly — E (y)| = E (y))
< Va;r(y) < 1 < 1
EX(y) — E(y) — 6
Since % > 6d with probability at most % + % and % < %l with probability at most %,
% < % < 6d with probability at least % — %.]

7.2.2 Counting the Number of Occurrences of a Given Element.

To count the number of occurrences of a given element in a stream requires at most
log n space where n is the length of the stream. Clearly, for any length stream that occurs
in practice, we can afford logn space. For this reason, the following material may never
be used in practice, but the technique is interesting and may give insight into how to solve
some other problem.

Consider a string of 0’s and 1’s of length n in which we wish to count the number
of occurrences of 1’s. Clearly if we had logn bits of memory we could keep track of the
exact number of 1’s. However, we can approximate the number with only loglogn bits.

Let m be the number of 1’s that occur in the sequence. Keep a value k such that 2*
is approximately the number of occurrences m. Storing k requires only loglogn bits of
memory. The algorithm works as follows. Start with k=0. For each occurrence of a 1,
add one to k with probability 1/2%. At the end of the string, the quantity 2% — 1 is the
estimate of m. To obtain a coin that comes down heads with probability 1/2%, flip a fair
coin, one that comes down heads with probability 1/, k times and report heads if the fair
coin comes down heads in all £ flips.

Given k, on average it will take 2* ones before k is incremented. Thus, the expected
number of 1’s to produce the current value of kis 1 +2+4 + ... 2k 1 =2~ _ 1,

7.2.3 Counting Frequent Elements
The Majority and Frequent Algorithms

First consider the very simple problem of n people voting. There are m candidates,

{1,2,...,m}. We want to determine if one candidate gets a majority vote and if so
who. Formally, we are given a stream of integers ai,as,...,a,, each a; belonging to
{1,2,...,m}, and want to determine whether there is some s € {1,2,...,m} which oc-

curs more than n/2 times and if so which s. It is easy to see that to solve the problem
exactly on read-once streaming data with a deterministic algorithm, requires 2(min(n, m))

234

space. Suppose n is even and the last n/2 items are identical. Suppose also that after
reading the first n/2 items, there are two different sets of elements that result in the same
contents of our memory. In that case, a mistake would occur if the second half of the
stream consists solely of an element that is in one set, but not in the other. If n/2 > m
then there are 2™ — 1 possible subsets that the first n/2 elements could comprise; else
there are ZL/ ? (T) subsets. By the above argument, the number of bits of memory must
be at least the base-2 logarithm of the number of subsets, which is Q(min(m,n)).

Surprisingly, we can bypass the above lower bound by just slightly weakening our goal.
Let us again require that if some element appears more than n/2 times, then we must
output it. But now, let us say that if no element appears more than n/2 times, then our
algorithm may output whatever it wants, rather than requiring that it output “no”. That
is, there may be “false positives”, but no “false negatives”.

Majority Algorithm

Store a; and initialize a counter to one. For each subsequent a;, if a; is the
same as the currently stored item, increment the counter by one. If it differs,
decrement the counter by one provided the counter is nonzero. If the counter
is zero, then store a; and set the counter to one.

To analyze the algorithm, it is convenient to view the decrement counter step as “elim-
inating” two items, the new one and the one that caused the last increment in the counter.
It is easy to see that if there is a majority element s, it must be stored at the end. If not,
each occurrence of s was eliminated; but each such elimination also causes another item
to be eliminated and so for a majority item not to be stored at the end, we must have
eliminated more than n items, a contradiction.

Next we modify the above algorithm so that not just the majority, but also items
with frequency above some threshold are detected. More specifically, the algorithm below

will find the frequency (number of occurrences) of each element of {1,2,...,m} to within
an additive term of 747+ That is, for each symbol s, the algorithm will produce a value

fs € fs— s fs], where f is the true number of occurrences of symbol s in the sequence.
It will do so using O(klogn + klogm) space by keeping k counters instead of just one
counter.

Algorithm Frequent

Maintain a list of items being counted. Initially the list is empty. For each
item, if it is the same as some item on the list, increment its counter by one.
If it differs from all the items on the list, then if there are less than k items
on the list, add the item to the list with its counter set to one. If there are
already k items on the list decrement each of the current counters by one.
Delete an element from the list if its count becomes zero.

235

Theorem 7.2 At the end of Algorithm Frequent, for each s € {1,2,...,m}, its counter
on the list fs satisfies f, € [fs — k_vaS]' In particular, if some s does not occur on the
list, its counter is zero and the theorem asserts that fs < 25

Proof: The fact that fs < f, is immediate. To show fs > f, — 747 view each decrement
counter step as eliminating some items. An item is eliminated if it is the current a; being
read and there are already k symbols different from it on the list in which case it and
k other items are simultaneously eliminated. Thus, the elimination of each occurrence
of an s € {1,2,...,m} is really the elimination of k + 1 items. Thus, no more than
n/(k+ 1) occurrences of any symbol can be eliminated. Now, it is clear that if an item is
not eliminated, then it must still be on the list at the end. This proves the theorem. g

Theorem 7.2 implies that we can compute the true relative frequency, the number of
occurrences divided by n, of every s € {1,2,...,m} to within an additive term of -

7.2.4 The Second Moment

This section focuses on computing the second moment of a stream with symbols from
{1,2,...,m}. Again, let f; denote the number of occurrences of symbol s in the stream,
and recall that the second moment of the stream is given by > 7, f2. To calculate the
second moment, for each symbol s, 1 < s < m, independently set a random variable z,
to £1 with probability 1/2. In particular, think of z, as the output of a random hash
function h(s) whose range is just the two buckets {—1, 1}, where let us for now think of
h as a fully independent hash function. Maintain a sum by adding x, to the sum each
time the symbol s occurs in the stream. At the end of the stream, the sum will equal
™ zsfs. The expected value of the sum will be zero where the expectation is over the
choice of the £1 value for the x,.

FE (i :Esfs) =0.

Although the expected value of the sum is zero, its actual value is a random variable and
the expected value of the square of the sum is given by

m 2 m m
B (z f) p (zf) +om (z xsxtfsft) v
s=1 s=1 s=1

s#t

The last equality follows since E (zsx;) = E(xs)E(x;) = 0 for s # t, where here we are
using pairwise independence of the random variables. Thus

a = <Z xsfs)

236

is an estimator of Y7 f2. Note that at this point we could use Markov’s inequality
to state, for instance, that Prob(a > 337", f?) < 1/3, but we want to get a tighter
guarantee. To do so, let us look at the second moment of a:

m
> .t
s=1

The last equality is by expansion. Let us now assume that the random variables zs are
4-wise independent, or equivalently that we are producing them using a 4-wise indepen-
dent hash function. Then, since the x, are independent in the last sum, if any one of
s, u, t, or v is distinct from the others, then the expectation of the whole term is zero.
Thus, we need to deal only with terms of the form 2222 for ¢ # s and terms of the form z?.

4

E[CLQ] =F =F Z T Toy Ty fs frfutfo

1<s,t,u,v<m

Each term in the above sum has four indices, s,t,u,v, and there are (;1) ways of
choosing two indices that have the same x value. Thus,

Bla?] < (;‘)E (f} 3 mff) + B (i:j xiff)

s=1 t=s+1
=6> >) S
s=1 t=s+1 s=1

IA

3 (Z ff) — 3E[a)*.
Therefore, Var(a) = Ela?] — Ela]* < 2E[a]?.

Since the variance is comparable to the square of the expectation, this implies that if
we repeat the process several times and take the average, we will get high accuracy with
high probability. Specifically,

Theorem 7.3 If we use r = 52%5 independently chosen 4-way independent sets of random
variables, and let X be the average of the estimates ay, ..., a, produced, then

Var(X)

I

Prob (| X — E[X]| > eE[X]) <
Proof: The proof follows from the fact that taking the average of r independent repe-
titions reduces variance by a factor of 7, so that Var(X) < §e?E[X], and then applying
Chebyshev’s inequality. m

What remains now is to show that we can implement the desired 4-way independent
random variables using O(logm) space. We earlier gave a construction for a pairwise-
independent set of hash functions; now, we need 4-wise independence, though only into a
range of {—1,1}. Below we present one such construction.

237

Error-Correcting codes, polynomial interpolation and limited-way indepen-
dence

Consider the problem of generating a random m-vector x of +1’s so that any subset of
four coordinates is mutually independent. We will show that such an m-dimensional vec-
tor may be generated from a truly random “seed” of only O(log m) mutually independent
bits. Thus, we need only store the O(logm) bits and can generate any of the m coordi-
nates when needed. The first fact needed for this is that for any k, there is a finite field F
with exactly 2* elements, each of which can be represented with & bits and arithmetic op-
erations in the field can be carried out in O(k?) time. Here, k will be the ceiling of log, m.
We also assume another basic fact about polynomial interpolation; a polynomial of degree
at most three is uniquely determined by its value over any field F' at four points. More
precisely, for any four distinct points aq, as, as, ay € F' and any four possibly not distinct
values by, by, b3, by € F, there is a unique polynomial f(z) = fo+ fiz+ fox?+ fsx® of degree
at most three, so that with computations done over F', f(ay) = by, f(az) = b, f(as) = b3,
and f(ayq) = by.

The definition of the pseudo-random 41 vector x with 4-way independence is sim-
ple. Choose four elements fy, f1, f2, f3 at random from F' and form the polynomial
f(s) = fo+ fis+ fos*+ f3s>. This polynomial represents x as follows. For s =1,2,...,m,
x is the leading bit of the k-bit representation of f(s). Thus, the m-dimensional vector
x requires only O(k) bits where k = [logm].

Lemma 7.4 The x defined above has 4-way independence.

Proof: Assume that the elements of F' are represented in binary using +1 instead of the
traditional 0 and 1. Let s, t, u, and v be any four coordinates of x and let «, 3,v,d €
{—1,1}. There are exactly 2*~! elements of F' whose leading bit is o and similarly for
B, v, and 6. So, there are exactly 2**~1 4-tuples of elements by, by, b3, by € F so
that the leading bit of b; is «, the leading bit of by is £, the leading bit of b3 is =,
and the leading bit of by is 0. For each such by, by, bs, and by, there is precisely one
polynomial f so that f(s) = by, f(t) = be, f(u) = b3, and f(v) = by. The probability
that zs = o, v, = 8, x, =7, and x, = J is precisely

24(k—1) 24(k—1) 1
total number of f 24 16

as asserted.]

Lemma 7.4 describes how to get one vector x with 4-way independence. However, we
need r = O(1/g%) vectors. Also the vectors must be mutually independent. But this is
easy, just choose r independent polynomials at the outset.

238

To implement the algorithm with low space, store only the polynomials in memory.
This requires 4k = O(logm) bits per polynomial for a total of O(lofgm) bits. When a
symbol s in the stream is read, compute each polynomial at s to obtain the value for the
corresponding value of the x5 and update the running sums. z; is just the leading bit of
the polynomial evaluated at s; this calculation is in O(logm) time. Thus, we repeatedly

compute the z, from the “seeds”, namely the coefficients of the polynomials.

This idea of polynomial interpolation is also used in other contexts. Error-correcting
codes is an important example. Say we wish to transmit n bits over a channel which may
introduce noise. One can introduce redundancy into the transmission so that some chan-
nel errors can be corrected. A simple way to do this is to view the n bits to be transmitted
as coefficients of a polynomial f(z) of degree n — 1. Now transmit f evaluated at points
1,2,3,...,n+ m. At the receiving end, any n correct values will suffice to reconstruct
the polynomial and the true message. So up to m errors can be tolerated. But even if
the number of errors is at most m, it is not a simple matter to know which values are
corrupted. We do not elaborate on this here.

7.3 Matrix Algorithms using Sampling

We now move from the streaming model to a model where the input is stored in mem-
ory, but because the input is so large, one would like to produce a much smaller approx-
imation to it, or perform an approximate computation on it in low space. For instance,
the input might be stored in a large slow memory and we would like a small “sketch”
that can be stored in smaller fast memory and yet retains the important properties of the
original input. In fact, one can view a number of results from the chapter on machine
learning in this way: we have a large population, and we want to take a small sample,
perform some optimization on the sample, and then argue that the optimum solution on
the sample will be approximately optimal over the whole population. In the chapter on
machine learning, our sample consisted of independent random draws from the overall
population or data distribution. Here, we will be looking at matrix algorithms, and to
achieve our desired guarantees—in particular, to achieve good multiplicative-error bounds
rather than additive-error bounds—we will want to perform non-uniform sampling.

Algorithms for matrix problems like Matrix Multiplication, Low-rank Approximations,
Singular Value Decomposition, Compressed representations of matrices, Linear Regression
etc. are widely used. Some of these algorithms take O(n?) time for n x n matrices (with
improvements to O(n®) time for some a € (2,3), but with worse constants) and so are
difficult to carry out for large modern matrices.

The natural alternative to working on the whole input matrix is to pick a random
sub-matrix and compute with that. Here, we will pick a subset of columns or rows of
the input matrix. If s (for sample size) is the number of columns we are willing to work
with, we will do s independent identical trials. In each trial, we select a column of the
matrix. All that we have to decide is what the probabilities of picking each column is.

239

A moment’s thought will show that sampling uniformly at random (u.a.r.) is not always
good if we want a good multiplicative error bound. For example, if the input matrix has
most columns close to the zero vector and only a few significant columns, then sampling
u.a.r. s columns, where, s is small, will never pick up any of the significant columns; this
may have low additive error (if entries are bounded in [—1, 1], say) but the multiplicative
error would be huge.

We will see that the “optimal” probabilities are proportional to the squared length of
columns. This is referred to as length squared sampling and since its first discovery in
the mid-90’s, has been proved to have several desirable properties which we will see.

Two general notes on this approach:

(i) We will prove error bounds which hold for ALL input matrices. Our algorithms
are randomized (i.e., use a random number generator), so the error bounds are random
variables. The bounds are on the expected error (or tail probability bounds on large
errors) and apply to any matrix. Note that this contrasts with the situation when we have
a stochastic model of the input matrix and only assert error bounds for “most” matrices
drawn from the probability distribution the stochastic model assumes. A mnemoic is -
our algorithms can toss coins, but our data does not toss coins. A reason for proving
error bounds for any matrix is that in real problems, like say the analysis of the Web
Hypertext Link matrix or the patient-genome expression matrix, it is the one matrix the
user is interested in, not a random matrix. [In general, we focus on general algorithms
and theorems, not specific applications, so the reader need not be aware of what the two
matrices above mean.|

(ii) There is “no free lunch”. Since we only work on a small random sample and not
on the whole input matrix, our error bounds will not be very good for certain matrices.
For example, if the input matrix is the identity, it is intuitively clear that picking a
few random columns will miss the other directions. Indeed, the initial error bounds we
prove (using length squared sampling) are useful only for “numerically low-rank matrices”
(which we define later). But there are important applications, for example, Principal
Component Analysis, where indeed, one does have numerically low-rank input matrics
and these technqiues are useful. There are more sophisticated (and time-consuming)
sampling methods which have error bounds which are good even for non-numerically-low-
rank matrices. [We will not see these here.]

To the Reader: Why aren’t (i) and (ii) mutually contradictory ?

7.3.1 Matrix Multiplication Using Sampling

Suppose A is an m X n matrix and B is an n X p matrix and the product AB is desired.
We show how to use sampling to get an approximate product faster than the traditional
multiplication. Let A (:, k) denote the k' column of A. A(:, k) is a m x 1 matrix. Let
B (k,:) be the k' row of B. B (k,:) is a 1 x n matrix. It is easy to see that

AB = iA(:,k)B (k,:).

240

Note that for each value of k, A(:, k)B(k,:) is an m X p matrix each element of which is a
single product of elements of A and B. An obvious use of sampling suggests itself. Sample
some values for k and compute A (:, k) B (k,:) for the sampled k’s and use their suitably
scaled sum as the estimate of AB. It turns out that nonuniform sampling probabilities
are useful. Define a random variable z that takes on values in {1,2,...,n}. Let p; denote
the probability that z assumes the value k. We will solve for a good choice of probabilities
later, but for now just consider the p; as nonnegative numbers that sum to one. Define
an associated random matrix variable that has value

1
X =—A(k)B(k,:) (7.1)
Pk
with probability pg. Let E (X)) denote the entry-wise expectation.

E(X) = Zn:Prob(z _ k;)pikA (k) B (k,:) = Zn:A(:, k)B (k,:) = AB.

This explains the scaling by pik in X. In particular, X is a matrix-valued random variable
each of whose components is correct in expectation. We will be interested in

B (|lAB ~ X]I3).

This can be viewed as the variance of X, defined as the sum of the variances of all its
entries.

m P 1
Var(X) = ZZVM (i) = ZE’ (:E?J) — E () = (Z Zpkﬁa?’fbij) — ||AB||%.
ij ij ok k

i=1 j=1

We want to choose p; to minimize this quantity, and notice that we can ignore the ||AB||%
term since it doesn’t depend on the pg’s at all. We can now simplify by exchanging the
order of summations to get

3D pipalitty =3 (Z) (Z b@) = 3 AR 1B ()

w Pk o\ i

What is the best choice of p; to minimize this sum? It can be seen by calculus®' that
the minimizing p; are proportional to |A(:, k)||B(k,:)|. In the important special case
when B = AT, this means to pick columns of A with probabilities proportional to the
squared length of the columns. In fact, even in the general case when B is not AT,
doing so simplifies the bounds, so we will use it. This sampling is called “length squared

sampling”. If p;, is proportional to |A (:, k) |?, i.e, pr, = |ﬁg"’|€%‘2, then

B (||AB = X|I) = Var(X) < [|Al[7) |B (k,2) [= [| A5 B[}
k

210ne can see by taking derivatives that for any set of nonnegative numbers cj, to minimize ;—2,
one should pick pi proportional to /ck.

241

[17] Corresponding
Sampled scalecl rsv;s of B
A B Scaled
~ | columns
of
A
X X
- meen 4t nxp - | mxs |
Figure 7.3: Approximate Matrix Multiplication using sampling
To reduce the variance, we can do s independent trials. Each trial 7, i = 1,2,...,s

yields a matrix X; as in (7.1). We take 3% ' X; as our estimate of AB. Since the
variance of a sum of independent random variables is the sum of variances, the variance
of 1377 | X; is 1Var(X) and so is at most 1[|A||%||B||%. Let ki, ..., ks be the k’s chosen
in each trial. Expanding this out, we get:

1< 1 (A ki) B(ki,:) A, ke) B(ks,:) A, k) B(ks,:)
g;Xi_3< DPry " Dk T Pk) 72

We will find it convieneint to write this as the product of an m x s matrix with a s x p
matrix as follows: Let C' be the m x s matrix consisting of the following columns which
are scaled versions of the chosen columns of A:

A(k) A ko) A(:, k)
VP | /3Dks \/SPk,

Note that the scaling has a nice property (which the reader is asked to verify):

E(CCT) = AAT. (7.3)

Define R to be the s x p matrix with the corresponding rows of B similarly scaled, namely,

R has rows
B(ky,:) B(ks,:) B(ks,:)

vV SPky ’ \ SPk, T \ SPks .

The reader may verify that
E(R"R) = A"A. (7.4)

From (7.2), we see that £ 37 | X; = CR. This is represented in Figure 7.3. We summarize
our discussion in Theorem 7.5.

Theorem 7.5 Suppose A is an m X n matrix and B is an n X p matriz. The product
AB can be estimated by CR, where, C' is an m X s matrix consisting of s columns of

242

A picked according to length-squared distribution and scaled to satisfy (7.3) and R is the
s X p matrix consisting of the corresponding rows of B scaled to satisfy (7.4). The error
15 bounded by:
Al 1Bl

. :
Thus, to ensure E (||AB — CR||%) < €2||A||%||B||%, it suffices to make s > 1/&2. If now
e € Q1) (and so s € O(1)), then, the multiplication CR can be carried out in time
O(mp).

E (||AB - CR||}) <

When is this the error bound good and when is it not? Let’s focus on the case
that B = AT so we have just one matrix to consider. If A is the identity matrix, then
the guarantee is not very good. In this case, ||AAT||% = n, but the right-hand-side of
the inequality is ”?2 So we would need s > n for the bound to be any better than
approximating the product with the zero matrix.

More generally, the trivial estimate of zero (all zero matrix) for AAT makes an error in
Frobenius norm of ||AAT||r. What s do we need to ensure that the error is at most this?

If 01,09,... are the singular values of A, then the singular values of AAT are 07,02, ...

and we have
JAAT|[Z = o o (AR =D ot
t t

So from the theorem we can assert that E(||AAT — CR||%) < ||AAT||% provided

(02 +02+4...)*
ot +os+...

If rank(A) = r, then there are r non-zero o; and the best general upper bound on the
(03402+...)?
ST oLt
sampling will not gain us anything over taking the whole matrix !

However, if there is a constant ¢ and a small integer p such that

ratio is r, so in general, s needs to be at least r. If A is full rank, this means

0%+0§+...+0§20(0%—{—03—1—---4—03), (7.5)

then,
(02 4+ 024 ...)2 _ S(oi+os+... +0))? <&
ot +os+... ol +oy+...+o2 — 7

and so s > ¢?p gives us a better estiamte than the zero matrix. [Further increasing s
by a factor decreases the error by the same factor.] The condition (7.5) is indeed the
hypothesis of the subjct of Principal Component Analysis (PCA) and there are many
situations when the data matrix does satisfy the condition and so sampling algorithms
are useful.

243

7.3.2 Implementing Length Squared Sampling in two passes

Traditional matrix algorithms often assume that the input matrix is in Random Access
Memory and so any particular entry of the matrix can be accessed in unit time. For
massive matrices, RAM may be too small to hold the entire matrix, but may be able to
hold and compute with the sampled columns/rows.

Lets consider a high-level model where the input matrix (or matrices) have to be read
from “external memory” using a “pass”. In one pass, one can read sequentially all entries
of the matrix. We may do some “sampling on the fly” as the pass is going on.

It is easy to see that two passes suffice to draw a sample of columns of A according
to length squared probabilities, even if the matrix is not in row-order or column-order
and entries are presented as a linked list. In the first pass, we just compute the length
squared of each column and store this information in RAM. The lengths squared can be
computed as running sums. Then, we use a random number generator in RAM to figure
out the columns to be sampled (according to length squared probabilities). Then, we
make a second pass in which we pick out the columns to be sampled.

What if the matrix is already presented in external memory in column-order? Then,
one pass will do. This is left as an exercise for the reader, but we mention a primitive
which is used in this process.

The primitive is: if we are given a stream (a stream is a read-once only input sequence)
of positive real numbers ay, as, . . ., a,, at the end, we must have a random i € {1,2,...,n}
with the property that the probability we chose ¢ equals exactly <=+— for all i.

a.
Z?:l aj

7.3.3 Sketch of a Large Matrix

The main result of this section is that for any matrix, a sample of columns and rows,
each picked according to length squared distribution provides a good sketch of the matrix
in a formal sense that will be described shortly. Let A be an m xn matrix. Pick s columns
of A according to length squared distribution. Let C' be the m X s matrix containing the
picked columns scaled so as to satisy (7.3), i.e., if A(:, k) is picked, it is scaled by 1/,/5py.
Similarly, pick r rows of A according to length squared distribution on the rows of A. Let
R be the r x n matrix of the picked rows, scaled as follows: If row k of A is picked, it is
scaled by 1/,/rpe. We then have E(RTR) = ATA.

From C' and R, we can find a matrix U so that A =~ CUR. The schematic diagram is
given in Figure 7.4.

The proof that this is a good approximation makes crucial use of the fact that the
sampling of rows and columns is with probability proportional to the squared length. One
may recall that the top k singular vectors of the SVD of A, give a similar picture; but
the SVD takes more time to compute, requires all of A to be stored in RAM, and does
not have the property that the rows and columns are directly from A. The last property
- that the approximation involves actual rows/columns of the matrix rather than linear
combinations - is called an interpolative approximation and is useful in many contexts.
However, the SVD does yield the best 2-norm approximation. Error bounds for the ap-

244

[| [1T Multi Sample rows
plier rXm
Sample o
A | columns e
i nxm | | nxs |

Figure 7.4: Schematic diagram of the approximation of A by a sample of s columns and
T TOWS.

proximation CUR are weaker.

We briefly touch upon two motivations for such a sketch. Suppose A is the document-
term matrix of a large collection of documents. We are to “read” the collection at the
outset and store a sketch so that later, when a query represented by a vector with one
entry per term arrives, we can find its similarity to each document in the collection.
Similarity is defined by the dot product. In Figure 7.4 it is clear that the matrix-vector
product of a query with the right hand side can be done in time O(ns + sr + rm) which
would be linear in n and m if s and r are O(1). To bound errors for this process, we need
to show that the difference between A and the sketch of A has small 2-norm. Recall that
the 2-norm ||A|| of a matrix A is max |Ax|. The fact that the sketch is an interpolative

x|=1
approximation means that our ap1|)r|oximation essentially consists a subset of documents
and a subset of terms, which may be thought of as a representative set of documents and
terms. Additionally, if A is sparse in its rows and columns—each document contains only
a small fraction of the terms and each term is in only a small fraction of the documents—
then this property will be preserved in C' and R, unlike with SVD.

A second motivation comes from recommendation systems. Here A would be a
customer-product matrix whose (7,7)" entry is the preference of customer i for prod-
uct 7. The objective is to collect a few sample entries of A and based on them, get an
approximation to A so that we can make future recommendations. A few sampled rows
of A (all preferences of a few customers) and a few sampled columns (all customers’ pref-
erences for a few products) give a good approximation to A provided that the samples

are drawn according to the length-squared distribution.
It remains now to describe how to find U from C' and R. There is a n X n matrix P of

the form P = QR which acts as the identity on the space spanned by the rows of R and
zeros out all vectors orthogonal to this space. We state this now and postpone the proof.

245

Lemma 7.6 If RRT is invertible, then P = RT(RRT)™'R has the following properties:
(i) It acts as the identity matriz on the row space of R. I.e., Px = x for every vector x of
the form x = RTy (this defines the row space of R). Furthermore, (ii) if X is orthogonal
to the row space of R, then Px = 0.

If RRT is not invertible, let rank (RRT) = r' and RRT = Z:lzl o vyl be the SVD

of RRT. Then,
r’ 1
P= RT (Z —2> utVtTR
(o

t=1 ¢t

satisfies (i) and (ii).

We begin with some intuition. In particular, we first present a simpler idea that does
not work, but that will then motivate the idea that does. Write A as AI, where [is the
n X n identity matrix. Now, let’s approximate the product Al using the algorithm of
Theorem 7.5 from the last section, i.e., by sampling s columns of A according to length-
squared. Then, as in the last section, write AI ~ CW, where, W consists of a scaled
version of the s rows of I corresponding to the s columns of A that were picked. Theorem
7.5 bounds the error |[|[A—CW||% by ||A[||1]|%/s = ||Al|%2. But we would like the error
to be a small fraction of ||A||% which would require s > n, which clearly is of no use since
this would pick as many or more columns than the whole of A.

Let’s use the identity-like matrix P instead of I in the above discussion. Using the
fact that R is picked according to length squared we will show the following proposition
later.

Proposition 7.7 A ~ AP and the error E (||A — AP||3) is at most ||A||%/\/T .

We then use Theorem 7.5 to argue that instead of doing the multiplication AP, we can
use the sampled columns of A and the corresponding rows of P. The sampled s columns
of A form C. We have to take the corresponding s rows of P = RT(RRT)~'R, which is
the same as taking the corresponding s rows of R”, and multiplying this by (RRT)"'R. Tt
is easy to check that this leads to an expression of the form CUR. Further, by Theorem
7.5, the error is bounded by

AP _ r
B (|JAP - CUR|3) < E (||AP - CURI) < EHEEEE < Dyjaip, (76)

since we will show later that:
Proposition 7.8 ||P||% <.

Putting (7.6) and Proposition 7.7 together, and using the fact that by triangle inequality
we have ||A — CUR||y < ||A — AP||s + ||AP — CUR)||s which in turn implies that ||A —
CUR||3 < 2||A — AP||3 + 2||AP — CUR]|3, we get the main result:

246

Theorem 7.9 Suppose A is any m X n matriz and r and s are positive integers. Suppose
C is a m x s matrix of s columns of A picked according to length squared sampling and
similarly R is a matrix of r rows of A picked according to length squared sampling. Then,
we can find from C, R an s X r matriz U so that

2 2r
E (||A - H<AE—=+=).
(14 - curip) <l (2 + %)

We see that if s is fixed, the error is minimzied when r = s%3. Choosing s = r/¢ and
r = 1/, the bound becomes O(e)||A||%. When is this bound meaningful? We discuss
this further after first proving all the claims used in the discussion above.

Proof: (of Lemma (7.6): First for the case when RR” is invertible. For x = RTy,
RY(RRT)'Rx = RT(RRT)'RRTy = Ry = x. If x is orthogonal to every row of R,
then Rx = 0, so Px = 0.

More generally, if RRT = 3", oyueve”, then, R, 5R = 3", vyvi” and clerly satis-
fies (i) and (if). t =

Now we prove Proposition 7.7. First, recall that

I|A— AP = . max [(A — AP)x/|?.

x:|x|=1}

Let’s first suppose x is in the row space V of R. From Lemma 7.6 we have Px = X, so
for x € V, we have (A — AP)x = 0. Now, since every vector can be written as a sum of a
vector in V' plus a vector orthogonal to V', this implies that the maximum must therefore
occur at some x € V. For such x, by Lemma 7.6 we have (A — AP)x = Ax. Thus, the
question now becomes: for unit-length x € V+, how large can |Ax|? be? To analyze this,
we can write:

|Ax|* = xTATAx = x"(ATA — RTR)x < ||ATA — R R||,|x|* < ||ATA — RTR||,.

This implies that we get ||A — AP||3 < ||JATA — RTR||. So, it suffices to prove that
|ATA — RTR||2 < ||A||%/r which follows directly from Theorem 7.5, since we can think
of RTR as a way of estimating AT A by picking (according to length-squared distribution)
columns of AT i.e., rows of A. This proves Proposition 7.7.

Proposition 7.8 is easy to see: Since by Lemma 7.6, P is the identity on the space V
spanned by the rows of R, and Px = 0 for x perpendicular to the rows of R, we have that
|| P||% is the sum of its singular values squared which is at most r as claimed.

We now briefly look at the time needed to compute U. The only involved step in

computing U is to find (RRT)™! or do the SVD of RRT. But note that RR” is an r x r
matrix and since r is to much smaller than n, m, this is fast.

247

Understanding the bound in Theorem 7.9: Let us now aim to better understand
the bound in Theorem 7.9 by considering when it is meaningful and when it is not.
First, let’s choose parameters s = O(1/¢) and r = ©(1/£?) so that the bound becomes
E(||A — CUR|[3) < ¢||A||%. Now, recall that ||A]|3 =3, 07(A), L.e., the sum of squares

of all the singular values of A. Also, let’s for convenience scale A so that of(A) = 1. So,
we have:

o}(A)=[|Al5=1 and E(|A~CURI}) <e) oi(A).

From this, we can get an intuitive sense of when the guarantee is good and when it is not.
First, if the top k singular values of A are all Q(1) for k > m!/?, so that >_, 02(A4) > m!'/3,
then the guarantee is only meaningful when ¢ = o(m~1/3), which is not interesting because
it requires s > m. On the other hand, if say just the first few singular values of A are large
and the rest are quite small—e.g, A represents a collection of points that lie very close
to a low-dimensional pancake—and in particular if Y, 07(A) is a constant, then to be
meaningful the bound just requires € to be a small constant. In this case, the guarantee
is indeed meaningful because it implies that by just selecting a constant number of rows
and columns we can provide a good 2-norm approximation to A.

7.4 Sketches of Documents

Suppose one wished to store all the web pages from the WWW. Since there are billions
of web pages, one might store just a sketch of each page where a sketch is a few hundred
bits that capture sufficient information to do whatever task one had in mind. A web page
or a document is a sequence. We begin this section by showing how to sample a set and
then how to convert the problem of sampling a sequence into a problem of sampling a set.

Consider subsets of size 1000 of the integers from 1 to 10°. Suppose one wished to
compute the resemblance of two subsets A and B by the formula

resemblance (A, B) = I‘m—Bl

Suppose that instead of using the sets A and B, one sampled the sets and compared ran-
dom subsets of size ten. How accurate would the estimate be? One way to sample would
be to select ten elements uniformly at random from A and B. However, this method is
unlikely to produce overlapping samples. Another way would be to select the ten smallest
elements from each of A and B. If the sets A and B overlapped significantly one might
expect the sets of ten smallest elements from each of A and B to also overlap. One dif-
ficulty that might arise is that the small integers might be used for some special purpose
and appear in essentially all sets and thus distort the results. To overcome this potential
problem, rename all elements using a random permutation.

Suppose two subsets of size 1000 overlapped by 900 elements. What would the over-
lap be of the 10 smallest elements from each subset? One would expect the nine smallest

248

elements from the 900 common elements to be in each of the two subsets for an overlap
of 90%. The resemblance(A, B) for the size ten sample would be 9/11=0.81.

Another method would be to select the elements equal to zero mod m for some inte-
ger m. If one samples mod m the size of the sample becomes a function of n. Sampling
mod m allows us to also handle containment.

In another version of the problem one has a sequence rather than a set. Here one con-
verts the sequence into a set by replacing the sequence by the set of all short subsequences
of some length k. Corresponding to each sequence is a set of length k subsequences. If
k is sufficiently large, then two sequences are highly unlikely to give rise to the same set
of subsequences. Thus, we have converted the problem of sampling a sequence to that of
sampling a set. Instead of storing all the subsequences, we need only store a small subset
of the set of length £ subsequences.

Suppose you wish to be able to determine if two web pages are minor modifications
of one another or to determine if one is a fragment of the other. Extract the sequence
of words occurring on the page. Then define the set of subsequences of k consecutive
words from the sequence. Let S(D) be the set of all subsequences of length & occurring
in document D. Define resemblance of A and B by

resemblance (4, B) = m%

And define containment as

[S(A)NS(B)]

containment (A, B) = =g,

Let W be a set of subsequences. Define min (W) to be the s smallest elements in W and
define mod (W) as the set of elements of w that are zero mod m.

Let m be a random permutation of all length k subsequences. Define F(A) to be the
s smallest elements of A and V(A) to be the set mod m in the ordering defined by the
permutation.

Then
F(A)N F(B)
F(A)U F(B)
and
[V(A)NV(B)]
[V(A)uV(B)|

are unbiased estimates of the resemblance of A and B. The value

[V(A)NV(B)|
V(A

is an unbiased estimate of the containment of A in B.

249

7.5 Bibliography
TO DO

250

7.6 Exercises

Algorithms for Massive Data Problems

Exercise 7.1 Given a stream of n positive real numbers ayi, as, ..., a,, upon seeing

ai,as, . ..,a; keep track of the sum a = a; + as + --- + a; and a sample a;, j < i drawn
with probability proportional to its value. On reading a;y1, with probability afa—tlﬂ replace
the current sample with a;v1 and update a. Prove that the algorithm selects an a; from

the stream with the probability of picking a; being proportional to its value.

Exercise 7.2 Given a stream of symbols ay,as, ..., a,, give an algorithm that will select
one symbol uniformly at random from the stream. How much memory does your algorithm
require?

Exercise 7.3 Give an algorithm to select an a; from a stream of symbols ay,as,. .., ay
with probability proportional to a?.

Exercise 7.4 How would one pick a random word from a very large book where the prob-
ability of picking a word is proportional to the number of occurrences of the word in the
book?

Exercise 7.5 For the streaming model give an algorithm to draw s independent samples
each with the probability proportional to its value. Justify that your algorithm works
correctly.

Frequency Moments of Data Streams

Number of Distinct Elements in a Data Stream

Lower bound on memory for exact deterministic algorithm
Algorithm for the Number of distinct elements

Universal Hash Functions

Exercise 7.6 Show that for a 2-universal hash family Prob(h(z) = z) = ﬁ for all
xe{l,2,....m} and 2 € {0,1,2,..., M }.

Exercise 7.7 Let p be a prime. A set of hash functions
H={nl{0,1,...,p—1} = {0,1,....,p—1}}
is 3-universal if for all u,v,w,z,y, and z in {0,1,...,p—1}
1
Prob(h(x) =u, h(y) =v, h(z) =w) = e
(a) Is the set {ha(x) = ax +b mod p|0 < a,b < p} of hash functions 3-universal?

(b) Give a 3-universal set of hash functions.

251

Exercise 7.8 Give an example of a set of hash functions that is not 2-universal.
Exercise 7.9 Select a value for k and create a set

H = {x|x = (z1,22,...,25),2;, € {0,1,... .k — 1}}
where the set of vectors H is two way independent and |H| < k*.

Analysis of distinct element counting algorithm
Counting the Number of Occurrences of a Given Element.

Exercise 7.10

(a) What is the variance of the method in Section 7.2.2 of counting the number of occur-
rences of a 1 with loglogn memory?

(b) Can the algorithm be iterated to use only logloglogn memory? What happens to the
variance?

Exercise 7.11 Consider a coin that comes down heads with probability p. Prove that the
expected number of flips before a head occurs is 1/p.

Exercise 7.12 Randomly generate a string x1xs - -- 2, of 108 0’s and 1’s with probability
Uy of x; being a 1. Count the number of ones in the string and also estimate the number
of ones by the approximate counting algorithm. Repeat the process for p=1/4, 1/8, and
1/16. How close is the approximation?

Counting Frequent Elements
The Majority and Frequent Algorithms
The Second Moment

Exercise 7.13 Construct an example in which the majority algorithm gives a false posi-
tive, 1.e., stores a nonmagjority element at the end.

Exercise 7.14 Construct examples where the frequent algorithm in fact does as badly as
in the theorem, i.e., it “under counts” some item by n/(k+1).

Exercise 7.15 Recall basic statistics on how an average of independent trials cuts down

m
variance and complete the argument for relative error € estimate of > f2.
s=1

Error-Correcting codes, polynomial interpolation and limited-way indepen-
dence

252

Exercise 7.16 Let F' be a field. Prove that for any four distinct points ay, as, az, and a4
in F' and any four (possibly not distinct) values by, by, bs, and by in F, there is a unique
polynomial f(x) = fo+ frx+ fox®+ fsz® of degree at most three so that f(ay) = by, f(az) =
by, f(as) =bs f(as) = by with all computations done over F.

Sketch of a Large Matrix

Exercise 7.17 Suppose we want to pick a row of a matriz at random where the probability
of picking row i is proportional to the sum of squares of the entries of that row. How would
we do this in the streaming model? Do not assume that the elements of the matriz are
given in row order.

(a) Do the problem when the matriz is given in column order.

(b) Do the problem when the matriz is represented in sparse notation: it is just presented
as a list of triples (i, 7, a;;), in arbitrary order.

Matrix Multiplication Using Sampling

Exercise 7.18 Suppose A and B are two matrices. Show that AB =Y, A(:,k)B (k,:).
k=1

Exercise 7.19 Generate two 100 by 100 matrices A and B with integer values between
1 and 100. Compute the product AB both directly and by sampling. Plot the difference
i Lo norm between the results as a function of the number of samples. In generating
the matrices make sure that they are skewed. One method would be the following. First
generate two 100 dimensional vectors a and b with integer values between 1 and 100. Next
generate the it" row of A with integer values between 1 and a; and the i'" column of B
with integer values between 1 and b;.

Approximating a Matrix with a Sample of Rows and Columns

Exercise 7.20 Suppose ai,as,...,a, are nonnegative reals. Show that the minimum

m
of]; Z—i subject to the constraints xp > 0 and Zk:mk = 1 is attained when the x are
=1

proportional to \/ay.

Sketches of Documents

Exercise 7.21 Consider random sequences of length n composed of the integers 0 through
9. Represent a sequence by its set of length k-subsequences. What is the resemblance of
the sets of length k-subsequences from two random sequences of length n for various values
of k as n goes to infinity?

253

Exercise 7.22 What if the sequences in the Exercise 7.21 were not random? Suppose the
sequences were strings of letters and that there was some nonzero probability of a given
letter of the alphabet following another. Would the result get better or worse?

Exercise 7.23 Consider a random sequence of length 10,000 over an alphabet of size
100.

1.

(a) For k = 3 what is probability that two possible successor subsequences for a given
subsequence are in the set of subsequences of the sequence?

(b) For k =5 what is the probability?
Exercise 7.24 How would you go about detecting plagiarism in term papers?

Exercise 7.25 Suppose you had one billion web pages and you wished to remove dupli-
cates. How would you do this?

Exercise 7.26 Construct two sequences of 0’s and 1’s having the same set of subsequences
of width w.

Exercise 7.27 Consider the following lyrics:

When you walk through the storm hold your head up high and don’t be afraid of the
dark. At the end of the storm there’s a golden sky and the sweet silver song of the
lark.

Walk on, through the wind, walk on through the rain though your dreams be tossed
and blown. Walk on, walk on, with hope in your heart and you’ll never walk alone,
you’ll never walk alone.

How large must k be to uniquely recover the lyric from the set of all subsequences of
symbols of length k? Treat the blank as a symbol.

Exercise 7.28 Blast: Given a long sequence a, say 10° and a shorter sequence b, say
1P, how do we find a position in a which is the start of a subsequence b’ that is close to
b? This problem can be solved by dynamic programming but not in reasonable time. Find
a time efficient algorithm to solve this problem.

Hint: (Shingling approach) One possible approach would be to fix a small length, say
seven, and consider the shingles of a and b of length seven. If a close approximation to b
1s a substring of a, then a number of shingles of b must be shingles of a. This should allows
us to find the approximate location in a of the approximation of b. Some final algorithm
should then be able to find the best match.

254

8 Clustering

8.1 Introduction

Clustering refers to the process of partitioning a set of objects into subsets according to
some desired criterion, and is often an important step in making sense of large amounts of
data. Clustering comes up in many contexts. For example, one might want to partition a
set of news articles into clusters based on the topic of the article. Or given a set of pictures
of people, one might want to group them into clusters based on who is in the image. Or
one might want to cluster a set of protein sequences according to the function of the pro-
tein. A related problem is not finding a full partitioning but rather just identifying natural
clusters that exist. For example, given a collection of friendship relations among people,
one might want to identify any tight-knit groups that exist. Note that in some cases we
will have a well-defined correct answer—e.g., in clustering photographs of individuals by
who is in them—but in other cases the notion of a good clustering may be more subjective.

Before running a clustering algorithm, one first needs to choose an appropriate repre-
sentation for one’s data. One common representation is as vectors or points in R?; this
corresponds to identifying d real-valued features, which are then computed for each data
object. For example, to represent documents one might use a “bag of words” represen-
tation, where each feature corresponds to a word in the English language and the value
of the feature is how many times that word appears in the document. Another common
representation is as vertices in a graph, with edges weighted by some measure of how
similar or dissimilar the two endpoints are. For example, given a set of protein sequences,
one might weight edges based on an edit-distance measure that essentially computes the
cost of transforming one sequence into the other. This measure is typically symmetric
and satisfies triangle inequality, and so can be thought of as a finite metric. A point worth
noting up front is that often the “correct” clustering of a given set of data depends on your
goals. For instance, given a set of photographs of individuals, we might want to cluster
the images by who is in them, or we might want to cluster them by facial expression.
When representing the images as points in space or as nodes in a weighted graph, it is
therefore important that the features we use be relevant to the criterion we care about.
In any event, the issue of how best to represent data to highlight the relevant information
for a given task is generally addressed using knowledge of the specific domain. From our
perspective, the job of the clustering algorithm begins after the data has been represented
in some appropriate way.

Not surprisingly, clustering has a long history in terms of algorithmic development. In
this chapter, our goals are to (a) discuss some commonly used clustering algorithms and
what one can prove about them, and (b) talk more generally about what conditions (in
terms of what the data looks like) are sufficient to be able to produce an approximately-
correct solution. In addition, in the process, we will talk about structural properties of
common clustering formulations, as well as relaxations of the clustering goal when there

255

is no clear unique solution.

Preliminaries: We will follow the standard notation of using n to denote the number
of data points and k to denote the number of clusters desired. We will primarily focus on
the case that k is known up front, but will also discuss algorithms that produce a sequence
of solutions, one for each value of k, as well as algorithms that produce a cluster tree that
can encode multiple clusterings at each value of k. We will generally use A = {a;,...,a,}
to denote the n data points.

8.1.1 Two general assumptions on the form of clusters

Before choosing a clustering algorithm, it is useful to have some general idea of what a
good clustering should look like. In general, there are two types of assumptions often
made that in turn lead to different classes of clustering algorithms.

Center-based clusters: One assumption commonly made is that clusters are center-
based. 'This means that the clustering can be defined by k& “center points” cq,...,cy,
with each data point assigned to whichever center point is closest to it. Note that this
assumption does not yet tell us whether one choice of centers is better than another. For
this, one needs an objective, or optimization criterion. Three standard criteria often used
are k-center, k-median, and k-means clustering, defined as follows.

k-center clustering: Find a partition C = {C1,...,Cy} of A into k clusters, with corre-
sponding centers cy,...,c, to minimize the maximum distance between any data
point and the center of its cluster. That is, we want to minimize

Dpcenter (C) = m%ux max d(a;, ¢;).
j=1 a;eC;
k-center clustering makes sense when we believe clusters should be local regions in
space. It is also often thought of as the “firehouse location problem” since one can
think of it as the problem of locating k fire-stations in a city so as to minimize the
maximum distance a fire-truck might need to travel to put out any fire.

k-median clustering: Find a partition C = {C1,...,Cy} of A into k clusters, with corre-
sponding centers cy, ..., Cg, to minimize the sum of distances between data points
and the centers of their clusters. That is, we want to minimize

Dpmedian(C) = Z Z d(a;, c;).

Jj=1 a;eCj

k-median clustering is more noise-tolerant than k-center clustering because we are
taking a sum rather than a max. A small number of outliers will typically not
change the optimal solution by much, unless they are very far away or there are
several quite different near-optimal solutions.

256

k-means clustering: Find a partition C = {C},...,Cy} of A into k clusters, with cor-
responding centers cy, ..., Cg, to minimize the sum of squares of distances between
data points and the centers of their clusters. That is, we want to minimize

k

DQomeans(C) = Z Z d*(a;, cj).

j=1 a;eCj

k-means clustering puts more weight on outliers than k-median clustering, because
we are squaring the distances, which magnifies large values. This puts it somewhat
in between k-median and k-center clustering in that regard. Using distance squared
has some mathematical advantages over using pure distances when data are points
in RY; see for example Corollary 8.2 that asserts that with the distance squared
criterion, the optimal center for a given group of data points is its centroid.

The k-means criterion is more often used when data consists of points in R?, whereas
k-median is more commonly used when we have a finite metric, that is, data are nodes in
a graph with distances on edges.

When data are points in R?, there are in general two variations of the clustering prob-
lem for each of the criteria. We could require that each cluster center be a data point or
allow a cluster center to be any point in space. If we require each center to be a data
point, the optimal clustering of n data points into k clusters can be solved in time (’,;”)
times a polynomial in the length of the data. First, exhaustively enumerate all sets of k
data points as the possible sets of k cluster centers, then associate each point to its nearest
center and select the best clustering. No such naive enumeration procedure is available
when cluster centers can be any point in space. But, for the k-means problem, Corol-
lary 8.2 shows that once we have identified the data points that belong to a cluster, the

best choice of cluster center is the centroid of that cluster, which might not be a data point.

For general values of k, the above optimization problems are all NP-hard.?? So, guar-
antees on algorithms will typically involve either some form of approximation or some
additional assumptions, or both.

High-density clusters: If we do not believe our desired clusters will be center-based,
an alternative assumption often made is that clusters consist of high-density regions sur-
rounded by low-density “moats” between them. For example, in the clustering of Figure
8.1 we have one natural cluster A that looks center-based but the other cluster B consists
of a ring around cluster A. As seen in the figure, this assumption does not require clusters
to correspond to convex regions and it can allow them to be long and stringy. We will ex-
amine natural algorithms for clustering data where the desired clusters are believed to be
of this form. Note that one difficulty with this assumption is that it can be quite difficult

22Tf k is a constant, then as noted above, the version where the centers must be data points can be
solved in polynomial time.

257

Figure 8.1: Example where the natural clustering is not center-based.

to estimate densities of regions when data lies in high dimensions. So, as a preprocessing
step, one may want to first perform some type of projection into a low dimensional space,
such as SVD, before running a clustering algorithm.

We begin with a discussion of algorithms for center-based clustering, then examine
algorithms for high-density clusters, and then examine some algorithms that allow com-
bining the two. A resource for information on center-based clustering is the book chapter

[7].
8.2 k-means Clustering

We assume in this section that data points lie in B¢ and focus on the k-means criterion.

8.2.1 A maximum-likeihood motivation for k-means

We now consider a maximum-likelihood motivation for using the k-means criterion. Sup-
pose that the data was generated according to an equal weight mixture of k spherical
well-separated Gaussian densities centered at g1, pto, ..., tx, each with variance one in
every direction. Then the density of the mixture is

1 k
—|x—ps?
(272 Ze e
i=1

Denote by p(x) the center nearest to x. Since the exponential function falls off fast, we
can approximate Zle e~ Pepil® by e~ PG Thus

F(x) = Prob(x) =

| =

1 1 >
~ = o lxu(x)]
F(X)Nk(2ﬂ)d/26 .
The likelihood of drawing the sample of points x(),x® .. x(®™ from the mixture, if the

centers were b1, o, . . - 5 g, 1S approximately

1 1 n . . w1 .
T e hO - = e Ei s -nx)p
Jn (2mynarz L1€ : = cen S

i=1

258

Minimizing the sum of squared distances to cluster centers finds the maximum likelihood
1, f2s - -« 5 . This motivates using the sum of distance squared to the cluster centers.

8.2.2 Structural properties of the k-means objective

Suppose we have already determined the clustering or the partitioning into C4, Cs, ..., Cj.
What are the best centers for the clusters? The following lemma shows that the answer
is the centroids, the coordinate means, of the clusters.

Lemma 8.1 Let {aj,az,...,a,} be a set of points. The sum of the squared distances of
the a; to any point x equals the sum of the squared distances to the centroid of the a; plus
n times the squared distance from x to the centroid. That is,

D lai—xP =) lai—c[* +nlc— x|’
7 7

where ¢ = % > a; is the centroid of the set of points.
i=1

Proof:

Dolai—x" =3 Jai— e+ e xf
= el +2c—x)- Y (a) +nfe—xf

7
7

Since c is the centroid, 3 (a; —c) = 0. Thus, Y |a; — x> =Y |a; —c[+njc—x° n

3 3

A corollary of Lemma 8.1 is that the centroid minimizes the sum of squared distances
since the second term, n||c — x||°, is always non-negative.

Corollary 8.2 Let {aj,as,...,an} be a set of points. The sum of squared distances of
the a; to a point X is minimized when X is the centroid, namely x = %Z a;.

8.2.3 Lloyd’s k-means clustering algorithm

Corollary 8.2 suggests the following natural strategy for k-means clustering, known as
Lloyd’s algorithm. Lloyd’s algorithm does not necessarily find a globally optimal solution
but will find a locally-optimal one. An important but unspecified step in the algorithm is
its initialization: how the starting k centers are chosen. We discuss this after discussing
the main algorithm.

259

Lloyd’s algorithm:

Start with & centers.
Cluster each point with the center nearest to it.
Find the centroid of each cluster and replace the set of old centers with the centroids.

Repeat the above two steps until the centers converge (according to some criterion, such
as the k-means score no longer improving).

This algorithm always converges to a local minimum of the objective. To show conver-
gence, we argue that the sum of the squares of the distances of each point to its cluster
center always improves. Each iteration consists of two steps. First, consider the step
that finds the centroid of each cluster and replaces the old centers with the new centers.
By Corollary 8.2, this step improves the sum of internal cluster distances squared. The
second step reclusters by assigning each point to its nearest cluster center, which also
improves the internal cluster distances.

A problem that arises with some implementations of the k-means clustering algorithm
is that one or more of the clusters becomes empty and there is no center from which to
measure distance. A simple case where this occurs is illustrated in the following example.
You might think how you would modify the code to resolve this issue.

Example: Consider running the k-means clustering algorithm to find three clusters on
the following 1-dimension data set: 2,3,7,8 starting with center 0,5,10.

51 99 10 £ 6 T o0

01ﬂ456m910

The center at 5 ends up with no items and there are only two clusters instead of the
desired three. m

X

As noted above, Lloyd’s algorithm only finds a local optimum to the k-means objec-
tive that might not be globally optimal. Consider, for example, Figure 8.2. Here data
lies in three dense clusters in R?: one centered at (0,1), one centered at (0,—1) and
one centered at (3,0). If we initialize with, say, one center at (0,1) and two centers
near (3,0), then the center at (0,1) will move to near (0,0) and capture the points near
(0,1) and (0, —1), whereas the centers near (3, 0) will just stay there, splitting that cluster.

Because the initial centers can substantially influence the quality of the result, there
has been significant work on initialization strategies for Lloyd’s algorithm. One popular

260

Figure 8.2: A locally-optimal but globally-suboptimal k-means clustering.

strategy is called “farthest traversal”. Here, we begin by choosing one data point as initial
center ¢; (say, randomly), then pick the farthest data point from c; to use as cs, then
pick the farthest data point from {c;,ca} to use as cs, and so on. These are then used
as the initial centers. Notice that this will produce the correct solution in the example in

Figure 8.2.

Farthest traversal can unfortunately get fooled by a small number of outliers. To ad-
dress this, a smoother, probabilistic variation known as k-means++ instead weights data
points based on their distance from the previously chosen centers—specifically, propor-
tional to distance squared—and then selects the next center probabilistically according to
these weights. This approach has the nice property that a small number of outliers will
not overly influence the algorithm so long as they are not too far away—in which case
perhaps they should be their own clusters anyway:.

An alternative SVD-based method for initialization is described and analyzed in Sec-
tion 8.6. Lastly, another approach is to run some other approximation algorithm for
the k-means problem, and then to use its output as the starting point for Lloyd’s algo-
rithm. Note that applying Lloyd’s algorithm to the output of any other algorithm can
only improve its score.

8.2.4 Ward’s algorithm

Another popular heuristic for k-means clustering is Ward’s algorithm. Ward’s algorithm
begins with each datapoint in its own cluster, and then repeatedly merges pairs of clus-
ters until only k clusters remain. Specifically, Ward’s algorithm merges the two clusters
that minimize the immediate increase in k-means cost. That is, for a cluster C, define
cost(C) = 3, cc d*(a;,), where c is the centroid of C'. Then Ward’s algorithm merges
the pair C, C" minimizing cost(C'UC") — cost(C) — cost(C"). Thus, Ward’s algorithm can
be viewed as a greedy k-means algorithm.

261

8.2.5 k-means clustering on the line

One case where the optimal k-means clustering can be found in polynomial time is when
points lie in R!, i.e., on the line. This can be done using dynamic programming, as follows.

First, assume without loss of generality that the datapoints aq, . . ., a, have been sorted,
so a; < ag < ... < a, Now, suppose that for some 7 > 1 we have already computed the
optimal k’-means clustering for points a1, ..., a; for all " < k; note that this is trivial to
do for the base case of + = 1. Our goal is to extend this solution to points ay,...,a;11. To
do so, we observe that each cluster will contain a consecutive sequence of data points. So,
given k', for each j < i+ 1, we just compute the cost of using a single center for points
aj,...,a;+1, which is just the sum of distances of each of these points to their mean value,
and then add to that the cost of the optimal &' — 1 clustering of points ay, ..., a;_; which
we already computed earlier. We store the minimum of these sums, over choices of j, as
our optimal k’-means clustering of points a;,...,a;41. This has running time of O(kn)
for a given value of i, and so overall our running time is O(kn?).

8.3 k-Center Clustering

In this section, instead of using the k-means clustering criterion, we use the k-center
criterion. Recall that the k-center criterion partitions the points into k£ clusters so as to
minimize the maximum distance of any point to its cluster center. Call the maximum dis-
tance of any point to its cluster center the radius of the clustering. There is a k-clustering
of radius r if and only if there are k spheres, each of radius r, which together cover all
the points. Below, we give a simple algorithm to find £ spheres covering a set of points.
The following lemma shows that this algorithm only needs to use a radius that is at most
twice that of the optimal k-center solution. Note that this algorithm is equivalent to the
farthest traversal strategy for initializing Lloyd’s algorithm.

The Farthest Traversal k-clustering Algorithm

Pick any data point to be the first cluster center. At time ¢, fort =2 3,... K,
pick the farthest data point from any existing cluster center; make it the ¢ cluster
center.

Theorem 8.3 If there is a k-clustering of radius 5, then the above algorithm finds a
k-clustering with radius at most r.

Proof: Suppose for contradiction that there is some data point p that is distance greater
than r from all centers chosen. This means that each new center chosen was distance
greater than r from all previous centers, because we could always have chosen p. This
implies that we have k41 data points, namely the centers chosen plus p, that are pairwise
more than distance r apart. Clearly, no two such points can belong to the same cluster
in any k-clustering of radius , contradicting the hypothesis.]

262

8.4 Finding Low-Error Clusterings

In the previous sections we saw algorithms for finding a local optimum to the k-means
clustering objective, for finding a global optimum to the k-means objective on the line, and
for finding a factor 2 approximation to the k-center objective. But what about finding
a clustering that is close to the correct answer, such as the true clustering of proteins
by function or a correct clustering of news articles by topic? For this we need some
assumption about the data and what the correct answer looks like. In the next two
sections we will see two different natural assumptions, and algorithms with guarantees
based on them.

8.5 Approximation Stability

Implicit in considering objectives like k-means, k-median, or k-center is the hope that
the optimal solution to the objective is a desirable clustering. Implicit in considering
algorithms that find near-optimal solutions is the hope that near-optimal solutions are
also desirable clusterings. Let’s now make this idea formal.

Let C = {Cy,...,Cx} and C' = {C1,...,C}} be two different k-clusterings of some
dataset A. A natural notion of the distance between these two clusterings is the fraction
of points that would have to be moved between clusters in C to make it match C’, where
by “match” we allow the indices to be permuted. Since C and C’ are both partitions of
the set A, this is the same as the fraction of points that would have to be moved among
clusters in C' to make it match C. We can write this distance mathematically as:

k
1
dist(C,C'") =min— Y [C;i\ Cl ol
ist(C,C) = min T 310\ Cogy

where the minimum is over all permutations o over {1,... k}.

Given an objective @ (such as k-means, k-median, etc), define C* to be the cluster-
ing that minimizes ®. Define Cr to be the “target” clustering we are aiming for, such
as correctly clustering documents by topic or correctly clustering protein sequences by
their function. For ¢ > 1 and € > 0 we say that a dataset satisfies (¢, €) approzimation-
stability with respect to objective ® if every clustering C with ®(C) < ¢ - ®(C*) satisfies
dist(C,Cr) < e. That is, it is sufficient to be within a factor ¢ of optimal to the objective
® in order for the fraction of points clustered incorrectly to be less than e.

What is interesting about approximation-stability is the following. The current best
polynomial-time approximation guarantee known for the k-means objective is roughly a
factor of 9, and for k-median it is roughly a factor 2.7; beating a factor 143 /e for k-means
and 1+ 1/e for k-median are both NP-hard. Nonetheless, given data that satisfies (1.1, €)
approximation-stability for the k-median objective, it turns out that so long as en is suf-
ficiently small compared to the smallest cluster in Cr, we can efficiently find a clustering

263

[[Make an
exercise to
show that the
math and
English defs
are
equivalent]]

that is e-close to Cp. That is, we can perform as well as if we had a generic 1.1-factor
approximation algorithm, even though achieving a 1.1-factor approximation is NP-hard
in general. (Results known for the k-means objective are somewhat weaker, finding a
clustering that is O(e)-close to Cr.) Here, we show this for the k-median objective where
the analysis is cleanest, where we make a few additional assumptions in order to focus
on the main idea. In the following one should think of € as o(%*). The results described
here will apply to data in any metric space, it need not be R%.%3

We will assume for simplicity and ease of notation that Cr = C*; that is, the target
clustering is also the optimum for the objective. For a given datapoint a;, define its weight
w(a;) to be its distance to the center of its cluster in C*. Notice that since we are using
the k-median objective, we have ®(C*) = > " , w(a;). Define w,,, = ®(C*)/n to be the
average weight of the points in A. Finally, define wsy(a;) to be the distance of a; to its
second-closest center in C*. We now begin with a useful lemma.

Lemma 8.4 Assume dataset A satisfies (c,€) approximation-stability with respect to the
k-median objective, each cluster in Cr has size at least 2en, and Cr = C*. Then,

1. Fewer than en points a; have wa(a;) —w(a;) < (¢ — 1)wayg/€.

2. At most ben/(c — 1) points a; have w(a;) > (¢ — 1)wayy/(5€).

Proof: Let’s begin with part (1). Suppose for contradiction that en points a; have
ws(a;) —w(a;) < (¢ — 1)wgyg/e. Consider modifying Cr to a new clustering C' by moving
each of these points a; into the cluster containing its second-closest center. By assumption,
the k-means cost of the clustering has increased by at most en(c—1)wgy,/€ = (c—1)®(C*);
this means that ®(C’) < ¢ - ®(C*). However, dist(C',Cr) = € because (a) we moved en
points to different clusters, and (b) each cluster in Cr has size at least 2en so the optimal
permutation ¢ in the definition of dist remains the identity. So, this contradicts approx-
imation stability. Part (2) follows simply from the definition of “average”; if it did not
hold then we would have Y | w(a;) > nweg.g, a contradiction. B

Let us say a datapoint a; is bad if it satisfies either item (1) or (2) of Lemma 8.4 and

good if it satisfies neither one. So, we have at most b = en + E’j—’i bad points and the rest
are good. Also, let us define “critical distance” d..; = (Cflg# So, Lemma 8.4 implies

that the good points have distance at most d..; to the center of their own cluster in C*
and distance at least 5d..;; to the center of any other cluster in C*.

This suggests the following algorithm. Suppose we create a graph GG with the points
a; as vertices, and edges between any two points a; and a; with d(a;,a;) < 2d.;. Notice

23An example of a dataset satisfying (2,0.2/k) approximation stability would be k clusters of n/k
points each, where in each cluster, 90% of the points are within distance 1 of the cluster center (call this
the “core” of the cluster), with the other 10% arbitrary, and all cluster cores are at distance at least 10k
apart.

264

that by triangle inequality, the good points within the same cluster in C* have distance
less than 2d.,.; from each other so they will be fully connected and form a clique. Also,
again by triangle inequality, any edge that goes between different clusters must be be-
tween two bad points. In particular, if a; is a good point in one cluster, and it has an edge
to some other point a;, then a; must have distance less than 3d.,;; to the center of a;’s
cluster. This means that if a; had a different closest center, which obviously would also
be at distance less than 3d.,;;, then a; would have distance less than 2d..,.;; + 3de.;t = 5derit
to that center, violating its goodness. So, bridges in G between different clusters can only
occur between bad points.

Assume now that each cluster in Cr has size at least 2b + 1; this is the sense in which
we are requiring that en be small compared to the smallest cluster in Cr. In this case,
suppose we create a new graph H by connecting any two points a; and a; that share at
least b + 1 neighbors in common in G, themselves included. Since every cluster has at
least 2b+1—0b = b+ 1 good points, and these points are fully connected in GG, this means
that H will contain an edge between every pair of good points in the same cluster. On the
other hand, since the only edges in G' between different clusters are between bad points,
and there are at most b bad points, this means that H will not have any edges between
different clusters in Cr. Thus, if we take the k largest connected components in H, these
will all correspond to subsets of different clusters in Cr, with at most b points remaining.

At this point we have a correct clustering of all but at most b points in A. Let us
call these clusters Ci,...,Cy, where C; C C}. To cluster the remaining points a;, we
assign them to the cluster C; that minimizes the median distance between a; and points
in C;. Since each C; has more good points than bad points, and each good point in C}
has distance at most d; to center c}, by triangle inequality the median of these distances
must lie in the range [d(a;,) — derit, d(a;, ¢}) + derig). This means that this second step
will correctly cluster all points a; for which wy(a;) — w(a;) > 2d.4. In particular, we
correctly cluster all points except possibly for some of the at most en satisfying item (1)
of Lemma 8.4.

The above discussion assumes the value d..; is known to our algorithm; we leave it as
an exercise to the reader to modify the algorithm to remove this assumption. Summariz-
ing, we have the following algorithm and theorem.

Algorithm k-Median Stability (given c, €, deit)

1. Create a graph G with a vertex for each datapoint in A, and an edge between
vertices ¢ and j if d(a;, a;) < 2depit.

2. Create a graph H with a vertex for each vertex in G and an edge between vertices ¢
and j if ¢ and j share at least b 4+ 1 neighbors in common, themselves included, for
b=en+ ff—q Let (', ..., C} denote the k largest connected components in H.

3. Assign each point not in Cy U. ..U} to the cluster C; of smallest median distance.

265

Theorem 8.5 Assume A satisfies (c,€) approzimation-stability with respect to the k-

median objective, that each cluster in Cr has size at least j?in—l—Qen—i— 1, and that Cr = C*.

Then Algorithm k-Median Stability will find a clustering C such that dist(C,Cr) < e.

8.6 Spectral Clustering

Sometimes there is clearly a correct target clustering we want to find, but approx-
imately optimal k-means or k-median clusterings can be very far from the target. We
describe two important stochastic models below where this situation arises. It turns out
that in these cases as well as many others, a clustering algorithm based on SVD, called
Spectral Clustering comes to the rescue.

Spectral Clustering first projects data points onto the space spanned by the top k
singular vectors of the data matrix and works in the projection. It is widely used and
indeed finds a clustering close to the target clustering for data arising from many stochastic
models. We will prove this in a generalized setting which includes both stochastically
generated data and data with no stochastic models.

8.6.1 Stochastic Block Model

Stochastic Block Models are models of communities. Suppose there are k communities
C1, s, ..., C, among a population of n people. Suppose the probability of two people in
the same community knowing each other is p and if they are in different communities, the
probability is ¢ (where, ¢ < p).?* We assume the events that person i knows person j are
independent across all 7, j.

Specifically, we are given an n x n data matrix A, where, A;; = 1 iff ¢ and j know
each other. We assume the A;; are independent random variables, and use a; to denote
the ith row of A. It is useful to think of A as the adjacency matrix of a graph, such as
the friendship network in Facebook. We will also think of the rows a; as data points.
The clustering problem is to classify the data points into the communities they belong
to. In practice, the graph is fairly sparse, i.e., p, ¢ are small, namely, O(1/n) or O(Inn/n).

Consider the simple case of two communities with n/2 people in each and with
o
p=—; q= s , where, o, 5 € O(Inn).
n n
Let u,v be the centroids of the data points in community one and community two

respectively; so, u; = p for i € C; and u; = ¢ for j € C5 and v; = ¢ for i € C, and v; = p
for j € C5. We have

24More generally, for each pair of communities a, b, there could be a probability pa, that a person from
community a knows a person from community b. But for the discussion here, we take p,, = p for all a
and pgp = q, for all a # b.

266

2 - 2_(04—5)2 _(Oé—ﬁ)Z
o v 3Gy - = PR = 02
7=1
Inter-centroid distance ~ & /B. (8.1)

Vn
On the other hand, we see that the distance between a data point and its cluster centroid
is much greater:

Fori€Cy, E (la— ul?) ZE w)?) = Slp(1 = p) +q(1 - g)] € Aa + B).

We see that if a, f € O(Inn), then the ratio

N

So the centroid of a cluster is much farther from data points in its own cluster than it is
to the centroid of the other cluster.

distance between cluster centroids Vinn
distance of data point to its cluster centroid '

Now, consider the k—median objective function. Suppose we wrongly classify a point
in C} as belonging to Cy. The extra cost we incur is at most the distance between
centroids which is only O(v/Inn/\/n) times the k-median cost of the data point. So just
by examining the cost, we cannot rule out a e-approximate k-median clustering from
misclassifying all points. A similar argument can also be made about k-means objective
function.

8.6.2 Gaussian Mixture Model

A second example is the Gaussian Mixture Model with k spherical Gaussians as com-
ponents, discussed in Secion 3.6.2. We saw there that for two Gaussians, each of variance
one in each direction, data points are at distance O(v/d) from their correct centers and
if the separation between the centers is O(1), (which is much smaller than O(v/d)), an
approximate optimal solution could be misclassifying almost all points. We already saw
in Section 3.6.2, that SVD of the data matrix A helps in this case.

We will show that a natural and simple SVD-based approach called Spectral Clustering
helps solve not only these two examples, but a more general class of problems for which
there may or may not be a stochastic model. The result can be qualitatively described
by a simple statement when k, the number of clusters, is O(1):

If there is some clustering with cluster centroids separated by at least a constant
times the “standard deviation”, then, we can find a clustering close to this one.

267

This should remind the reader of the mnemonic “Means separated by 6 (or some
constant) number of standard deviations”.

8.6.3 Standard Deviation without a stochastic model

First, how do we define mean and standard deviation for a clustering problem without
assuming a stochastic model of data ? In a stochastic model, each cluster consists of
i.i.d. points from a distribution, so the mean of the cluster is just the mean of the dis-
tribution. Analogously, we can define the mean as the centroid of the data points in a
cluster, whether or not we have a stochastic model. If we had a distribution, it would
have a standard deviation in each direction, namely, the square root of the mean squared
distance from the mean of the distribution in that direction. But the same definition
also applies with no distribution or stochastic model. We give the formal definitions after
introducing some notation.

Notation: We will denote by A the data matrix which is n x d, with each row a data
point. k will always denote the number of clusters. A k-clustering will be represented by
a n x d matrix C'; row ¢ of C' is the center of the cluster that a; belongs to. So, C' will
have at most k distinct rows.

The variance of the clustering C' along the direction v (where v is a vector of length
1) is the mean squared distance of data points from their cluster centers in the direction

v, namely, it is
1 <)
ﬁ;((ai —¢c) - V)<

It may differ from direction to direction, but we define the variance (denoted o) of the
clustering to be the maximum over all directions, namely,

n

1 1
P(C) = Maxer) (@ —a) - v) = —[lA-ClE
i=1
8.6.4 Spectral Clustering Algorithm
Spectral Clustering - The Algorithm
1. Find the top k right singular vectors of data matrix A.

2. Project each row of A into the space spanned by these singular vectors to obtain a n x d
matrix A.

3. Set S ={1,2,...,n}. Repeat k times:
(a) Pick arandomig € S. Let T ={i € S : |a; — a; | < 6ko/c}.

(b) Make 7" into a new cluster and set S <— S\ 7.

268

Theorem 8.6 Ifin ak-clustering C, every pair of centers is separated by at least 15ko(C) /e
and every cluster has at least en points in it, then with probability at least 1 —e, Spectral
Clustering finds a clustering C' which differs from C in at most €*n points.

Before we prove the theorem, we show that the condition that every pair of cluster
centers is separated by 15k (C')/e holds for the Stochastic Block Model and Gaussian
Mixture models discussed above for appropriate parameter settings. For this, we will
need the following theorem from Random Matrix Theory (which we do not prove here.)

Theorem 8.7 Suppose B is a nxd matriz with random entries. Assume B;; are mutually
independent. Also assume for all i,j, E(B;j) =0, Var(B;;) < v (where v € Q(lnn/n))
and the B;; are well-behaved. [If |B;;| < 1 for all i,j or if B;; are Gaussian random
variables, they are well-behaved. The theorem works in greater gemerality.] Then, with

high probability, we have
IBll2 < evn + dy/v.

Now for the Stochastic Block Model (with two communities of n/2 people each and
P, ¢, o, 3 as above), we have E(A;;) = C;; with B=A - C:

E(B;;) =0; Var(B;;) =p(1 —p) or q(1 —q) <p.

So we can take v = p to get from the theorem that

lA=Cll < eviyp=c/a = o(0)<

15

Since inter-center separation is O‘;\/ﬁﬁ as we saw from (8.1), the condition of the theorem is
satisfied as long as \/a € Q(a —) (which is a reasonable assumption in the regime when

« is at least a large constant.

The proof for the Gaussian mixture model is similar. Suppose we have a mixture of &k
Gaussians and A is a data matrix with n i.i.d. samples from the mixture as its rows. The
Gaussians need not be spherical. Let omax be the maximum standard deviation of any
of the k£ Gaussians in any direction. We again consider C' to be made up of the means of
the Gaussians. Now the theorem is satisfied by A — C with v = 0f,5x. For k € O(1), it
is now easy to see that the hypothesis of Theorem (8.6) is satisfied provided the means of
the component Gaussians are separated by Q(omax)-

Proof of Theorem 8.6: The proof of the theorem relies on a crucial Lemma, which is
simple to prove.

Lemma 8.8 Suppose A any n x d matriz and suppose A is obtained by projecting the
rows of A to subspace of the first k right singular vectors of A. For any matriz C' of rank
< k, we have:

14— ClIF < 8k||A = C5.

269

Note: A is just one matrix. But it is “close” to EVERY C, in the sense ||A — C||% <
8k||A — C||3. While this seems contradictory, the point of the Lemma is that for C' “far
away” from A, ||A — C||2 will be high.

Proof: We have rank(A — C) < 2k. [Why ?] So,
14— Clf5 < 2k[]A = C][;.
IA=Cll2 < [|A=All2 +[|A = Cll2 < 2|4 =]2,

the last inequality since A is the best rank k approximation in spectral norm and C' has
rank at most k. The lemma follows.]

We use the Lemma to argue that barring a few exceptions, most a; are at distance at
most 3ko(C)/e to the corresponding c;. This will imply that for most 7, the point a; will
be close (distance at most to most 6ko(C')/e) to most other & in its own cluster. Since
we assumed the cluster centers (of C') are well separated this will imply that for most i, j
in different clusters, |a; — aj| > 9ko(C')/e. This will enable us to prove that the distance
based clustering Step (Step 3) of the algorithm works.

Define M to be the set of exceptions:

M={i:|a— | > 3ka(C)/c}.

Since |[[A=C||% =X lai—al* > >y lai—al* > \M|%, we get using the Lemma:

9k20%(C _ 8e2
ym% < | A—C|% < 8kno(C) = |M]|< ;k” (8.2)
For i,7 ¢ M, i,j in the same cluster in C,
6ko(C
lai — & < |aj—ci| + i —q| < 06(). (8.3)

But for [# ', we have (by hypothesis) that the cluster centers are at least 15ko(C)/e
apart. This implies that

For i,k ¢ M , i,k in different clusters in C'

ko (C)

las — ax| > |ci — k| — ¢ — & — |ax — ck| >
2e

(8.4)
We will show (by induction on the number of iterations of Step 3) the invariant that at the
end of ¢ iterations of Step 3, S consists of the union of k —t of the k C;\ M plus a subset
of M. [In other words, but for elements of M, S is precisely the union of k — ¢ clusters
of C'.] Clearly, this holds for ¢ = 0. Suppose it holds for a ¢. Suppose in iteration t + 1
of step 3 of the algorithm, we choose an ig ¢ M and say i is in cluster ¢ in C. Then by
(8.3) and (8.4), we have that T" will contain all points of C;\ M and will contain no points
of Cp \ M for any ¢’ # £. This proves the invariant holds again after the iteration. Also,

270

the cluster returned by the algorithm will agree with C, except possibly on M provided
’io ¢ M.

Now by (8.2), |M| < £?n and since each |Cy| > en, we have that |C, \ M| > (¢ — &?)n.
So, if we have done less than £ iterations of Step 3 and not yet peeled off Cy, then, there
are still (€ —e%)n points of C;\ M left. So the probability that the next pick iy will be in
M is at most [M|/(e —e*)n < g/k by (8.2). So with probability at least 1 — ¢ all the k
1p’s we pick are out of M and now the theorem follows. B

8.7 High-Density Clusters

We now turn from the assumption that clusters are center-based to the assumption
that clusters consist of high-density regions, separated by low-density “moats” between
them, such as in Figure 8.1.

8.7.1 Single-linkage

One natural algorithm for clustering under the high-density assumption is called single
linkage. This algorithm begins with each point in its own cluster and then repeatedly
merges the two “closest” clusters into one, where the distance between two clusters is
defined as the minimum distance between points in each cluster. That is, d,:,(C,C") =
minyecyecr d(x,y), and the algorithm merges the two clusters C,C” whose d,,;, value
is smallest over all pairs of clusters (breaking ties arbitrarily). It then continues until
there are only k clusters. This is called an agglomerative clustering algorithm because it
begins with many clusters and then starts merging, or agglomerating, them together.?®
Single-linkage is equivalent to running Kruskal’s minimum-spanning-tree algorithm, but
halting when there are k trees remaining. The following theorem is fairly immediate.

Theorem 8.9 Suppose the desired clustering CF, ..., C} satisfies the property that there
exists some distance o such that (a) any two datapoints in different clusters have distance
at least o, and (b) for any cluster CF and any partition of C into two non-empty sets A
and CF \ A there ezist points on each side of the partition of distance less than o. Then,
single-linkage will correctly recover the clustering C5,...,C} .

Proof: Consider running the algorithm until all pairs of clusters C, C" have d,;,(C,C") >
o. At that point, by (b), each target cluster C; will be fully contained within some cluster
of the single-linkage algorithm. On the other hand, by (a) and by induction, each cluster
C of the single-linkage algorithm will be fully contained within some C} of the target
clustering, since any merger of subsets of distinct target clusters would require d,.;,, > o.
Therefore, the single-linkage clusters are indeed the target clusters.]

250ther agglomerative algorithms include complete linkage which merges the two clusters whose maz-
imum distance between points is smallest, and Ward’s algorithm described earlier that merges the two
clusters that cause the k-means cost to increase by the least.

271

8.7.2 Robust linkage

The single-linkage algorithm is fairly brittle: just a few points bridging the gap between
two different clusters can easily cause it to do the wrong thing. As a result, there has
been significant work developing more robust versions of the algorithm.

One commonly used “robustified” version of single linkage is Wishart’s algorithm. We
can view single-linkage as growing balls of radius r around each datapoint, starting with
r = 0 and then gradually increasing r, connecting two points when the balls around them
touch; the clusters are the connected components of this graph. To address the issue of a
few points causing an incorrect merger, Wishart’s algorithm has a parameter ¢, and only
considers a point to be live if its ball of radius r contains at least ¢ points. It then only
makes a connection between live points. The idea is that if ¢ is modestly large, then a
thin string of points between two dense clusters will not cause a spurious merger.

In fact, if one slightly modifies the algorithm to define a point to be live if its ball of
radius r/2 contains at least ¢ points, then it is known [?] that a value of ¢ = O(dlogn) is
sufficient to recover a nearly correct solution under a natural distributional formulation
of the clustering problem. Specifically, suppose data points are drawn from some prob-
ability distribution D over R? and that the clusters correspond to high-density regions
surrounded by lower-density “moats”. More specifically, the assumption is that (a) for
some distance o > 0, the o-interior of each target cluster C; has density at least some
quantity A (the o-interior is the set of all points at distance at least o from the boundary
of the cluster), (b) the region between target clusters has density less than A(1 — ¢€) for
some € > 0, (c) the clusters should be separated by distance greater than 20, and (d) the
o-interior of the clusters contains most of their probability mass. Then, for sufficiently
large n, the algorithm will with high probability find nearly correct clusters. In this for-
mulation, we allow there to be points in low-density regions that are not in any target
clusters at all. For details, see [?].

Robust Median Neighborhood Linkage robustifies single linkage in a different way.
This algorithm guarantees that if it is possible to delete a small fraction of the data such
that for all remaining points x, most of their |C*(x)| nearest neighbors indeed belong to
their own cluster C*(z), then the hierarchy on clusters produced by the algorithm will
include a close approximation to the true clustering. We refer the reader to [?] for the
algorithm and proof.

8.8 Kernel Methods

Kernel methods combine aspects of both center-based and density-based clustering.
In center-based approaches like k-means or k-center, once the cluster centers are fixed, the
Vornoi diagram of the cluster centers determines which cluster each data point belongs
to. This implies that clusters are pairwise linearly separable.

272

If we believe that the true desired clusters may not be linearly separable, and yet we
wish to use a center-based method, then one approach, as in the chapter on learning,
is to use a kernel. Recall that a kernel function K(x,y) can be viewed as performing
an implicit mapping ¢ of the data into a possibly much higher dimensional space, and
then taking a dot-product in that space. That is, K(x,y) = ¢(x) - ¢(y). This is then
viewed as the “affinity” between points x and y. We can extract distances in this new
space using the equation |z; — zs|? = 21 - 21 + 22 - Zo — 22 - Z2, S0 in particular we have
|6(x)—9(y)|* = K(x,x)+ K(y,y) —2K(x,y). We can then run a center-based clustering
algorithm on these new distances.

One popular kernel function to use is the Gaussian kernel. The Gaussian kernel uses
an affinity measure that emphasizes closeness of points and drops off exponentially as the
points get farther apart. Specifically, we define the affinity between points x and y by

K(x,y) = el e

Another way to use affinities is to put them in an affinity matrix, or weighted graph.
This graph can then be separated into clusters using a graph partitioning procedure such
as in the following section.

8.9 Recursive Clustering based on Sparse cuts

We now consider the case that data are nodes in an undirected connected graph
G(V, E) where an edge indicates the end point vertices are similar. Recursive cluster-
ing starts with all vertices in one cluster and recursively splits a cluster into two parts
whenever there are not too many edges from one part to the other part of the cluster.
Formally, for two disjoint sets S, T of vertices, define

(S, T) Number of edges from S to T

" total number of edges incident to S in G

®(S,T) measures the relative strength of similarities between S and 7. Let d(i) be the
degree of vertex 4 and for a subset S of vertices, let d(S) = >, ¢ d(i). Let m be the total
number of edges. The following algorithm aims to cut only a small fraction of the edges
and to produce clusters that are internally consistent in that no subset of the cluster has
low similarity to the rest of the cluster.

Recursive Clustering: If a current cluster W has a subset S with d(S) <
%d(W) and ®(S,T) < ¢, then split W into two clusters: S, W \ S. Repeat until

no such split is possible.

Theorem 8.10 At termination of Recursive Clustering, the total number of edges
between vertices in different clusters is at most O(emlnn).

273

Proof: Each edge between two different clusters at the end was “cut up” at some stage
by the algorithm. We will “charge” edge cuts to vertices and bound the total charge.
When the algorithm partitions a cluster W into S and W \ S with d(S) < (1/2)d(W),
each k € S is charged d(lf,) times the number of edges being cut. Since (S, W\ S) < e,
the charge added to each k € W is a most ed(k). A vertex is charged only when it is in
the smaller part (d(S) < d(W)/2) of the cut. So between any two times it is charged,
d(W) is reduced by a factor of at least two and so a vertex can be charged at most

log, m < O(lnn) times, proving the Theorem. B

To implement the algorithm, we have to compute Mingcw ® (S, W\ S) which is an NP-
hard problem. So the theorem cannot be implemented right away. Luckily, eigenvalues and
eigenvectors, which can be computed fast, give an approximate answer. The connection
between eigenvalues and sparsity, known as Cheeger’s inequality, is deep with applications
to Markov chains among others. We do not discuss this here.

8.10 Dense Submatrices and Communities

Represent n data points in d-space by the rows of an n x d matrix A. Assume that A
has all nonnegative entries. Examples to keep in mind for this section are the document-
term matrix and the customer-product matrix. We address the question of how to define
and find efficiently a coherent large subset of rows. To this end, the matrix A can be
represented by a bipartite graph. One side has a vertex for each row and the other side a
vertex for each column. Between the vertex for row ¢ and the vertex for column j, there
is an edge with weight a;;.

We want a subset S of row vertices and a subset T of column vertices so that

A(S, T) = Z CLZ']‘

i€S,jET

is high. This simple definition is not good since A(S,T) will be maximized by taking
all rows and columns. We need a balancing criterion that ensures that A(S,T) is high
relative to the sizes of S and T'. One possibility is to maximize fllé(’fi?\) This is not a good
measure either, since it is maximized by the single edge of highest weight. The definition
we use is the following. Let A be a matrix with nonnegative entries. For a subset S of

rows and a subset T' of columns, the density d(S,T) of S and T is d(S,T) = %. The

density d(A) of A is defined as the maximum value of d(S,T") over all subsets of rows and
columns. This definition applies to bipartite as well as non bipartite graphs.

One important case is when A’s rows and columns both represent the same set and a;;
A(S,5)
\S \

matrix, it can be thought of as the adjacency matrix of an undirected graph, and d(S,.S) is

the average degree of a vertex in S. The subgraph of maximum average degree in a graph

.M Aisann xn 0-1

is the similarity between object i and object j. Here d(S, S) =

274

Figure 8.3: Example of a bipartite graph.

can be found exactly by network flow techniques, as we will show in the next section. We
do not know an efficient (polynomial-time) algorithm for finding d(A) exactly in general.
However, we show that d(A) is within a O(log®n) factor of the top singular value of A
assuming |a;;| < 1 for all ¢ and j. This is a theoretical result. The gap may be much less
than O(log®n) for many problems, making the singular value and singular vector quite
useful. Also, S and T with d(S,T) > Q(d(A)/log®n) can be found algorithmically.

Theorem 8.11 Let A be an n X d matriz with entries between 0 and 1. Then

o1(A)
A)>dA) > ——————.
o1(4) 2 d()_4lognlogd

Furthermore, subsets S and T satisfying d(S,T) > % may be found from the top
singular vector of A.

Proof: Let S and T be the subsets of rows and columns that achieve d(A) = d(S,T).

Consider an n-vector u which is —— on S and 0 elsewhere and a d-vector v which is ——
A/ IS] Vil

on T and 0 elsewhere. Then,

01 (A) Z llTAV = Zuivjaij = d(S, T) = d(A)

]

establishing the first inequality.

To prove the second inequality, express o1 (A) in terms of the first left and right
singular vectors x and y.

o1(A) =x"Ay = inaijyja x| =lyl=1.
1,J

Since the entries of A are nonnegative, the components of the first left and right singular
vectors must all be nonnegative, that is, ; > 0 and y; > 0 for all 7 and j. To bound
> x;a;5y;, break the summation into O (lognlogd) parts. Each part corresponds to a
.3

gﬁven a and § and consists of all 7 such that o < z; < 2 and all j such that § <y, < 205.
The lognlogd parts are defined by breaking the rows into logn blocks with « equal to

275

P

2\/%;, 4—=, ..., 1 and by breaking the columns into logd blocks with 8 equal
i 1

11 1
2\/57 \/ﬁa
to %\/L&’ \/LE’ \%, NI 1. The i such that x; < ﬁﬁ and the j such that y; < 5/a will
be ignored at a loss of at most to1(A). [Exercise (8.28) proves the loss is at most this
amount.]

Since " 2? = 1, the set S = {ila < z; < 2a} has |S| < % and similarly,

a?

T ={j|f <y; <28} has |T| < [% Thus

> > wiyjai < 4aBA(S,T)
a<ei<ta pey<as

< 4apd(S,T)\/|[S]|T]
< 4d(S,T)
< 4d(A).

From this it follows that
o1(A) <4d(A)lognlogd

or
d(A) > 2

= 4lognlogd
proving the second inequality.

It is also clear that for each of the values of (o, #), we can compute A(S,7T) and d(S,T)
as above and taking the best of these d(S,T") ’s gives us an algorithm as claimed in the
Theorem.]

Note that in many cases, the nonzero values of x; and y; (after zeroing out the low
entries) will only go from %\/Lﬁ to \/Lﬁ for x; and %Ld to 7= for y;, since the singular vectors
are likely to be balanced given that a;; are all between 0 and 1. In this case, there will
be O(1) groups only and the log factors disappear.

Another measure of density is based on similarities. Recall that the similarity between
objects represented by vectors (rows of A) is defined by their dot products. Thus, simi-
larities are entries of the matrix AAT. Define the average cohesion f(S) of a set S of rows
of A to be the sum of all pairwise dot products of rows in S divided by |S|. The average
cohesion of A is the maximum over all subsets of rows of the average cohesion of the subset.

Since the singular values of AAT are squares of singular values of A, we expect f(A)
to be related to o1(A)? and d(A)?%. Indeed it is. We state the following without proof.

Lemma 8.12 d(A)? < f(A) < d(A)logn. Also, o1(A)? > f(A) > cor(A)?

— logn

f(A) can be found exactly using flow techniques as we will see later.

276

8.11 Community Finding and Graph Partitioning

Assume that data are nodes in some (possibly weighted) graph, where edges represent
some notion of affinity between their endpoints. In particular, let G = (V| FE) be a
weighted graph. Given two sets of nodes S and T', define

E(S,T) =) e

1€8,jeT
We then define the density of a set S to be
E
(s, s) = ﬂij 5)

If G is an undirected graph, then we can view d(S,S) as the average degree in the vertex-
induced subgraph over S. The set S of maximum density is therefore the subgraph of
maximum average degree. Finding such a set can be viewed as finding a “tight-knit
community” inside some network. In the next section, we describe an algorithm for
finding such a set using network flow techniques.

8.11.1 Flow Methods

Here we consider dense induced subgraphs of a graph. An induced subgraph of a
graph consisting of a subset of the vertices of the graph along with all edges of the graph
that connect pairs of vertices in the subset of vertices. We show that finding an induced
subgraph with maximum average degree can be done by network flow techniques. This
is simply maximizing density d(S,S) over all subsets S of the graph. First consider the
problem of finding a subset of vertices such that the induced subgraph has average degree
at least \ for some parameter \. Then do a binary search on the value of A until the
maximum A for which there exists a subgraph with average degree at least A is found.

Given a graph G in which one wants to find a dense subgraph, construct a directed
graph H from the given graph and then carry out a flow computation on H. H has a
node for each edge of the original graph, a node for each vertex of the original graph,
plus two additional nodes s and t. There is a directed edge with capacity one from s to
each node corresponding to an edge of the original graph and a directed edge with infinite
capacity from each node corresponding to an edge of the original graph to the two nodes
corresponding to the vertices the edge connects. Finally, there is a directed edge with
capacity A from each node corresponding to a vertex of the original graph to .

Notice there are three types of cut sets of the directed graph that have finite capacity.
The first cuts all arcs from the source. It has capacity e, the number of edges of the
original graph. The second cuts all edges into the sink. It has capacity \v, where v is the
number of vertices of the original graph. The third cuts some arcs from s and some arcs
into ¢. It partitions the set of vertices and the set of edges of the original graph into two

277

vertices
Figure 8.4: The directed graph H used by the flow technique to find a dense subgraph

blocks. The first block contains the source node s, a subset of the edges e,, and a subset
of the vertices v, defined by the subset of edges. The first block must contain both end
points of each edge in eg; otherwise an infinite arc will be in the cut. The second block
contains ¢ and the remaining edges and vertices. The edges in this second block either
connect vertices in the second block or have one endpoint in each block. The cut set will
cut some infinite arcs from edges not in ey coming into vertices in v,. However, these
arcs are directed from nodes in the block containing ¢ to nodes in the block containing s.
Note that any finite capacity cut that leaves an edge node connected to s must cut the
two related vertex nodes from ¢. Thus, there is a cut of capacity e — e; + A\vs where vy
and e, are the vertices and edges of a subgraph. For this cut to be the minimal cut, the
quantity e — e; + Avy must be minimal over all subsets of vertices of the original graph
and the capcity must be less than e and also less than Av.

If there is a subgraph with v, vertices and e edges where the ratio $* is sufficiently
large so that & > 2, then for A such that &= > A > = — A, >0and e —e; + v, < e.
Similarly e <)\v and thus e —eg + Av, < /\v This 1mphes that the cut e — ez + v, is less
than either e or Av and the flow algorithm will find a nontrivial cut and hence a proper
subset. For different values of A in the above range there maybe different nontrivial cuts.

278

edges and vertices
in the community

Figure 8.5: Cut in flow graph

Note that for a given density of edges, the number of edges grows as the square of the
number of vertices and £ is less likely to exceed ¢ if vg is small. Thus, the flow method
works well in finding largse subsets since it works with i—i To find small communities one
would need to use a method that worked with Z—g as the following example illustrates.

Example: Consider finding a dense subgraph of 1,000 vertices and 2,000 internal edges in
a graph of 10° vertices and 6x 10° edges. For concreteness, assume the graph was generated
by the following process. First, a 1,000-vertex graph with 2,000 edges was generated as a
random regular degree four graph. The 1,000-vertex graph was then augmented to have
108 vertices and edges were added at random until all vertices were of degree 12. Note
that each vertex among the first 1,000 has four edges to other vertices among the first
1,000 and eight edges to other vertices. The graph on the 1,000 vertices is much denser
than the whole graph in some sense. Although the subgraph induced by the 1,000 vertices
has four edges per vertex and the full graph has twelve edges per vertex, the probability
of two vertices of the 1,000 being connected by an edge is much higher than for the graph
as a whole. The probability is given by the ratio of the actual number of edges connecting
vertices among the 1,000 to the number of possible edges if the vertices formed a complete

A(S,S
graph. |(S|2) 9]

e 2e
S () RRICESY

For the 1,000 vertices, this number is p = 1203(2)’3889 >~ 4 x 1073, For the entire graph this

279

number is p = 213(?:1182 = 12 x 1075, This difference in probability of two vertices being

connected should allow us to find the dense subgraph.]

In our example, the cut of all arcs out of s is of capacity 6 x 10°, the total number
of edges in the graph, and the cut of all arcs into ¢ is of capacity A times the number
of vertices or A\ x 10°. A cut separating the 1,000 vertices and 2,000 edges would have
capacity 6 x 105 — 2,000 + A x 1,000. This cut cannot be the minimum cut for any value
of \ since -+ =2and { =06, hence * < . The point is that to find the 1,000 vertices, we
have to maximize A(S,S)/|S|? rather than A(S,S)/|S|. Note that A(S,S)/|S|* penalizes
large |S| much more and therefore can find the 1,000 node “dense” subgraph.

8.12 Axioms for Clustering

Each clustering algorithm tries to optimize some criterion, like the sum of squared
distances to the nearest cluster center, over all possible clusterings. We have seen many
different optimization criteria in this chapter and many more are used. Now, we take a step
back and look at properties that one might want a clustering criterion or algorithm to have,
and ask which criteria have them and which properties are simultaneously achievable at all.
We begin with a negative statement. We present three seemingly desirable properties of
a clustering algorithm and then show that no algorithm can satisfy them simultaneously.
Next we argue that these requirements are too stringent and under more reasonable
requirements, a slightly modified form of the sum of Euclidean distance squared between
all pairs of points inside the same cluster is indeed a measure satisfying the desired
properties.

8.12.1 An Impossibility Result

Let A(d) denote the clustering found by clustering algorithm A using distance func-
tion d on a set S. The clusters of the clustering A(d) form a partition I" of S.

The first property we consider of a clustering algorithm is scale invariance. A cluster-
ing algorithm A is scale invariant if for any a > 0, A(d) = A(ad). That is, multiplying
all distances by some scale factor does not change the algorithm’s clustering.

A clustering algorithm A is rich (full/complete) if for every partitioning I' of S there
exists a distance function d over S such that A(d) = I'. That is, for any desired parti-
tioning, we can find a set of distances so that the clustering algorithm returns the desired
partitioning.

A clustering algorithm is consistent if increasing the distance between points in differ-

ent clusters and reducing the distance between points in the same cluster does not change
the clusters produced by the clustering algorithm.

280

We now show that no clustering algorithm A can satisfy all three of scale invariance,
richness, and consistency.?®

Theorem 8.13 No algorithm A an satisfy all three of scale invariance, richness, and
consistency.

Proof: Let’s begin with the simple case of just two points, S = {a,b}. By richness there
must be some distance d(a, b) such that A produces two clusters and some other distance
d'(a,b) such that A produces one cluster. But this then violates scale-invariance.

Let us now turn to the general case of n points, S = {ay,...,a,}. By richness, there
must exist some distance function d such that A puts all of S into a single cluster, and
some other distance function d’ such that A puts each point of S into its own cluster.
Let € be the minimum distance between points in d, and let A be the maximum distance
between points in d’. Define d” = ad’ for a = €/A; i.e., uniformly shrink distances in d’
until they are all less than or equal to the minimum distance in d. By scale invariance,
A(d") = A(d'), so under d”, A puts each point of S into its own cluster. However, note
that for each pair of points a;, a; we have d’(a;, a;) < d(a;, a;). This means we can reach
d" from d by just reducing distances between points in the same cluster (since all points
are in the same cluster under d). So, the fact that A behaves differently on d” and d
violates consistency.]

8.12.2 Satisfying two of three

There exist natural clustering algorithms satisfying any two of the three axioms. For
example, different versions of the single linkage algorithm described in Section 8.7 satisfy
different two of the three conditions.

Theorem 8.14

1. The single linkage clustering algorithm with the k-cluster stopping condition (stop
when there are k clusters), satisfies scale-invariance and consistency. We do not
get richness since we only get clusterings with k clusters.

2. The single linkage clustering algorithm with scale o stopping condition satisfies scale
wmwvariance and richness. The scale o stopping condition is to stop when the closest
pair of clusters is of distance greater than or equal to ady.x where dy.y s the maz-
imum pair wise distance. Here we do not get consistency. If we select one distance
between clusters and increase it significantly until it becomes dy.x and in addition
admax exceeds all other distances, the resulting clustering has just one cluster con-
taining all of the points.

26 A technical point here: we do not allow d to have distance 0 between two distinct points of S. Else,
a simple algorithm that satisfies all three properties is simply “place two points into the same cluster if
they have distance 0, else place them into different clusters”.

281

el ey

A B A B

Figure 8.6: Illustration of the objection to the consistency axiom. Reducing distances
between points in a cluster may suggest that the cluster be split into two.

3. The single linkage clustering algorithm with the distance r stopping condition, stop
when the inter-cluster distances are all at least r, satisfies richness and consistency;
but not scale invariance.

Proof: (1) Scale-invariance is easy to see. If one scales up all distances by a factor, then
at each point in the algorithm, the same pair of clusters will be closest. The argument for
consistency is more subtle. Since edges inside clusters of the optimal (final) clustering can
only be decreased and since edges between clusters can only be increased, the edges that
led to merges between any two clusters are less than any edge between the final clusters.
Since the final number of clusters is fixed, these same edges will cause the same merges
unless the merge has already occurred due to some other edge that was inside a final
cluster having been shortened even more. No edge between two final clusters can cause a
merge before all the above edges have been considered. At this time the final number of
clusters has been reached and the process of merging has stopped. Parts (2) and (3) are
straightforward. m

Note that one may question both the consistency axiom and the richness axiom. The
following are two possible objections to the consistency axiom. Consider the two clusters
in Figure 8.6. If one reduces the distance between points in cluster B, they might get an
arrangement that should be three clusters instead of two.

The other objection, which applies to both the consistency and the richness axioms,
is that they force many unrealizable distances to exist. For example, suppose the points
were in Euclidean d space and distances were Euclidean. Then, there are only nd degrees
of freedom. But the abstract distances used here have O(n?) degrees of freedom since the
distances between the O(n?) pairs of points can be specified arbitrarily. Unless d is about
n, the abstract distances are too general. The objection to richness is similar. If for n
points in Euclidean d space, the clusters are formed by hyper planes each cluster may be
a Voronoi cell or some other polytope, then as we saw in the theory of VC dimensions
Section 7?7 there are only (Z) interesting hyper planes each defined by d of the n points.
If k& clusters are defined by bisecting hyper planes of pairs of points, there are only n”
possible clustering’s rather than the 2" demanded by richness. If d and k are significantly
less than n, then richness is not reasonable to demand. In the next section, we will see a
possibility result to contrast with this impossibility theorem.

282

8.12.3 Relaxing the axioms

Given that no clustering algorithm can satisfy scale invariance, richness, and consistency,
one might want to relax the axioms in some way. Then one gets the following results.

1. Single linkage with a distance stopping condition satisfies a relaxed scale-invariance
property that states that for a > 1, then f (ad) is a refinement of f(d).

2. Define refinement consistency to be that shrinking distances within a cluster or
expanding distances between clusters gives a refinement of the clustering. Single linkage
with « stopping condition satisfies scale invariance, refinement consistency and richness
except for the trivial clustering of all singletons.

8.12.4 A Satisfiable Set of Axioms

In this section, we propose a different set of axioms that are reasonable for distances
between points in Euclidean space and show that the clustering measure, the sum of
squared distances between all pairs of points in the same cluster, slightly modified, is con-
sistent with the new axioms. We assume through the section that points are in Euclidean
d-space. Our three new axioms follow.

We say that a clustering algorithm satisfies the consistency condition if, for the clus-
tering produced by the algorithm on a set of points, moving a point so that its distance
to any point in its own cluster is not increased and its distance to any point in a differ-
ent cluster is not decreased, then the algorithm returns the same clustering after the move.

Remark: Although it is not needed in the sequel, it is easy to see that for an infinitesimal
perturbation dz of x, the perturbation is consistent if and only if each point in the cluster
containing x lies in the half space through x with dx as the normal and each point in a
different cluster lies in the other half space.

An algorithm is scale-invariant if multiplying all distances by a positive constant does
not change the clustering returned.

An algorithm has the richness property if for any set K of k distinct points in the
ambient space, there is some placement of a set S of n points to be clustered so that the
algorithm returns a clustering with the points in K as centers. So there are k clusters,
each cluster consisting of all points of S closest to one particular point of K.

We will show that the following algorithm satisfies these three axioms.

Balanced k-means algorithm

283

Among all partitions of the input set of n points into k sets, each of size n/k, return
the one that minimizes the sum of squared distances between all pairs of points in
the same cluster.

Theorem 8.15 The balanced k-means algorithm satisfies the consistency condition, scale
mvariance, and the richness property.

Proof: Scale invariance is obvious. Richness is also easy to see. Just place n/k points of
S to coincide with each point of K. To prove consistency, define the cost of a cluster T
to be the sum of squared distances of all pairs of points in T'.

Suppose S1,9,...,S5; is an optimal clustering of S according to the balanced k-
means algorithm. Move a point x € S; to z so that its distance to each point in S is
non increasing and its distance to each point in S5, Ss, ..., Sk is non decreasing. Suppose
Ty,T5, ..., T is an optimal clustering after the move. Without loss of generality assume
z € Ty. Define Ty = (11 \ {z}) U {z} and S; = (S; \ {z}) U {z}. Note that Ty, Ty, ..., T}
is a clustering before the move, although not necessarily an optimal clustering. Thus

cost <T1> + cost (Ty) + - -+ + cost (T)) > cost (S7) + cost (Sz) + - - - + cost (Sk) -
If cost (1T7) — cost (Tl) > cost <§1> — cost (S7) then

cost (T1) + cost (Ty) + - - - 4 cost (T},) > cost <§1> + cost (S2) + - - - + cost (S) .

Since Ty, T, ..., Ty is an optimal clustering after the move, so also must be Sy, S5, ..., Sk
proving the theorem.

It remains to show that cost (7)) — cost (Tl) > cost <51> — cost (S7). Let w and v

stand for elements other than x and z in Sy and Ty. The terms |u — v|* are common to T
and T} on the left hand side and cancel out. So too on the right hand side. So we need

only prove
Yozl —lz—uf) 2 Y (2 —ul’ — |z —uf’).

ueT u€Sy

For uw € S; NT}, the terms appear on both sides, and we may cancel them, so we are left

to prove
Yo (lz—uf—lz—uf)= Y (z—ul — |z —uf)

'LLGT1\51 uESl\Tl

which is true because by the movement of x to z, each term on the left hand side is non
negative and each term on the right hand side is non positive.]

284

8.13 Exercises

Exercise 8.1 Construct ezamples where using distances instead of distance squared gives
bad results for Gaussian densities. For erample, pick samples from two 1-dimensional
unit variance Gaussians, with their centers 10 units apart. Cluster these samples by trial
and error into two clusters, first according to k-means and then according to the k-median
criteria. The k-means clustering should essentially yield the centers of the Gaussians as
cluster centers. What cluster centers do you get when you use the k-median criterion?

Exercise 8.2 Let v = (1,3). What is the Ly norm of v? The Ly norm? The square of
the Ly norm?

Exercise 8.3 Show that in 1-dimension, the center of a cluster that minimizes the sum
of distances of data points to the center is in general not unique. Suppose we now require
the center also to be a data point; then show that it is the median element (not the mean).
Further in 1-dimension, show that if the center minimizes the sum of squared distances
to the data points, then it is unique.

Exercise 8.4 Construct a block diagonal matriz A with three blocks of size 50. FEach
matrix element in a block has value p = 0.7 and each matrixz element not in a block has
value ¢ = 0.3. generate a 150 x 150 matriz B of random numbers in the range [0,1]. If
bij > a;; replace a;; with the value one. Otherwise replace a;; with value zero. The rows of
A have three natural clusters. Permute the rows and columns of A so the first 50 rows do
not form the first cluster, the next 50 the second cluster, and the last 50 the third cluster.

1. Apply the k-mean algorithm to A with k = 3. Do you find the correct clusters?

2. Apply the k-means algorithm to A for 1 < k < 10. Plot the value of the sum of
squares to the cluster centers versus k. Was three the correct value for k?

Exercise 8.5 Let M be a k x k matriz whose elements are numbers in the range [0,1].
A matriz entry close to one indicates that the row and column of the entry correspond to
closely related items and an entry close to zero indicates unrelated entities. Develop an
algorithm to match each row with a closely related column where a column can be matched
with only one row.

Exercise 8.6 The simple greedy algorithm of Section 8.3 assumes that we know the clus-
tering radius r. Suppose we do not. Describe how we might arrive at the correct r?

Exercise 8.7 For the k-median problem, show that there is at most a factor of two ratio
between the optimal value when we either require all cluster centers to be data points or
allow arbitrary points to be centers.

Exercise 8.8 For the k-means problem, show that there is at most a factor of four ratio
between the optimal value when we either require all cluster centers to be data points or
allow arbitrary points to be centers.

285

Exercise 8.9 Consider clustering points in the plane according to the k-median criterion,
where cluster centers are required to be data points. Enumerate all possible clustering’s
and select the one with the minimum cost. The number of possible ways of labeling n
points, each with a label from {1,2,... k} is k™ which is prohibitive. Show that we can
find the optimal clustering in time at most a constant times (Z) + k2. Note that (Z) <nk
which s much smaller than k™ when k << n.

Exercise 8.10 Suppose in the previous exercise, we allow any point in space (not neces-
sarily data points) to be cluster centers. Show that the optimal clustering may be found
in time at most a constant times n2*”.

Exercise 8.11 Corollary 8.3 shows that for a set of points {ay,as,...,a,}, there is a
unique point x, namely their centroid, which minimizes > |a; — x|[*. Show examples
i=1

n
where the x minimizing >, |a; — x| is not unique. (Consider just points on the real line.)

=1
Show examples where the x defined as above are far apart from each other.

Exercise 8.12 Let {aj,as,...,ay} be a set of unit vectors in a cluster. Let ¢ = % > a;
i=1
be the cluster centroid. The centroid c is not in general a unit vector. Define the similarity

between two points a; and a; as their dot product. Show that the average cluster similarity
Yo aia;’ is the same whether it is computed by averaging all pairs or computing the
.3

average similarity of each point with the centroid of the cluster.

Exercise 8.13 For some synthetic data estimate the number of local minima for k-means
by using the birthday estimate. Is your estimate an unbaised estimate of the number? an
upper bound? a lower bound? Why?

Exercise 8.14 Examine the erxample in Figure and discuss how to fix it. Optimizing
according to the k-center or k-median criteria would seem to produce clustering B while
clustering A seems more desirable.

Exercise 8.15 Prove that for any two vectors a and b, |a — b|*> > i|a|? — |b|?.

1
2

Exercise 8.16 Let A be an n xd data matriz, B its best rank k approrimation, and C' the
optimal centers for k-means clustering of rows of A. How is it possible that ||A — B||fT <

1A~ Cllz?

Exercise 8.17 Suppose S is a finite set of points in space with centroid p(S). If a set T
of points is added to S, show that the centroid u(SUT) of SUT is at distance at most

%W(T) — u(S)| from p.

286

A B!

Figure 8.7: insert caption

Exercise 8.18 What happens if we relax this restriction, for example, if we allow for S,
the entire set?

Exercise 8.19 Given the graph G = (V, E) of a social network where vertices represent
individuals and edges represent relationships of some kind, one would like to define the
concept of a community. A number of deferent definitions are possible.

1. A subgraph S = (Vs, Es) whose density % 15 greater than that of the graph %
S

2. A subgraph S with a low conductance like property such as the number of graph edges
leaving the subgraph normalized by the minimum size of S or V. — S where size is
measured by the sum of degrees of vertices in S or in V — S.

3. A subgraph that has more internal edges than in a random graph with the same
degree distribution.

Which would you use and why?

Exercise 8.20 A stochastic matriz is a matriz with non negative entries in which each
row sums to one. Show that for a stochastic matriz, the largest eigenvalue is one. Show
that the eigenvalue has multiplicity one if and only if the corresponding Markov Chain is
connected.

Exercise 8.21 Show that if P is a stochastic matriz and m satisfies m;p;; = m;pji, then
for any left eigenvector v of P, the vector u with components u; = % s a right eigenvector
with the same eigenvalue.

Exercise 8.22 In Theorem (??7), how can one clustering CO be close to any proper
clustering? What if there are several proper clusterings?

Exercise 8.23 Give an example of a clustering problem where the clusters are not linearly
separable in the original space, but are separable in a higher dimensional space.
Hint: Look at the example for Gaussian kernels in the chapter on learning.

287

Exercise 8.24 The Gaussian kernel maps points to a higher dimensional space. What is
this mapping?

Exercise 8.25 Agglomerative clustering requires that one calculate the distances between
all pairs of points. If the number of points is a million or more, then this is impractical.
One might try speeding up the agglomerative clustering algorithm by maintaining a 100
clusters at each unit of time. Start by randomly selecting a hundred points and place each
point in a cluster by itself. Each time a pair of clusters is merged randomly select one of
the remaining data points and create a new cluster containing that point. Suggest some
other alternatives.

Exercise 8.26 Let A be the adjacency matriz of an undirected graph. Let d(S,S) = A(l‘g"s)

be the density of the subgraph induced by the set of vertices S. Prove that d (S, S) is the
average degree of a vertex in S.

Exercise 8.27 Suppose A is a matriz with non negative entries. Show that A(S,T)/(|S||T|)
1s mazimized by the single edge with highest a;;.

Exercise 8.28 Suppose A is a matrix with non negative entries and

01(A) =x" Ay = inaijyja x| =yl =1.

i?j

Zero out all z; less than 1/2v/n and all y; less than 1/2v/d. Show that the loss is no more
than 14" of a1 (A).

Exercise 8.29 Consider other measures of density such as |S|(S 1) for different values of
p. Discuss the significance of the densest subgraph according to these measures.

Exercise 8.30 Let A be the adjacency matriz of an undirected graph. Let M be the
matriz whose i element is a;; — 5~ Partition the vertices into two groups S and S.
Let s be the indicator vector for the set S and let 5 be the indicator variable for S. Then
sT' M s is the number of edges in S above the expected number given the degree distribution
and sT M5 is the number of edges from S to S above the expected number given the degree

distribution. Prove that if s* Ms is positive sT M5 must be negative.

Exercise 8.31 Which of the three axioms, scale invariance, richness, and consistency
are satisfied by the following clustering algorithms.

1. k—means
2. Spectral Clustering.

Exercise 8.32 (Research Problem): What are good measures of density that are also
effectively computable? Is there empirical/theoretical evidence that some are better than
others?

288

9 Topic Models, Hidden Markov Process, Graphical
Models, and Belief Propagation

In the chapter on learning and VC dimension, we saw many model-fitting problems.
There we were given labeled data and simple classes of functions: half-spaces, support
vector machines, etc. The problem was to fit the best model from a class of functions
to the data. Model fitting is of course more general and in this chapter we discuss some
useful models. These general models are often computationally infeasible, in the sense
that they do not admit provably efficient algorithms. Nevertheless, data often falls into
special cases of these models that can be solved efficiently.

9.1 Topic Models

A topic model is a model for representing a large collection of documents. Each docu-
ment is viewed as a combination of topics and each topic has a set of word frequencies. For
a collection of news articles over a period, the topics may be politics, sports, science, etc.
For the topic politics, the words like “president” and “election” may have high frequencies
and for the topic sports, words like “batter” and “goal” may have high frequencies. A
news item document may be 60% on politics and 40% on sports. The word frequencies
in the document will be convex combinations of word frequencies for the topics, politics
and sports, with weights 0.6 and 0.4 respectively. We describe this more formally with
vectors and matrices.

Each document is viewed as a “bag of words”. We disregard the order and context in
which each word occurs in the document and instead only list the frequency of occurrences
of each term. Frequency is the number of occurrences of the term divided by the total
number of all terms in the document. Discarding context information may seem wasteful,
but this approach works well in practice and is widely used. Each document is an n-
dimensional vector where n is the total number of different terms in all the documents in
the collection. Each component of the vector is the frequency of a particular term in the
document. Terms are words or phrases. Not all words are chosen as terms; articles, simple
verbs, and pronouns like “a”, “is”, and “it” may be ignored. Represent the collection of
documents by a n X m matrix A, called the term-document matrix, with one column per
document in the collection. The topic model hypothesizes that there are r topics and
each of the m documents is a combination of topics. The number of topics r is usually
much smaller than the number of terms n. So corresponding to each document, there is
a vector with r components telling us the fraction of the document that is on each of the
topics. In the example above, this vector will have 0.6 in the component for politics and
0.4 in the component for sports. Arrange these vectors as the columns of a r x m matrix
C, called the topic-document matrix. There is a third matrix B which is n x r. Each
column of B corresponds to a topic; each component of the column gives the frequency of
a term in that topic. In the simplest model, the term frequencies in documents are exact
combinations of term frequencies in the various topics that make up the document. So,

289

aij, the frequency of the i term in the j”* document is the sum over all topics [of the
fraction of document j which is on topic [times the frequency of term ¢ in topic [. In
matrix notation,

A= BC.
Pictorially, we can represent this as:
DOCUMENT TOPIC
DOCUMENT

T
P A _ P B o e
R nxXm R nxr I
M M C

This model is too simple to be realistic since the frequency of each term in the doc-
ument is unlikely to be exactly what is given by the equation A = BC. So, a more
sophisticated stochastic model is used in practice.

From the document collection we observe the n x m matrix A. Can we find B and
C such that A = BC? The top r singular vectors from a singular value decomposition
of A give a factorization BC. But there are additional constraints stemming from the
fact that frequencies of terms in one particular topic are nonnegative reals summing to
one and from the fact that the fraction of each topic a particular document is on are also
nonnegative reals summing to one. Altogether the constraints are:

1. A=BC and) _a;; = 1.

2. The entries of B and C' are all non-negative.
3. Each column of B and each column of C' sums to one.

Given the first two conditions, we can achieve the third by multiplying the i** column
of B by a positive real number and dividing the i** row of C' by the same real number
without violating A = BC'. By doing this, one may assume that each column of B sums
to one. Since) . a;; is the total frequency of all terms in document j, > . a;; = 1. Now
aij = > ;. bixcr; implies > . a;; = Y. biwcr; = Y, cx; = 1. Thus, the columns of C' also
sum to one. ’

The problem can be posed as one of factoring the given matrix A into the product of
two matrices with nonnegative entries called nonnegative matrix factorization.

290

Nonnegative matrix factorization (NMF) Given an n x m matrix A and an in-
teger r, determine whether there is a factorization of A into XY where, X is an n x r
matrix with nonnegative entries and Y is r x m matrix with nonnegative entries and if
so, find such a factorization.

Nonnegative matrix factorization is a more general problem than topic modeling and
there are many heuristic algorithms to solve the problem. But in general, they suffer
from one of two problems, they can get stuck at local optima that are not solutions
or take exponential time. In fact, the general NMF problem is NP-hard. In practice,
often r is much smaller than n and m. We first show that while the NMF problem as
formulated above is a nonlinear problem in r(n + m) unknown entries of X and Y, it
can be reformulated as a nonlinear problem with just 272 unknowns under the simple
nondegeneracy assumption that A has rank r. Think of r as say, 25, while n and m are
in the tens of thousands to see why this is useful.

Lemma 9.1 If A has rank r, then the NMF problem can be formulated as a problem with
2% unknowns.

Proof: If A = XY, then each row of A is a linear combination of the rows of Y. So the
space spanned by the rows of A must be contained in the space spanned by the rows of Y.
The latter space has dimension at most r, while the former has dimension r. So they must
be equal. Thus, every row of ¥ must be a linear combination of the rows of A. Choose
any set of r independent rows of A to form a r X m matrix A;. Then Y = SA; for some
r X r matrix S. By analogous reasoning, if A is a n x r matrix of r independent columns
of A, there is a r x r matrix T" such that X = A;T. Now we can easily cast NMF in terms
of the unknowns S and 7.

A= AQTSAl (SA1>U Z 0 (AQT)kl Z 0 \V/i,j,]{3, l.

It remains to solve the nonlinear problem in the 2r? variables. There is a classical al-
gorithm that solves such problems in time exponential in r* and polynomial in the other
parameters. In fact, there is a logical theory, called the theory of reals of which this is
a special case and any problem in the theory of reals can be solved in time exponential
only in the number of variables. We do not give details here.

Besides the special case when r is small, there is another important case of NMF in
the topic modeling application that can be solved. This is the case when there are anchor
terms. An anchor term for a topic is a term that occurs in the topic and does not occur
in any other topic. For example, the term “batter” may an anchor term for the topic
baseball and “election” for the topic politics. Consider the case when each topic has an
anchor term. In matrix notation, this assumes that for each column of the term-topic
matrix B, there is a row whose sole nonzero entry is in that column. In this case, it is

291

easy to see that each row of the topic-document matrix C' has a scaled copy of it occurring
as a row of the given term-document matrix A. Here is an illustrative diagram:

0.3 X ¢4 election[{ 0 0 0 0.3 ¢t

c

A | B .
02xcy, | batter |0 02 0 0

Cn

If we knew which rows of A were copies of rows of C, called special rows of A, we could
find C. Once C is known, we could solve the linear equations and inequalities, A = BC
and b;; > 0, to get B. The following lemma shows that after making one modification,
we can find the rows of A that are special. Suppose a row of C' is a nonnegative linear
combination of the other rows of C. Eliminate that row of C' as well as the corresponding
column of B, suitably modifying the other columns of B, maintaining A = BC. For
example, if row 5 of C' equals 4 times row 3 of C' plus 3 times row 6 of C', then we can
delete row 5 of (', then add 4 times column 5 of B to column 3 of B and add 3 times
column 5 of B to column 6 of B and delete column 5 of B.

Repeating this until each row of C is positively independent of the other rows of C,
i.e., it cannot be expressed as a nonnegative linear combination of the other rows. We still
have a scaled copy of each row of C'in A. Further, the other rows of A are all nonnegative
linear combinations of rows of C' and thus are nonnegative linear combinations of the
special rows of A.

Lemma 9.2 Suppose A has a factorization A = BC, where the rows of C' are positively
independent and for each column of B, there is a row that has its sole nonzero entry in
that column. Then there is a scaled copy of each row of C in A and furthermore, the rows
of A that are scaled copies of rows of C' are precisely the rows of A that are positively
independent of other rows of A. These rows can be identified by solving a linear program,
one program per row.

Proof: The set of special rows of A can be identified by solving n linear programming
problems. Check each row of A to see if it is positively independent of all other rows.
Denote by a; the i th row of A. Then, the i*" row is positively dependent upon the others

if and only if there are real numbers z, s, ... 2;_1,T;11, . ..x, such that
E Tj;a; = aj, Z; Z 0.
J#
This is a linear program.]

292

As we remarked earlier, the equation A = BC will not hold exactly. A more practical
model views A as a matrix of probabilities rather than exact frequencies. In this model,
each document is generated by picking its terms in independent trials. Each trial for
document j picks term 1 with probability a;;; term 2 with probability ag;, etc. We are
not given entire documents; instead we are given s independent trials for each document.
Our job is to find B and C. We do not discuss the details of either the model or the
algorithms. In this new situation, algorithms are known to find B and C' when there exist
anchor terms, even with a small number s of trials.

At the heart of such an algorithm is the following problem:

Approximate NMF Given a n x m matrix A and the promise that there is a n X r matrix
B and a r x m matrix C', both with nonnegative entries, such that ||A — BC||r < A, find
B’ and C" of the same dimensions, with nonnegative entries such that ||A— B'C’'||r < A'.

Here, A’ is related to A and if the promise does not hold, the algorithm is allowed to
return any answer.

Now for the case when anchor words exist, this reduces to the problem of finding which
rows of A have the property that no point close to the row is positively dependent on
other rows. It is easy to write the statement that there is a vector y close to a; which is
positively dependent on the other rows as a convex program:

E Tja; — aj

J#i

dxy, 29, ..., X1, Tiv1, ..., Ty such that <e.

| Zj 4 Tjay — a;| is convex function of x; and hence this problem can be solved efficiently.

9.2 Hidden Markov Model

A hidden Markov model, HMM, consists of a finite set of states with a transition
between each pair of states. There is an initial probability distribution « on the states
and a transition probability a;; associated with the transition from state i to state j. Each
state has a probability distribution p(O, i) giving the probability of outputting the symbol
O in state 7. A transition consists of two components. A state transition to a new state
followed by the output of a symbol. The HMM starts by selecting a start state according
to the distribution a and outputting a symbol.

Example: An example of a HMM is the graph with two states g and p illustrated below.

293

LI

1@ Di

The initial distribution is a(q) = 1 and a(p) = 0. At each step a change of state occurs
followed by the output of heads or tails with probability determined by the new state.

N =

We consider three problems in increasing order of difficulty. First, given a HMM what
is the probability of a given output sequence? Second, given a HMM and an output
sequence, what is the most likely sequence of states? And third, knowing that the HMM
has at most n states and given an output sequence, what is the most likely HMM? Only
the third problem concerns a ”hidden” Markov model. In the other two problems, the
model is known and the questions can be answered in polynomial time using dynamic
programming. There is no known polynomial time algorithm for the third question.

How probable is an output sequence

Given a HMM, how probable is the output sequence O = OyO,0s - -- O of length
T+17 To determine this, calculate for each state ¢ and each initial segment of the sequence
of observations, OyO10s - - - O of length t + 1, the probability of observing OyO,0s - - - Oy
ending in state ¢. This is done by a dynamic programming algorithm starting with t =0
and increasing t. For ¢ = 0 there have been no transitions. Thus, the probability of
observing Oy ending in state ¢ is the initial probability of starting in state ¢ times the
probability of observing Oy in state i. The probability of observing OyO,0s - - - O; ending
in state ¢ is the sum of the probabilities over all states j of observing OyO105 --- O,
ending in state 7 times the probability of going from state j to state ¢ and observing O;.
The time to compute the probability of a sequence of length T" when there are n states is
O(n*T). The factor n? comes from the calculation for each time unit of the contribution
from each possible previous state to the probability of each possible current state. The
space complexity is O(n) since one only needs to remember the probability of reaching
each state for the most recent value of t.

Algorithm to calculate the probability of the output sequence

The probability, Prob(OgOy - -- Or,) of the output sequence OyO; ---Or ending in
state ¢ is given by

Prob(Oy, i) = a(i)p(Oy, i)

294

fort=1toT

Example: What is the probability of the sequence hhht by the HMM in the above ex-

Prob(0001 cee Ot7 ’L) = Z PI‘Ob(OoOl e Ot—lu j)aijp(OtH, l)
J

ample?
t=3 3%%%""%%% 318_94 9?_2%%"‘%%1%: 64?;727
=2 |Meid-n (mieHi-g
=1 |- -
t=0 i 0
q p

For t = 0, the ¢ entry is 1/2 since the probability of being in state ¢ is one and the proba-
bility of outputting heads is % The entry for p is zero since the probability of starting in
state p is zero. For t = 1, the ¢ entry is % since for t = 0 the ¢ entry is % and in state ¢
the HMM goes to state ¢ with probability % and outputs heads with probability % The
p entry is % since for t = 0 the ¢ entry is % and in state ¢ the HMM goes to state p with
probability % and outputs heads with probability % For t = 2, the ¢ entry is 3—32 which
consists of two terms. The first term is the probability of ending in state g at t = 1 times
the probability of staying in ¢ and outputting k. The second is the probability of ending

in state p at t = 1 times the probability of going from state p to state ¢ and outputting h.

From the table, the probability of producing the sequence hhht is % + % = 0.0709.
|

The most likely sequence of states - the Viterbi algorithm

Given a HMM and an observation O = OgO; - - - O, what is the most likely sequence of
states? The solution is given by the Viterbi algorithm, which is a slight modification to the
dynamic programming algorithm just given for determining the probability of an output
sequence. For t =0,1,2,...,T and for each state i, calculate the probability of the most
likely sequence of states to produce the output OygO,0s - - - O, ending in state i. For each
value of ¢, calculate the most likely sequence of states by selecting over all states 7 the most
likely sequence producing OyO,0s - - - O; and ending in state ¢ consisting of the most likely
sequence producing OyO10; - -- O;_1 ending in state j followed by the transition from j
to ¢ producing O,. Note that in the previous example, we added the probabilities of each
possibility together. Now we take the maximum and also record where the maximum
came from. The time complexity is O(n?T) and the space complexity is O(nT). The
space complexity bound is argued as follows. In calculating the probability of the most
likely sequence of states that produces OyO; ... O, ending in state ¢, we remember the

295

previous state j by putting an arrow with edge label ¢ from i to j. At the end, can find
the most likely sequence by tracing backwards as is standard for dynamic programming
algorithms.

Example: For the earlier example what is the most likely sequence of states to produce
the output hhht?

(=3 [madE At =g gorp [medE A -4 g
=2 |maxi}b =3 » wax(132. 212 — 4 4
=1 3=t . Bl

t=0 % q 0 p

Note that the two sequences of states, qgpq and ¢pqq, are tied for the most likely se-
quences of states.]

Determining the underlying hidden Markov model

Given an n-state HMM, how do we adjust the transition probabilities and output
probabilities to maximize the probability of an output sequence O,05---Or? The as-
sumption is that 7' is much larger than n. There is no known computationally efficient
method for solving this problem. However, there are iterative techniques that converge
to a local optimum.

Let a;; be the transition probability from state i to state j and let b;(Oy) be the
probability of output O given that the HMM is in state j. Given estimates for the HMM
parameters, a;; and b;, and the output sequence O, we can improve the estimates by
calculating for each unit of time the probability that the HMM goes from state i to state
J and outputs the symbol Oy.

296

a;j transition probability from state ¢ to state j
bj(O411) probability of Oy given that the HMM is in state j at time ¢ + 1
ay (1) probability of seeing OyO; - - - O, and ending in state i at time ¢

Bi+1(j) probability of seeing the tail of the sequence O 20,43 -+ Op given state j
at time ¢t 4 1

6(i,7) probability of going from state i to state 7 at time ¢ given the sequence
of outputs O

s¢(7) probability of being in state i at time t given the sequence of outputs O

p(O) probability of output sequence O

Given estimates for the HMM parameters, a;; and b;, and the output sequence O, the
probability d;(i, 7) of going from state i to state j at time ¢ is given by the probability of
producing the output sequence O and going from state ¢ to state j at time ¢ divided by
the probability of producing the output sequence O.

at(i)aijbj (Ot+1)5t+1 (])
p(O)

The probability p(O) is the sum over all pairs of states i and j of the numerator in the
above formula for §;(7, j). That is,

p(0) = Z . i (7)aijbj(Og1) Besa (7))

6t(2aj) =

)

The probability of being in state ¢ at time ¢ is given by
sili) = 361).
j=1

Note that &;(i,) is the probability of being in state i at time ¢ given OyO10s - - - O; but
it is not the probability of being in state ¢ at time ¢ given O since it does not take into
account the remainder of the sequence O. Summing s.(i) over all time periods gives the
expected number of times state ¢ is visited and the sum of §;(7, j) over all time periods
gives the expected number of times edge 7 to j is traversed.

Given estimates of the HMM parameters a; ; and b;(Oy), we can calculate by the above
formulas estimates for

297

1. 327 s,(i), the expected number of times state 7 is visited and departed from
2. 371 6,(i, 7), the expected number of transitions from state 7 to state j

Using these estimates we can obtain new estimates of the HMM parameters

expected number of transitions from state 7 to state j ZtT_ll 5t(i J)

A =
Y expected number of transitions out of state ¢ S i o)
T-1 .
> sid)
=1
. . . . subject to
5:(O8) = expected number of times in state j observing symbol Ok 0= ok
Nk = expected number of times in state j ST s())

By iterating the above formulas we can arrive at a local optimum for the HMM parameters

Q; j and bj (Ok) .

9.3 Graphical Models, and Belief Propagation

A graphical model is a compact representation of a function of n variables x1, s, . . ., x,.
It consists of a graph, directed or undirected, whose vertices correspond to variables that
take on values from some set. In this chapter, we consider the case where the function
is a probability distribution and the set of values the variables take on is finite, although
graphical models are often used to represent probability distributions with continuous vari-
ables. The edges of the graph represent relationships or constraints between the variables.

The directed model represents a joint probability distribution that factors into a prod-
uct of conditional probabilities.

n

p(w1,m9,...,2,) = HP (z;|parents of ;)
i=1

It is assumed that the directed graph is acyclic. The directed graphical model is called
a Bayesian or belief network and appears frequently in the artificial intelligence and the
statistics literature.

The undirected graph model, called a Markov random field, can also represent a joint
probability distribution of the random variables at its vertices. In many applications the
Markov random field represents a function of the variables at the vertices which is to be
optimized by choosing values for the variables.

A third model called the factor model is akin to the Markov random field, but here

the dependency sets have a different structure. In the following sections we describe all
these models in more detail.

298

(&
&

causes
! / !

‘ ‘ diseases

@ symptoms

Figure 9.1: A Bayesian network

9.4 Bayesian or Belief Networks

A Bayesian network is a directed acyclic graph where vertices correspond to variables
and a directed edge from y to x represents a conditional probability p(z|y). If a vertex x
has edges into it from yy, ya, . . . , Yk, then the conditional probability is p (x | y1,y2, - .-, Yk)-
The variable at a vertex with no in edges has an unconditional probability distribution.
If the value of a variable at some vertex is known, then the variable is called evidence.
An important property of a Bayesian network is that the joint probability is given by the
product over all nodes of the conditional probability of the node conditioned on all its
immediate predecessors.

In the example of Fig. 9.1, a patient is ill and sees a doctor. The doctor ascertains
the symptoms of the patient and the possible causes such as whether the patient was in
contact with farm animals, whether he had eaten certain foods, or whether the patient
has an hereditary predisposition to any diseases. Using the above Bayesian network where
the variables are true or false, the doctor may wish to determine one of two things. What
is the marginal probability of a given disease or what is the most likely set of diseases. In
determining the most likely set of diseases, we are given a T or F assignment to the causes
and symptoms and ask what assignment of T or F to the diseases maximizes the joint
probability. This latter problem is called the maximum a posteriori probability (MAP).

Given the conditional probabilities and the probabilities p (C}) and p (C5) in Example
9.1, the joint probability p (C1,Cy, Dy, ...) can be computed easily for any combination
of values of C1,Cy, Dy,.... However, we might wish to find that value of the variables
of highest probability (MAP) or we might want one of the marginal probabilities p (D)
or p(Ds). The obvious algorithms for these two problems require evaluating the proba-
bility p (Cy, Cs, Dy, .. .) over exponentially many input values or summing the probability
p(C1,Cq, Dy, ...) over exponentially many values of the variables other than those for

299

which we want the marginal probability. In certain situations, when the joint probability
distribution can be expressed as a product of factors, a belief propagation algorithm can
solve the maximum a posteriori problem or compute all marginal probabilities quickly.

9.5 Markov Random Fields

The Markov random field model arose first in statistical mechanics where it was called
the Ising model. It is instructive to start with a description of it. The simplest version
of the Ising model consists of n particles arranged in a rectangular v/n x y/n grid. Each
particle can have a spin that is denoted 1. The energy of the whole system depends
on interactions between pairs of neighboring particles. Let z; be the spin, 1, of the %
particle. Denote by ¢ ~ j the relation that + and j are adjacent in the grid. In the Ising
model, the energy of the system is given by

f(z1,z0,...,2,) = exp (CZ |z; — x]|> :

i~j

¢ is a constant that can be positive or negative. If ¢ < 0, then energy is lower if many
adjacent pairs have opposite spins and if ¢ > 0 the reverse holds. The model was first
used to model probabilities of spin configurations. The hypothesis was that for each
{x1,29,...,2,} in {—1,+1}", the energy of the configuration with these spins is propor-
tional to f(z1,22,...,%,).

In most computer science settings, such functions are mainly used as objective func-
tions that are to be optimized subject to some constraints. The problem is to find the
minimum energy set of spins under some constraints on the spins. Usually the constraints
just specify the spins of some particles. Note that when ¢ > 0, this is the problem of
minimizing), imits;.;|x; — ;| subject to the constraints. The objective function is con-
vex and so this can be done efficiently. If ¢ < 0, however, we need to minimize a concave
function for which there is no known efficient algorithm. The minimization of a concave
function in general is NP-hard.

A second important motivation comes from the area of vision. It has to to do with
reconstructing images. Suppose we are given observations of the intensity of light at
individual pixels, x1, 2o, ..., x, and wish to compute the true values, the true intensities,
of these variables y1, 9o, ..., y,. There may be two sets of constraints, the first stipulating
that the y; must be close to the corresponding x; and the second, a term correcting possible
observation errors, stipulating that y; must be close to the values of y; for j ~ 7. This

can be formulated as
Minimize Z |z; — yi| + Z lvi — y;l,
i i~

where the values of x; are constrained to be the observed values. The objective function
is convex and polynomial time minimization algorithms exist. Other objective functions

300

Grnm Carnd rnD (e
AN

Figure 9.2: The factor graph for the function f (x, xe, x3) = (x1 + xa + x3) (z, + 2,) (2, + z,) (T2 + x3) .

using say sum of squares instead of sum of absolute values can be used and thee are
polynomial time algorithms as long as the function to be minimized is convex.

More generally, the correction term may depend on all grid points within distance two
of each point rather than just immediate neighbors. Even more generally, we may have n
variables y1, ¥, . . . y, With the value of some already specified and subsets Sy, .5,5, of
these variables constrained in some way. The constraints are accumulated into one objec-
tive function which is a product of functions f1, fo, ..., fm, where function f; is evaluated
on the variables in subset S;. The problem is to minimize [[;", f;(y;,7 € S;) subject to
constrained values. Note that the vision example had a sum instead of a product, but by
taking exponentials we can turn the sum into a product as in the Ising model.

In general, the f; are not convex; indeed they may be discrete. So the minimization
cannot be carried out by a known polynomial time algorithm. The most used forms of the
Markov random field involve S; which are cliques of a graph. So we make the following
definition.

A Markov Random Field consists of an undirected graph and an associated function
that factorizes into functions associated with the cliques of the graph. The special case
when all the factors correspond to cliques of size one or two is of interest.

9.6 Factor Graphs

Factor graphs arise when we have a function f of a variables x = (z1,x2, ..., 2,) that
can be expressed as f (x) = [] fa (zo) where each factor depends only on some small

number of variables x,. The doiéfference from Markov random fields is that the variables
corresponding to factors do not necessarily form a clique. Associate a bipartite graph
where one set of vertices correspond to the factors and the other set to the variables.
Place an edge between a variable and a factor if the factor contains that variable. See

301

Figure 9.2

9.7 Tree Algorithms

Let f(x) be a function that is a product of factors. When the factor graph is a tree
there are efficient algorithms for solving certain problems. With slight modifications, the
algorithms presented can also solve problems where the function is the sum of terms rather
than a product of factors.

The first problem is called marginalization and involves evaluating the sum of f over
all variables except one. In the case where f is a probability distribution the algorithm
computes the marginal probabilities and thus the word marginalization. The second prob-
lem involves computing the assignment to the variables that maximizes the function f.
When f is a probability distribution, this problem is the maximum a posteriori probabil-
ity or MAP problem.

If the factor graph is a tree, then there exists an efficient algorithm for solving these
problems. Note that there are four problems: the function f is either a product or a sum
and we are either marginalizing or finding the maximizing assignment to the variables. All
four problems are solved by essentially the same algorithm and we present the algorithm
for the marginalization problem when f is a product. Assume we want to “sum out” all
the variables except x1, so we will be left with a function of z;.

We call the variable node associated with the variable x; node x;. First, make the
node x; the root of the tree. It will be useful to think of the algorithm first as a recursive
algorithm and then unravel the recursion. We want to compute the product of all factors
occurring in the sub-tree rooted at the root with all variables except the root-variable
summed out. Let g; be the product of all factors occurring in the sub-tree rooted at
node x; with all variables occurring in the subtree except x; summed out. Since this is a
tree, 1 will not reoccur anywhere except the root. Now, the grandchildren of the root
are variable nodes and suppose for recursion, each grandchild x; of the root, has already
computed its g;. It is easy to see that we can compute g; by the following.

Each grandchild x; of the root passes its g; to its parent, which is a factor node. Each
child of x; collects all its children’s g;, multiplies them together with its own factor and
sends the product to the root. The root multiplies all the products it gets from its children
and sums out all variables except its own variable, namely here ;.

Unraveling the recursion is also simple, with the convention that a leaf node just re-
ceives 1, product of an empty set of factors, from its children. Each node waits until it
receives a message from each of its children. After that, if the node is a variable node,
it computes the product of all incoming messages, and sums this product function over
all assignments to the variables except for the variable of the node. Then, it sends the

302

Figure 9.3: The factor graph for the function f = x; (21 + 2o + x3) (3 + 24 + x5) T4x5.

resulting function of one variable out along the edge to its parent. If the node is a factor
node, it computes the product of its factor function along with incoming messages from
all the children and sends the resulting function out along the edge to its parent.

The reader should prove that the following invariant holds assuming the graph is a tree:

Invariant The message passed by each variable node to its parent is the product of
all factors in the subtree under the node with all variables in the subtree except its own
summed out.

Consider the following example where
f = I (l’l + 29 + xg) (Ig + x4 + I5) T4Ts

and the variables take on values 0 or 1. Consider marginalizing f by computing

fxy) = Z x1 (1 + 22 + x3) (T3 + 4 + T5) T4,

T2L3T4T5

In this case the factor graph is a tree as shown in Figure 9.3. The factor graph as a
rooted tree and the messages passed by each node to its parent are shown in Figure 9.4.
If instead of computing marginal’s, one wanted the variable assignment that maximizes
the function f, one would modify the above procedure by replacing the summation by a
maximization operation. Obvious modifications handle the situation where f(x) is a sum
of products.

fO=) g(x)

L1y--9Tn

9.8 Message Passing in general Graphs

The simple message passing algorithm in the last section gives us the one variable
function of x; when we sum out all the other variables. For a general graph that is not
a tree, we formulate an extension of that algorithm. But unlike the case of trees, there
is no proof that the algorithm will converge and even if it does, there is no guarantee

303

)
/I\

xy X1+ To + T3

(x1 + 22 +23)(2+23) T

Z€E4,IB5 (373 + T4 -+ I5)$4QJ5

lT :2+I3T

T3+ T4+ X5

($3 + x4+ $5).’B41’5 T

g4 T x5 T
x4 T x5 T
Ty X5

Figure 9.4: Messages.

that the limit is the marginal probability. This has not prevented its usefulness in some
applications.

First, lets ask a more general question, just for trees. Suppose we want to compute for
each ¢ the one variable function of x; when we sum out all variables x;, 7 # 7. Do we have
to repeat what we did for x; once for each x;7 Luckily, the answer is no. It will suffice
to do a second pass from the root to the leaves of essentially the same message passing
algorithm to get all the answers. Recall that in the first pass, each edge of the tree has
sent a message “up”, from the child to the parent. In the second pass, each edge will send
a message from the parent to the child. We start with the root and work downwards for
this pass. Each node waits until its parent has sent it a message before sending messages
to each of its children. The rules for messages are:

Rule 1 The message from a factor node v to a child x;, which is the variable node z;,
is the product of all messages received by v in both passes from all nodes other than z;

304

times the factor at v itself.

Rule 2 The message from a variable node z; to a child, a factor node, v is the product
of all messages received by x; in both passes from all nodes except v, with all variables
except x; summed out. The message is a function of x; alone.

At termination, one can show when the graph is a tree that if we take the product
of all messages received in both passes by a variable node x; and sum out all variables
except x; in this product, what we get is precisely the entire function marginalized to x;.
We do not give the proof here. But the idea is simple. We know from the first pass that
the product of the messages coming to a variable node z; from its children is the product
of all factors in the sub-tree rooted at z;. In the second pass, we claim that the message
from the parent v to x; is the product of all factors which are not in the sub-tree rooted
at x; which one can show either directly or by induction working from the root downwards.

We can apply the same rules 1 and 2 to any general graph. We do not have child and
parent relationships and it is not possible to have the two synchronous passes as before.
The messages keep flowing and one hopes that after some time, the messages will stabilize,
but nothing like that is proven. We state the algorithm for general graphs now:

Rule 1 At each time, each factor node v sends a message to each adjacent node x;.
The message is the product of all messages received by v at the previous step except for
the one from x; multiplied by the factor at v itself.

Rule 2 At each time, each variable node x; sends a message to each adjacent node v.
The message is the product of all messages received by z; at the previous step except the
one from v, with all variables except x; summed out.

9.9 Graphs with a Single Cycle

The message passing algorithm gives the correct answers on trees and on certain other
graphs. One such situation is graphs with a single cycle which we treat here. We switch
from the marginalization problem to the MAP problem as the proof of correctness is sim-
pler for the MAP problem. Consider the network in the Figure 9.5a below with a single
cycle. The message passing scheme will multiply count some evidence. The local evidence
at A will get passed around the loop and will come back to A. Thus, A will count the local
evidence multiple times. If all evidence is multiply counted in equal amounts, then there
is a possibility that all though the numerical values of the marginal probabilities (beliefs)
are wrong, the algorithm still converges to the correct maximum a posteriori assignment.

Consider the unwrapped version of the graph in Figure 9.5b. The messages that the

loopy version will eventually converge to, assuming convergence, are the same messages
that occur in the unwrapped version provided that the nodes are sufficiently far in from

305

(a) A graph with a single cycle

AR

(b) Segment of unrolled graph

Figure 9.5: Unwrapping a graph with a single cycle

the ends. The beliefs in the unwrapped version are correct for the unwrapped graph since
it is a tree. The only question is, how similar are they to the true beliefs in the original
network.

Write p (A, B, C) = eloePABC) = J(ABC) where J (A, B,C) = logp (A, B,C). Then
the probability for the unwrapped network is of the form eF/(AB:C)+7" where the J' is
associated with vertices at the ends of the network where the beliefs have not yet stabi-
lized and the kJ (A, B,C) comes from k inner copies of the cycle where the beliefs have
stabilized. Note that the last copy of J in the unwrapped network shares an edge with J’
and that edge has an associated W. Thus, changing a variable in J has an impact on the
value of J’ through that W. Since the algorithm maximizes J, = kJ (A, B,C) + J' in the
unwrapped network for all &, it must maximize J (A, B, C'). To see this, set the variables
A, B, C, so that Ji is maximized. If J (A, B, (') is not maximized, then change A, B, and
C to maximize J (A, B,C). This increases J; by some quantity that is proportional to
k. However, two of the variables that appear in copies of J (A, B,C') also appear in J’
and thus J might decrease in value. As long as J’ decreases by some finite amount, we
can increase Ji, by increasing k sufficiently. As long as all W’s are nonzero, J' which is

306

©

Y2 Y3

G oNr
yTL @ ///

Figure 9.6: A Markov random field with a single loop.

proportional to log ¥, can change by at most some finite amount. Hence, for a network
with a single loop, assuming that the message passing algorithm converges, it converges
to the maximum a posteriori assignment.

9.10 Belief Update in Networks with a Single Loop

In the previous section, we showed that when the message passing algorithm converges,
it correctly solves the MAP problem for graphs with a single loop. The message passing
algorithm can also be used to obtain the correct answer for the marginalization problem.
Consider a network consisting of a single loop with variables x1, x5, ..., x, and evidence
Y1,Y2, - - -, Yn as shown in Figure 9.6. The z; and y; can be represented by vectors having
a component for each value z; can take on. To simplify the discussion assume the x; take
on values 1,2,...,m.

Let m; be the message sent from vertex i to vertex ¢ + 1 mod n. At vertex ¢ + 1
each component of the message m; is multiplied by the evidence y; 1 and the constraint
function W. This is done by forming a diagonal matrix D;,; where the diagonal elements
are the evidence and then forming a matrix M; whose rs® element is ¥ (2,1 = r, z; = 5).
The message m;y1 is M;D;1m;. Multiplication by the diagonal matrix D;,; multiplies
the components of the message m; by the associated evidence. Multiplication by the
matrix M; multiplies each component of the vector by the appropriate value of ¥ and
sums over the values producing the vector which is the message m;;;. Once the message
has travelled around the loop, the new message m/ is given by

m'l = MnDan_an cee M2D3M1D2m1

307

Let M = M,,D\M,,_1D,,--- MyD3M;Dym,. Assuming that M’s principle eigenvalue is
unique, the message passing will converge to the principle vector of M. The rate of con-
vergences depends on the ratio of the first and second eigenvalues.

An argument analogous to the above concerning the messages gong clockwise around
the loop applies to messages moving counter clockwise around the loop. To obtain the es-
timate of the marginal probability p (z1), one multiples component wise the two messages
arriving at x; along with the evidence y;. This estimate does not give the true marginal
probability but the true marginal probability can be computed from the estimate and the
rate of convergences by linear algebra.

9.11 Maximum Weight Matching

We have seen that the belief propagation algorithm converges to the correct solution
in trees and graphs with a single cycle. It also correctly converges for a number of prob-
lems. Here we give one example, the maximum weight matching problem where there is
a unique solution.

We apply the belief propagation algorithm to find the maximal weight matching
(MWM) in a complete bipartite graph. If the MWM in the bipartite graph is unique,
then the belief propagation algorithm will converge to it.

Let G = (V4,V,, E) be a complete bipartite graph where V; = {as,...,a,}, Vo =
{b1,...,b,}, and (a;,b;) € E, 1 < 4,5 < n.Let 7 = {7 (1),...,7(n)} be a per-
mutation of {1,...,n}. The collection of edges {(al, b,r(l)) A, (an, bﬂ(n))}is called a
matching which is denoted by 7. Let w;; be the weight associated with the edge (a;,b;).

The weight of the matching 7 is wr = Y Wix). The maximum weight matching 7 is
i=1

" = argmax w;
™

The first step is to create a factor graph corresponding to the MWM problem. Each
edge of the bipartite graph is represented by a variable ¢;; which takes on the values
zero or one. The value one means that the edge is present in the matching, the value
zero means that the edge is not present in the matching. A set of constraints is used to

force the set of edges to be a matching. The constraints are of the form) ¢;; = 1 and
J
> cij = 1. Any assignment of 0,1 to the variables ¢;; that satisfies all of the constraints

(2
defines a matching. In addition, we have constraints for the weights of the edges.
We now construct a factor graph, a portion of which is shown in Fig. 9.10. Associated

with the factor graph is a function f (c11, ¢12,...) consisting of a set of terms for each c¢;;
enforcing the constraints and summing the weights of the edges of the matching. The

308

terms for ¢y are

—-A —A

+ wi2C12

(5)--(22)-

where) is a large positive number used to enforce the constraints when we maximize the
function. Finding the values of ¢q1, ¢19, ... that maximize f finds the maximum weighted
matching for the bipartite graph.

If the factor graph was a tree, then the message from a variable node x to its parent
is a message ¢g(x) that gives the maximum value for the sub tree for each value of z. To
compute g(x), one sums all messages into the node z. For a constraint node, one sums
all messages from sub trees and maximizes the sum over all variables except the variable
of the parent node subject to the constraint. The message from a variable x consists of
two pieces of information, the value p (x = 0) and the value p (x = 1). This information
can be encoded into a linear function of x.

p(r=1)—p(x=0)]z+p(xr=0)

Thus, the messages are of the form ax + b. To determine the MAP value of x once the
algorithm converges, sum all messages into and take the maximum over z=1 and =0
to determine the value for x. Since the arg maximum of a linear form ax+b depends
only on whether a is positive or negative and since maximizing the output of a constraint
depends only on the coefficient of the variable, we can send messages consisting of just
the variable coefficient.

To calculate the message to cio from the constraint that node by has exactly one
neighbor, add all the messages that flow into the constraint node from the ¢;5, 7 # 1
nodes and maximize subject to the constraint that exactly one variable has value one. If
c1o = 0, then one of ¢, ¢ # 1, will have value one and the message is rg?lxa (,2). If

c12 = 1, then the message is zero. Thus, we get

—max« (i,2) r + max « (i, 2)
i1 i#1

and send the coefficient — max « (¢, 2). This means that the message from ¢;5 to the other
i#1
constraint node is 5(1,2) = wys — max o (1,2).
(3

The alpha message is calculated in a similar fashion. If ¢ = 0, then one of ¢;; will

have value one and the message is m;?f(B (1,7). If ¢12 = 1, then the message is zero. Thus,
J
the coefficient — max « (1,) is sent. This means that «(1,2) = wys — max o (1, 7).
J#1 J

To prove convergence, we enroll the constraint graph to form a tree with a constraint
node as the root. In the enrolled graph a variable node such as c;» will appear a number
of times which depends on how deep a tree is built. Each occurrence of a variable such
as cj9 18 deemed to be a distinct variable.

309

Wi2C12

—— ;=1 Dtz =1

— —
A(1,2) «1,2)
Constraint forcing Constraint forcing @
by to have exactly ai1to have exactly
one neighbor one neighbor

Figure 9.7: Portion of factor graph for the maximum weight matching problem.

KCH\ TP 1

032\
N

Figure 9.8: Tree for MWM problem.

310

Lemma 9.3 If the tree obtained by unrolling the graph is of depth k, then the messages
to the root are the same as the messages in the constraint graph after k-iterations.

Proof: Straight forward.]

Define a matching in the tree to be a set of vertices so that there is exactly one variable
node of the match adjacent to each constraint. Let A denote the vertices of the matching.
Heavy circles represent the nodes of the above tree that are in the matching A.

Let II be the vertices corresponding to maximum weight matching edges in the bi-
partite graph. Recall that vertices in the above tree correspond to edges in the bipartite
graph. The vertices of Il are denoted by dotted circles in the above tree.

Consider a set of trees where each tree has a root that corresponds to one of the con-
straints. If the constraint at each root is satisfied by the edge of the MWM, then we have
found the MWM. Suppose that the matching at the root in one of the trees disagrees
with the MWM. Then there is an alternating path of vertices of length 2k consisting of
vertices corresponding to edges in Il and edges in A. Map this path onto the bipartite
graph. In the bipartite graph the path will consist of a number of cycles plus a simple
path. If k is large enough there will be a large number of cycles since no cycle can be of
length more than 2n. Let m be the number of cycles. Then m > % = %

Let 7* be the MWM in the bipartite graph. Take one of the cycles and use it as an
alternating path to convert the MWM to another matching. Assuming that the MWM
is unique and that the next closest matching is € less, W, — W, > ¢ where 7 is the new
matching.

Consider the tree matching. Modify the tree matching by using the alternating path
of all cycles and the left over simple path. The simple path is converted to a cycle by
adding two edges. The cost of the two edges is at most 2w* where w* is the weight of the
maximum weight edge. Each time we modify A by an alternating cycle, we increase the
cost of the matching by at least e. When we modify A by the left over simple path, we
increase the cost of the tree matching by € — 2w since the two edges that were used to
create a cycle in the bipartite graph are not used. Thus

weight of A - weight of A’ > %5 — 2w

which must be negative since A’ is optimal for the tree. However, if k is large enough
this becomes positive, an impossibility since A’ is the best possible. Since we have a
tree, there can be no cycles, as messages are passed up the tree, each sub tree is optimal
and hence the total tree is optimal. Thus the message passing algorithm must find the
maximum weight matching in the weighted complete bipartite graph assuming that the
maximum weight matching is unique. Note that applying one of the cycles that makes
up the alternating path decreased the bipartite graph match but increases the value of

311

Figure 9.9: warning propagation

the tree. However, it does not give a higher tree matching, which is not possible since
we already have the maximum tree matching. The reason for this is that the application
of a single cycle does not result in a valid tree matching. One must apply the entire
alternating path to go from one matching to another.

9.12 Warning Propagation

Significant progress has been made using methods similar to belief propagation in
finding satisfying assignments for 3-CNF formulas. Thus, we include a section on a
version of belief propagation, called warning propagation, that is quite effective in finding
assignments. Consider a factor graph for a SAT problem. Index the variables by 4, 7, and
k and the factors by a, b, and c¢. Factor a sends a message m,; to each variable i that
appears in the factor a called a warning. The warning is 0 or 1 depending on whether
or not factor a believes that the value assigned to i is required for a to be satisfied. A
factor a determines the warning to send to variable ¢ by examining all warnings received
by other variables in factor a from factors containing them.

For each variable j, sum the warnings from factors containing j that warn j to take
value T and subtract the warnings that warn j to take value F. If the difference says that
7 should take value T or F and this value for variable j does not satisfy a, and this is
true for all 7, then a sends a warning to ¢ that the value of variable 7 is critical for factor a.

Start the warning propagation algorithm by assigning 1 to a warning with probability
1/2. Tteratively update the warnings. If the warning propagation algorithm converges,
then compute for each variable ¢ the local field h; and the contradiction number ¢;. The
local field h; is the number of clauses containing the variable ¢ that sent messages that
1 should take value T minus the number that sent messages that ¢ should take value F.
The contradiction number ¢; is 1 if variable ¢ gets conflicting warnings and 0 otherwise.
If the factor graph is a tree, the warning propagation algorithm converges. If one of the
warning messages is one, the problem is unsatisfiable; otherwise it is satisfiable.

312

9.13 Correlation Between Variables

In many situations one is interested in how the correlation between variables drops off
with some measure of distance. Consider a factor graph for a 3-CNF formula. Measure
the distance between two variables by the shortest path in the factor graph. One might
ask if one variable is assigned the value true, what is the percentage of satisfying assign-
ments in which the second variable also is true. If the percentage is the same as when the
first variable is assigned false, then we say that the two variables are uncorrelated. How
difficult it is to solve a problem is likely to be related to how fast the correlation decreases
with distance.

Another illustration of this concept is in counting the number of perfect matchings
in a graph. One might ask what is the percentage of matching in which some edge is
present and ask how correlated this percentage is with the presences or absence of edges
at some distance d. One is interested in whether the correlation drops off with distance.
To explore this concept we consider the Ising model studied in physics.

The Ising or ferromagnetic model is a pairwise random Markov field. The underlying
graph, usually a lattice, assigns a value of +1, called spin, to the variable at each ver-
tex. The probability (Gibbs measure) of a given configuration of spins is proportional

to exp(B > wx;) = [] e°®% where z; = +1 is the value associated with vertex .
(i,j)eE (i.j)eE
Thus
1 1 6 Z LiZj
p(xhx% s 7xn) =7 H 6%’]9(5%2%) = e (L.7)EE
(i.j)ek

where 7 is a normalization constant.

The value of the summation is simply the difference in the number of edges whose
vertices have the same spin minus the number of edges whose vertices have opposite spin.
The constant (8 is viewed as inverse temperature. High temperature corresponds to a low
value of § and low temperature corresponds to a high value of 5. At high temperature,
low 3, the spins of adjacent vertices are uncorrelated whereas at low temperature adjacent

vertices have identical spins. The reason for this is that the probability of a configura-
B> zixj B> zixj
tion is proportional to e ~J " As [is increased, e~ " for configurations with a large

number of edges whose vertices have identical spins increases more than for configurations
whose edges have vertices with non identical spins. When the normalization constant %
is adjusted for the new value of 3, the highest probability configurations are those where
adjacent vertices have identical spins.

Given the above probability distribution, what is the correlation between two variables
x; and z;. To answer this question, consider the probability that z; equals plus one as a
function of the probability that =, equals plus one. If the probability that x; equals plus

one is % independent of the value of the probability that z; equals plus one, we say the

313

values are uncorrelated.

Consider the special case where the graph G is a tree. In this case a phase transition
occurs at By = 1 51n g d+1 where d is the degree of the tree. For a sufficiently tall tree and for
B > By, the probablhty that the root has value +1 is bounded away from !/; and depends
on whether the majority of leaves have value +1 or -1. For 8 < [y the probability that

the root has value +1 is 1/ independent of the values at the leaves of the tree.

Consider a height one tree of degree d. If ¢ of the leaves have spin +1 and d — 7 have
spin -1, then the probability of the root having spin +1 is proportional to

(B~ (d=0)B _ ,Qi~d)B

If the probability of a leaf being +1 is p, then the probability of i leaves being +1 and

d — i being -1 is
d\ . i
<Z.>pl (1—p)

Thus, the probability of the root being +1 is proportional to

A= i() p)itel®- 5—60”32() (1—p) = [pe? +1—p]°

and the probability of the root being —1 is proportional to

d
dy ; i —(2i
B:Z(i)P(l—p)d em (=P

= [p+ (1 - p)e¥]”

The probability of the root being +1 is

A [pe2 1] c
q= = a 2= P
A+B [pew-i-l—p] +[p+(1—p)62ﬁ] D
where
C = [pe26+ 1 _p}d
and

D= [pe*’ +1 —p]d—i- [p+(1-p) eQB]d.

314

At high temperature, low 3, the probability ¢ of the root of the height one tree being
+1 in the limit as 8 goes to zero is
p+1—p 1

it ri-g 2

independent of p. At low temperature, high 3,

B pd€2ﬁd B pd B 0 p= 0
I DB (1 —p)de2Bd ~ pdy (1—p)d | 1 p=1

q goes from a low probability of +1 for p below 1/2 to high probability of +1 for p above
1/2.

Now consider a very tall tree. If the p is the probability that a root has value +1,
we can iterate the formula for the height one tree and observe that at low temperature
the probability of the root being one converges to some value. At high temperature, the
probability of the root being one is 1/ independent of p. See Figure 9.10. At the phase
transition, the slope of ¢ at p=1/2 is one.

Now the slope of the probability of the root being 1 with respect to the probability of
a leaf being 1 in this height one tree is

oC oD
g _ Doy~
dp D?
Since the slope of the function ¢(p) at p=1/2 when the phase transition occurs is one, we
can solve 24 = 1 for the value of 3 where the phase transition occurs. First, we show that

op
%—’;p:%:().
= [p* +1-p]"+ [p+ (1 —p)]
%—g dpe?® +1-p]" " (¥ = 1) +d[p+(1—-p)] (1)
%—gp:%:;l (2 1] 7 (e = 1) + 2 [1+)7 (1-e2) =0
Then
dq B D%—C%—? B % B d[pezﬁ—i-l—p]d_l (e’ —1)
Oplp- L D Dl el e (- p) e
_ AR T (@) ()
B+ 3T+ g TP

315

high

temperature
Probability ¢(p) of J at phase transition
the root being 1 1/2 T slope of ¢(p) equals 1
as a function of p at p=1/2

\ low
0 temperature
0 1/2 1

Probability p of a leaf being 1

Figure 9.10: Shape of ¢ as a function of p for the height one tree and three values of 5 cor-
responding to low temperature, the phase transition temperature, and high temperature.

Setting
d(e* —1)
L4e28
And solving for g yields

To complete the argument, we need to show that ¢ is a monotonic function of p. To see

this, write ¢ = —5. A is a monotonically increasing function of p and B is monotonically
I+ 5

decreasing. From this it follows that ¢ is monotonically increasing.

In the iteration going from p to ¢, we do not get the true marginal probabilities at
each level since we ignored the effect of the portion of the tree above. However, when we
get to the root, we do get the true marginal for the root. To get the true marginal’s for
the interior nodes we need to send messages down from the root.

B> wizj
Note: The joint probability distribution for the tree is of the form e)<®) T [T efxies.
(i,4)€E
Suppose z; has value 1 with probability p. Then define a function ¢, called evidence, such
that

| for x; =1
So(xl)_{ 1—p forx; =-—1

=(p—3)mt;

316

and multiply the joint probability function by ¢. Note, however, that the marginal prob-
ability of z; is not p. In fact, it may be further from p after multiplying the conditional
probability function by the function .

317

9.14 Exercises
Exercise 9.1 Find a nonnegative factorization of the matriz

4 6 5
1 2 3
A=1|7 10 7
6 8 4
6 10 11

Indicate the steps in your method and show the intermediate results.

Exercise 9.2 Find a nonnegative factorization of each of the following matrices.

10 9 15 14 13 5 5 10 14 17
2 1 3 3 1 2 2 4 4 6
g8 7 13 11 11 11 2 4 4
(1) 7 5 11 10 7 (2) 11 2 2 3
5 5 11 6 11 33 6 8 10
1 1.3 1 3 5 5 10 16 18
2 2 2 2 2 2 4 6 7
4 4 3 3 1 3 4 3
13 16 13 10 5 13 14 10
15 24 21 12 9 21 18 12 ;El) 3 142 3 3 ;
(3) 7 16 15 6 7 15 10 6 (4)
6 6 12 16 15 15 4
1 4 4 1 2 4 2 1 533 4 3 3 1
5 8 7 4 3 7 6 4
3 12 12 3 6 12 6 3
Exercise 9.3 Consider the matrix A that is the product of nonnegative matrices B and
¢ 12 22 41 35 10 1
19 20 13 481 |1 9 1 2 4 3
11 14 16 29| | 3 4 <2 2 1 5)
14 16 14 36 2 6

Which rows of A are approximate positive linear combinations of other rows of A?
Find an approxiamte nonnegative factorization of A

Exercise 9.4 What is the probability of heads occurring after a sufficiently long sequence
of transitions in Viterbi algorithm example of the most likely sequence of states?

Exercise 9.5 Find optimum parameters for a three state HMM and given output se-
quence. Note the HMM must a strong signature in the output sequence or we probably will
not be able to find it. The following example may not be good for that reason.

318

17 2 8 A B
TEEE. FIEE
2|1 Lt 2|t 3

Exercise 9.6 In the Ising model for a tree of degree one, a chain of vertices, is there a
phase transition where the correlation between the value at the root and the value at the
leaves becomes independent? Work out mathematical what happens.

Exercise 9.7 For a Boolean function in CNF' the marginal probability gives the number
of satisfiable assignments with 1.

How does one obtain the number of satisfying assignments for a 2-CNF formula? Not
completely related to first sentence.

319

10 Other Topics

10.1 Rankings

Ranking is important. We rank movies, restaurants, students, web pages, and many
other items. Ranking has become a multi-billion dollar industry as organizations try to
raise the position of their web pages in the display of web pages returned by search en-
gines to relevant queries. Developing a method of ranking that is not manipulative is an
important task.

A ranking is a complete ordering in the sense that for every pair of items a and b,
either a is preferred to b or b is preferred to a. Furthermore, a ranking is transitive in
that @ > b and b > ¢ implies a > c.

One problem of interest in ranking is that of combining many individual rankings into
one global ranking. However, merging ranked lists is nontrivial as the following example
illustrates.

Example: Suppose there are three individuals who rank items a, b, and c¢ as illustrated
in the following table.

individual | first item | second item | third item
1 a b c
2 b c
3 c a b

Suppose our algorithm tried to rank the items by first comparing a to b and then
comparing b to ¢. In comparing a to b, two of the three individuals prefer a to b and thus
we conclude a is preferable to . In comparing b to ¢, again two of the three individuals
prefer b to ¢ and we conclude that b is preferable to ¢. Now by transitivity one would
expect that the individuals would prefer a to ¢, but such is not the case, only one of the
individuals prefers a to ¢ and thus c is preferable to a. We come to the illogical conclusion
that a is preferable to b, b is preferable to ¢, and c¢ is preferable to a. B

Suppose there are a number of individuals or voters and a set of candidates to be
ranked. Each voter produces a ranked list of the candidates. From the set of ranked lists
can one construct a single ranking of the candidates? Assume the method of producing a
global ranking is required to satisfy the following three axioms.

Nondictatorship — The algorithm cannot always simply select one individual’s ranking.

Unanimity — If every individual prefers a to b, then the global ranking must prefer a to

b.

320

Independent of irrelevant alternatives — If individuals modify their rankings but
keep the order of a and b unchanged, then the global order of a and b should
not change.

Arrow showed that no ranking algorithm exists satisfying the above axioms.

Theorem 10.1 (Arrow) Any algorithm for creating a global ranking from individual
rankings of three or more elements in which the global ranking satisfies unanimity and
independence of irrelevant alternatives is a dictatorship.

Proof: Let a, b, and ¢ be distinct items. Consider a set of rankings in which each indi-
vidual ranks b either first or last. Some individuals may rank b first and others may rank
b last. For this set of rankings, the global ranking must put b first or last. Suppose to the
contrary that b is not first or last in the global ranking. Then there exist a and ¢ where the
global ranking puts a > b and b > c. By transitivity, the global ranking puts a > ¢. Note
that all individuals can move ¢ above a without affecting the order of b and a or the order
of b and ¢ since b was first or last on each list. Thus, by independence of irrelevant alter-
natives, the global ranking would continue to rank a > b and b > ¢ even if all individuals
moved ¢ above a since that would not change the individuals relative order of a and b or
the individuals relative order of b and ¢. But then by unanimity, the global ranking would
need to put ¢ > a, a contradiction. We conclude that the global ranking puts b first or last.

Consider a set of rankings in which every individual ranks b last. By unanimity, the
global ranking must also rank b last. Let the individuals, one by one, move b from bot-
tom to top leaving the other rankings in place. By unanimity, the global ranking must
eventually move b from the bottom all the way to the top. When b first moves, it must
move all the way to the top by the previous argument. Let v be the first individual whose
change causes the global ranking of b to change.

We now argue that v is a dictator. First, we argue that v is a dictator for any pair ac
not involving b. We will refer to three rankings of v (see Figure 10.1). The first ranking
of v is the ranking prior to v moving b from the bottom to the top and the second is the
ranking just after v has moved b to the top. Choose any pair ac where a is above ¢ in v’s
ranking. The third ranking of v is obtained by moving a above b in the second ranking
so that @ > b > ¢ in v’s ranking. By independence of irrelevant alternatives, the global
ranking after v has switched to the third ranking puts a > b since all individual ab votes
are the same as just before v moved b to the top of his ranking. At that time the global
ranking placed a > b. Similarly b > ¢ in the global ranking since all individual bc votes
are the same as just after v moved b to the top causing b to move to the top in the global
ranking. By transitivity the global ranking must put a > ¢ and thus the global ranking
of a and ¢ agrees with v.

Now all individuals except v can modify their rankings arbitrarily while leaving b in its
extreme position and by independence of irrelevant alternatives, this does not affect the

321

bob o : bbb b b b a a

a a : : b b
a :

c c c
: : ¢ ¢
b b b b b b : b b :
v global v global v global
first ranking second ranking third ranking

Figure 10.1: The three rankings that are used in the proof of Theorem 10.1.

global ranking of @ > b or of b > c. Thus, by transitivity this does not affect the global
ranking of a and c¢. Next, all individuals except v can move b to any position without
affecting the global ranking of a and c.

At this point we have argued that independent of other individuals’ rankings, the
global ranking of a and ¢ will agree with v’s ranking. Now v can change its ranking
arbitrarily, provided it maintains the order of a and ¢, and by independence of irrelevant
alternatives the global ranking of a and ¢ will not change and hence will agree with v.
Thus, we conclude that for all a and ¢, the global ranking agrees with v independent of
the other rankings except for the placement of b. But other rankings can move b without
changing the global order of other elements. Thus, v is a dictator for the ranking of any
pair of elements not involving b.

Note that v changed the relative order of a and b in the global ranking when it moved
b from the bottom to the top in the previous argument. We will use this in a moment.

The individual v is also a dictator over every pair ab. Repeat the construction showing
that v is a dictator for every pair ac not involving b only this time place ¢ at the bottom.
There must be an individual v, who is a dictator for any pair such as ab not involving c.
Since both v and v, can affect the global ranking of a and b independent of each other, it
must be that v, is actually v. Thus, the global ranking agrees with v no matter how the
other voters modify their rankings.]

10.2 Hare System for Voting

One voting system would be to have everyone vote for their favorite candidate. If some
candidate receives a majority of votes, he or she is declared the winner. If no candidate
receives a majority of votes, the candidate with the fewest votes is dropped from the slate
and the process is repeated.

322

The Hare system implements this method by asking each voter to rank all the can-
didates. Then one counts how many voters ranked each candidate as number one. If no
candidate receives a majority, the candidate with the fewest number one votes is dropped
from each voters ranking. If the dropped candidate was number one on some voters list,
then the number two candidate becomes that voter’s number one choice. The process of
counting the number one rankings is then repeated.

Although the Hare system is widely used it fails to satisfy Arrow’ axioms as all voting
systems must. Consider the following situation in which there are 21 voters that fall into
four categories. Voters within a category rank individuals in the same order.

Category Number of voters Preference order
In category
1 7 abcd
2 6 bacd
3 5 cbad
4 3 dcba

The Hare system would first eliminate d since d gets only three rank one votes. Then
it would eliminate b since b gets only six rank one votes whereas a gets seven and ¢ gets
eight. At this point a is declared the winner since a has thirteen votes to ¢’s eight votes.

Now assume that Category 4 voters who prefer b to a move a up to first place. Then
the election proceeds as follows. In round one, d is eliminated since it gets no rank one
votes. Then ¢ with five votes is eliminated and b is declared the winner with 11 votes.
Note that by moving a up, category 4 voters were able to deny a the election and get b
to win, whom they prefer over a.

10.3 Compressed Sensing and Sparse Vectors

Given a function z(t), one can represent the function by the composition of sinusoidal
functions. Basically one is representing the time function by its frequency components.
The transformation from the time representation of a function to it frequency represen-
tation is accomplished by a Fourier transform. The Fourier transform of a function z(t)
is given by

Flw) = / (t)e— 2t

Converting the frequency representation back to the time representation is done by the
inverse Fourier transformation

o) = [flw)e

323

In the discrete case, x = [xg, 21, ..., 2,_1] and f = [fo, f1,. .., fu_1]. The Fourier trans-
form and its inverse are f = Ax with a;; = w" where w is the principle n'* root of unity.

There are many other transforms such as the Laplace, wavelets, chirplets, etc. In fact,
any nonsingular n X n matrix can be used as a transform.

If one has a discrete time sequence x of length n, the Nyquist theorem states that n
coefficients in the frequency domain are needed to represent the signal x. However, if the
signal x has only s nonzero elements, even though one does not know which elements they
are, one can recover the signal by randomly selecting a small subset of the coefficients in
the frequency domain. It turns out that one can reconstruct sparse signals with far fewer
samples than one might suspect and an area called compressed sampling has emerged
with important applications.

Motivation

Let A be an n x d matrix with n much smaller than d whose elements are generated
by independent Gaussian processes. Let x be a sparse d-dimensional vector with at most
s nonzero coordinates, s << d. x is called the signal and A is the “measurement” matrix.
What we measure are the components of the n dimensional vector Ax. We ask if we
can recover the signal x from measurements Ax, where the number n of measurements
is much smaller than the dimension d? We have two advantages over an arbitrary system
of linear equations. First, the solution x is known to be sparse and second we have the
choice of the measurement matrix A.

In many applications, the signal is sparse in either the time domain or the frequency
domain. For images, it is often the case that in the frequency domain very few frequencies
have significant amplitude. If we zero out small frequency amplitudes, we get a sparse
frequency representation of the signal. It is wasteful to measure each of the d components
of the signal x, most of which are zero. Instead, we measure n linear combinations of
components, the linear combinations form A. In applications, we choose the matrix A. A
usual choice is a matrix whose entries are independent zero mean, unit variance Gaussian
random variables. Since we have no control over the signal, our system needs to recover
any signal. We will show that n needs to depend essentially only on s, not on d.

10.3.1 Unique Reconstruction of a Sparse Vector

A vector is said to be s-sparse if it has at most s nonzero elements. Let x be a d-
dimensional, s-sparse vector with s << d. Consider solving Ax = b for x where A is an
n X d matrix with n < d. The set of solutions to Ax = b is a subspace. However, if we
restrict ourselves to sparse solutions, under certain conditions on A there is a unique s-
sparse solution. Suppose that there were two s-sparse solutions, x; and x2. Then x; — X5

324

Figure 10.2: Ax = b has a vector space of solutions but possibly only one sparse solution.

would be a 2s-sparse solution to the homogeneous system Ax = 0. A 2s-sparse solution to
the homogeneous equation Ax = 0 requires that some 2s columns of A be linearly depen-
dent. Unless A has 2s linearly dependent columns there can be only one s-sparse solution.

Now suppose n is (s?) and we pick an n X d matrix A with random independent
zero mean, unit variance Gaussian entries. Take any subset of 2s columns of A. Since
we have already seen in Chapter 2 that each of these 2s vectors is likely to be essentially
orthogonal to the space spanned by the previous vectors, the sub-matrix is unlikely to be
singular. This intuition can be made rigorous.

To find a sparse solution to Ax = b, one would like to minimize the zero norm |[|x||,
over {x|Ax = b}. This is a computationally hard problem. There are techniques to min-
imize a convex function over a convex set. But ||x||o is not a convex function. With no
further hypotheses, it is NP-hard. With this in mind, we use the one norm as a proxy for
the zero norm and minimize the one norm ||x|[|, over {x|Ax = b}. Although this problem
appears to be nonlinear, it can be solved by linear programming by writing x = u — v,
u > 0, and v > 0, and then minimizing the linear function) w; + > v; subject to Au-

7 7

Av=b,u >0, and v > 0.

Under what conditions will minimizing ||x||, over {x|Ax = b} recover the s-sparse
solution to Ax=b? If g(x) is a convex function, then any local minimum of g is a global
minimum. If g(x) is differentiable at its minimum, the gradient Vg must be zero there.
However, the 1-norm is not differentiable at its minimum. Thus, we introduce the concept
of a subgradient of a convex function. Where the function is differentiable the subgradient
is just the gradient. Where the function is not differentiable, the sub gradient is any line
touching the function at the point that lies totally below the function. See Figure 10.3.

Subgradients are defined as follows. A subgradient of a function g at a point xg, is a

325

Figure 10.3: Some subgradients for a function that is not everywhere differentiable.

vector Vg(xo) satisfying g (xo + Ax) > ¢ (xo) + (Vg)" Ax for any vector Ax . A point is
a minimum for a convex function if there is a subgradient at that point with slope zero.

Consider the function ||z||,, where z is a real variable. For z < 0, the subgradient
equals the gradient and has value -1. For > 0, the subgradient equals the gradient and
has value 1. At z = 0, the subgradient can be any value in the range [-1,1]. The following
proposition generalizes this example to the 1-norm function in d-space.

Proposition 10.2 A vector v is a subgradient of the 1-norm function ||x||; at x if and
only if it satisfies the three conditions below:

1. v; = =1 for all i in I; where, I, = {i|z; < 0},
2. v; =1 for all i in Iy where, Iy = {i|x; > 0},
3. and v; in [—1,1] for all i in I3 where, I3 = {i|x; = 0}.

Proof: It is easy to see that for any vector y,

Iyl =l = =S+ S+ 3 il

eh i€l i€l3
If ¢ is in [, x; is negative. If y; is also negative, then ||x; + yill1 = ||zill1 + |lwills
and thus [|; + yi|l1 — ||@ill1 = [|lyilli = —vi. If y; is positive and less than ||x;||1, then
|z +vill1 = ||z:|| —yi and thus ||z;+vi| |1 — ||z:]| = —vs. If y; is positive and greater than or

equal to ||z;|[1, then |[z;+yi|[1 = yi—||zi|[x and thus |[z;+y;| |1 —[|zi|[1 = yi—2[2[|1 = —vs.
Similar reasoning establishes the case for ¢ in I or I3.

If v satisfies the conditions in the proposition, then ||x+y]||; > ||x||;+VvTy as required.
Now for the converse, suppose that v is a subgradient. Consider a vector y that is zero
in all components except the first and y; is nonzero with y; = £¢ for a small ¢ > 0. If
1 € I, then ||x +y||1 — ||x||1 = —y1 which implies that —y; > v1y;. Choosing y; = &,

gives —1 > v; and choosing y; = —¢, gives —1 < vy. So v; = —1. Similar reasoning gives
the second condition. For the third condition, choose ¢ in I3 and set y; = +¢ and argue
similarly.]

326

A sub gradient

Figure 10.4: Illustration of a subgradient for x|, at x =0

To characterize the value of x that minimizes ||x||, subject to Ax=Db, note that at the
minimum Xg, there can be no downhill direction consistent with the constraint Ax=b.
Thus, if the direction Ax at xq is consistent with the constraint Ax=b, that is AAx=0
so that A (xo + Ax) = b, any subgradient V for ||x||, at xo must satisfy V' Ax = 0.

A sufficient but not necessary condition for x¢ to be a minimum is that there exists
some w such that the sub gradient at xq is given by V = ATw. Then for any Ax such
that AAx =0, VIAx = wl AAx = w’ -0 = 0. That is, for any direction consistent with
the constraint Ax = b, the subgradient is zero and hence x¢ is a minimum.

10.3.2 The Exact Reconstruction Property

Theorem 10.3 below gives a condition that guarantees that a solution xg to Ax = b is
the unique minimum 1-norm solution to Ax = b. This is a sufficient condition, but not
necessary condition.

Theorem 10.3 Suppose xq satisfies Axqg = b. If there is a subgradient ¥V to the 1-norm
function at xq for which there exists a w where V. = ATw and the columns of A corre-
sponding to nonzero components of Xqo are linearly independent, then xo minimizes ||x||,
subject to Ax=b. Furthermore, these conditions imply that xq is the unique minimum.

Proof: We first show that xo minimizes ||x||,. Suppose y is another solution to Ax = b.
We need to show that ||y||1 > ||zo||1. Let z =y — x¢. Then Az = Ay — Axo = 0. Hence,
VTz = (ATw)Tz = wl' Az = 0. Now, since V is a subgradient of the 1-norm function at
Xo,

Iylli = I1xo0 + 2|l = [|x0lli + V" -z = [[xo]|s

and so we have that ||Xg||; minimizes ||x||; over all solutions to Ax = b.

Suppose Xy were another minimum. Then V is also a subgradient at x; as it is at xq.
To see this, for Ax such that AAx =0,

Hf{g + AXH1 = ||Xo +)"(0 — X + Ax Z ”XOH1 + VT (io — Xp + AX) .
—_——

o 1

327

The above equation follows from the definition of V being a subgradient for the one norm
function, ||||,, at x¢. Thus,

%0 + Ax||; > [Ixoll; + V" (X0 — x0) + V' Ax.

But
VT (5(0 - Xo) = WTA (5(0 - Xo) = WT (b - b) = 0.

Hence, since Xy being a minimum means ||Xp||1 = ||Xol|1,
%0 + Ax|; > [[xoll, + V" Ax = [3%0]1 + V' Ax.

This implies that V is a sub gradient at Xq.

Now, V is a subgradient at both x¢ and xy. By Proposition 10.2, we must have that
(V)i = sgn((z0);) = sgn((Zo);), whenever either is nonzero and |(V);| < 1, whenever either
is 0. It follows that xo and Xo have the same sparseness pattern. Since Axg = b and
Axg = b and xg and Xq are both nonzero on the same coordinates, and by the assumption
that the columns of A corresponding to the nonzeros of xg and X are independent, it
must be that xg = Xp.]

10.3.3 Restricted Isometry Property

Next we introduce the restricted isometry property that plays a key role in exact
reconstruction of sparse vectors. A matrix A satisfies the restricted isometry property,
RIP, if for any s-sparse x there exists a d5 such that

(1—6,) x> < |Ax|* < (1+0,) x| (10.1)

[sometry is a mathematical concept; it refers to linear transformations that exactly pre-
serve length such as rotations. If A is an n x n isometry, all its eigenvalues are +1 and
it represents a coordinate system. Since a pair of orthogonal vectors are orthogonal in all
coordinate system, for an isometry A and two orthogonal vectors x and y, xT AT Ay = 0.
We will prove approximate versions of these properties for matrices A satisfying the re-
stricted isometry property. The approximate versions will be used in the sequel.

A piece of notation will be useful. For a subset S of columns of A, let Ag denote the
submatrix of A consisting of the columns of S.

Lemma 10.4 If A satisfies the restricted isometry property, then

1. For any subset S of columns with |S| = s, the singular values of Ag are all between
1—06, and 1+ 9.

2. For any two orthogonal vectors x and 'y, with supports of size s; and so respectively,
[x" AT Ay| < 5x||y|(0s, + dsy)-

328

Proof: Item 1 follows from the definition. To prove the second item, assume without loss
of generality that x| = |y| = 1. Since x and y are orthogonal, |x + y|?> = 2. Consider
|A(x+y)|*. This is between 2(1— 4y, +0,)? and 2(1+d,, +ds,)* by the restricted isometry
property. Also |Ax|? is between (1 — §,,)? and (1 + d,,)? and |Ay|? is between (1 — 4,,)?
and (1 + d,,)%. Since

2xTATAy = (x +y)TATA(x +y) —xTATAx — yT AT Ay
= [A(x+y)I* = [Ax[* — [Ay]*,

it follows that

|2XTATAY| < 2(1 + 551 + 582)2 - (1 - 581)2 - (1 - 552)2
6(0s, + 0s,) 4 (82, + 62, + 405, + 40,,) < (85, + bs,).-

Thus, for arbitrary x and y |[x? AT Ay| < (9/2)|x||y|(0s, + ds,)- n

Theorem 10.5 Suppose A satisfies the restricted isometry property with

Soy < —
s+1 > 10\/5
Suppose xq has at most s nonzero coordinates and satisfies Ax = b. Then a subgradient

VI|(xo)||1 for the 1-norm function ezists at xo which satisfies the conditions of Theorem
10.3 and so xq 1s the unique minimum 1-norm solution to Ax = b.

Proof: Let
S = {i[(x0)i # 0}

be the support of x¢ and let S = {i|(xq); = 0} be the complement set of coordinates. To
find a subgradient u at xq satisfying Theorem 10.3, search for a w such that u = ATw
where for coordinates in which xo # 0, u = sgn (xg) and for the remaining coordinates
the 2-norm of u is minimized. Solving for w is a least squares problem. Let z be the
vector with support S, with z; = sgn(xg) on S. Consider the vector w defined by

w = Ag (ALAs) 2.

This happens to be the solution of the least squares problem, but we do not need this
fact. We only state it to tell the reader how we came up with this expression. Note that
Ag has independent columns from the restricted isometry property assumption, and so
AL Ag is invertible. We will prove that this w satisfies the conditions of Theorem 10.3.
First, for coordinates in S,

(ATW)S = (As)TAs(AgAs)_IZ = Z

as required.

329

For coordinates in S, we have
(ATw)s = (A5)" As(A5As)™

Now, the eigenvalues of AL Ag, which are the squares of the singular values of As, are
between (1 — d,)? and (1 + d5)% So |[(ALAg) ™| < {57 Letting p = (ALAg) 1z, we

have |p| < T5e ‘[. Write A,p as Aq, where q has all coordlnates in S equal to zero. Now,

3s
for j €S
(ATw); = efATAq

and part (2) of Lemma 10.4 gives |(ATw);| < 94511v/s/(1 — 62) < 1/2 establishing the
Theorem 10.3 holds.]

A Gaussian matrix is a matrix where each element is an independent Gaussian variable.
Gaussian matrices satisfy the restricted isometry property. (Exercise 77)

10.4 Applications
10.4.1 Sparse Vector in Some Coordinate Basis

Consider Ax = b where A is a square n xn matrix. The vectors x and b can be consid-
ered as two representations of the same quantity. For example, x might be a discrete time
sequence with b the frequency spectrum of x and the matrix A the Fourier transform. The
quantity x can be represented in the time domain by x and in the frequency domain by its
Fourier transform b. In fact, any orthonormal matrix can be thought of as a transforma-
tion and there are many important transformations other than the Fourier transformation.

Consider a transformation A and a signal x in some standard representation. Then
y = Ax transforms the signal x to another representation y. If A spreads any sparse
signal x out so that the information contained in each coordinate in the standard basis is
spread out to all coordinates in the second basis, then the two representations are said to
be incoherent. A signal and its Fourier transform are one example of incoherent vectors.
This suggests that if x is sparse, only a few randomly selected coordinates of its Fourier
transform are needed to reconstruct x. In the next section we show that a signal cannot
be too sparse in both its time domain and its frequency domain.

10.4.2 A Representation Cannot be Sparse in Both Time and Frequency
Domains

We now show that there is an uncertainty principle that states that a time signal
cannot be sparse in both the time domain and the frequency domain. If the signal is of
length n, then the product of the number of nonzero coordinates in the time domain and
the number of nonzero coordinates in the frequency domain must be at least n. We first
prove two technical lemmas.

330

In dealing with the Fourier transform it is convenient for indices to run from 0 to n—1

rather than from 1 to n. Let xg,21,...,2,_1 be a sequence and let fy, fi,..., fn_1 be its
n—1 2mi
discrete Fourier transform. Let ¢ = /—1. Then f; = \/Lﬁ k;):ckeij j=0,....,n—1
27”]/{3 B

In matrix form f = Zx where z;, = ¢

o 1 12ﬂ %2 s <1n Y 20

fl 1 1 6_ n 6_ n P 6_ n X

: RV : : :
fo | o Zn—-1) E2n-1) . (1) Tno1

If some of the elements of x are zero, delete the zero elements of x and the corresponding
columns of the matrix. To maintain a square matrix, let n, be the number of nonzero
elements in x and select n, consecutive rows of the matrix. Normalize the columns of the
resulting submatrix by dividing each element in a column by the column element in the
first row. The resulting submatrix is a Vandermonde matrix that looks like

1 1 1 1

a b ¢ d

a? v* 2 d

at b S a3
and is nonsingular.
Lemma 10.6 If xg,z1,...,2,_1 has n, nonzero elements, then fo, f1,..., fn_1 cannot
have n, consecutive zeros.
Proof: Let i,19,...,%,, be the indices of the nonzero elements of x. Then the elements
of the Fourier transform in the range k =m +1,m+2,...,m + n, are

=27
fr= \ﬁ Z Ti; € n kl]

Note the use of i as v/—1 and the multiplication of the exponent by i; to account for the
actual location of the element in the sequence. Normally, if every element in the sequence
was included, we would just multiply by the index of summation.

Convert the equation to matrix form by defining z;; = \F exp(—#ki;) and write
f = Zx. Actually instead of x, write the vector consisting of the nonzero elements of x.
By its definition, x # 0. To prove the lemma we need to show that f is nonzero. This will
be true provided Z is nonsingular. If we rescale Z by dividing each column by its leading
entry we get the Vandermonde determinant which is nonsingular.]

331

w
ot
=}
-3

ot

o O =N
w
=]

w

=]
AN NN W 00
w

o N O Ut ke W N
oW
w
B0 W N N O
=]
N R O
N W ks 0t O N

-3
[}
ot

el e e e e
ES IR LI SR R G IR LR SR S
w

WOW W W W NN N
S L N T S
WOW W W W RN N
NOW W W RN NN
S R
WoW NN NN NN
SRS SRS IR ST ST S S S R

Figure 10.5: The matrix Z for n=9.

Theorem 10.7 Let n, be the number of nonzero elements in x and let ny be the number
of nonzero elements in the Fourier transform of x. Let n, divide n. Then nzny > n.

Proof: If x has n, nonzero elements, f cannot have a consecutive block of n, zeros. Since
n, divides n there are =~ blocks each containing at least one nonzero element. Thus, the
product of nonzero elements in x and f is at least n.]

Fourier transform of spikes prove that above bound is tight

To show that the bound in Theorem 10.7 is tight we show that the Fourier transform
of the sequence of length n consisting of \/n ones, each one separated by \/n — 1 zeros,
is the sequence itself. For example, the Fourier transform of the sequence 100100100 is
100100100. Thus, for this class of sequences, nyny = n.

Theorem 10.8 Let S (v/n,\/n) be the sequence of 1’s and 0’s with \/n 1’s spaced \/n
apart. The Fourier transform of S (\/n,\/n) is itself.

Proof: Consider the columns 0,v/n,2v/n,...,(y/n —1)y/n. These are the columns for
which S (y/n,+/n) has value 1. The element of the matrix Z in the row j/n of column
ky/n, 0 < k < y/nis 2™ = 1. Thus, for these rows Z times the vector S (y/n,/n) = /n
and the 1/y/n normalization yields f; z = 1.

For rows whose index is not of the form j/n, the row b, b # j\/n, j € {O V.o /n—

the elements in row b in the columns 0, /1, 2/n, ..., (v/n — 1) y/nare 1, 2%, 2%, (v
and thus f, = <1 + b 422t z(‘/ﬁ_l)b> = \/Lﬁzf_bl’l = 0 since zb‘f =1 and z# 1,

Uniqueness of [; optimization

Consider a redundant representation for a sequence. One such representation would be
representing a sequence as the concatenation of two sequences, one specified by its coordi-
nates and the other by its Fourier transform. Suppose some sequence could be represented
as a sequence of coordinates and Fourier coefficients sparsely in two different ways. Then

332

1},

by subtraction, the zero sequence could be represented by a sparse sequence. The rep-
resentation of the zero sequence cannot be solely coordinates or Fourier coefficients. If
y is the coordinate sequence in the representation of the zero sequence, then the Fourier
portion of the representation must represent —y. Thus y and its Fourier transform would
have sparse representations contradicting n,n; > n. Notice that a factor of two comes in
when we subtract the two representations.

Suppose two sparse signals had Fourier transforms that agreed in almost all of their
coordinates. Then the difference would be a sparse signal with a sparse transform. This is
not possible. Thus, if one selects log n elements of their transform these elements should
distinguish between these two signals.

10.4.3 Biological

There are many areas where linear systems arise in which a sparse solution is unique.
One is in plant breading. Consider a breeder who has a number of apple trees and for
each tree observes the strength of some desirable feature. He wishes to determine which
genes are responsible for the feature so he can cross bread to obtain a tree that better
expresses the desirable feature. This gives rise to a set of equations Ax = b where each
row of the matrix A corresponds to a tree and each column to a position on the genone.
See Figure 10.6. The vector b corresponds to the strength of the desired feature in each
tree. The solution x tells us the position on the genone corresponding to the genes that
account for the feature. It would be surprising if there were two small independent sets
of genes that accounted for the desired feature. Thus, the matrix must have a property
that allows only one sparse solution.

10.4.4 Finding Overlapping Cliques or Communities

Consider a graph that consists of several cliques. Suppose we can observe only low
level information such as edges and we wish to identify the cliques. An instance of this
problem is the task of identifying which of ten players belongs to which of two teams
of five players each when one can only observe interactions between pairs of individuals.
There is an interaction between two players if and only if they are on the same team.
In this situation we have a matrix A with (150) columns and (120) rows. The columns
represent possible teams and the rows represent pairs of individuals. Let b be the (120)
dimensional vector of observed interactions. Let x be a solution to Ax = b. There is a
sparse solution x where x is all zeros except for the two 1’s for 12345 and 678910 where
the two teams are {1,2,3.4,5} and {6,7,8,9,10}. The question is can we recover x from
b. If the matrix A had satisfied the restricted isometry condition, then we could surely
do this. Although A does not satisfy the restricted isometry condition which guarantees
recover of all sparse vectors, we can recover the sparse vector in the case where the teams
are non overlapping or almost non overlapping. If A satisfied the restricted isometry
property we would minimize ||x[|, subject to Ax = b. Instead, we minimize ||x||,; subject
to ||Ax — b||, < ¢ where we bound the largest error.

333

position on genome

trees =

Phenotype; outward
manifestation, observables

Genotype:
internal code

Figure 10.6: The system of linear equations used to find the internal code for some
observable phenomenon.

10.4.5 Low Rank Matrices

Suppose L is a low rank matrix that has been corrupted by noise. That is, M = L+ R.
If the R is Gaussian, then principle component analysis will recover L from M. However,
if L has been corrupted by several missing entries or several entries have a large noise
added to them and they become outliers, then principle component analysis may be far
off. However, if L is low rank and R is sparse, then L can be recovered effectively from
L+ R. To do this, find the L and R that minimize ||L||, + X || R||,. Here ||L||, is the sum
of the singular values of L. A small value of ||L||, indicates a low rank matrix. Notice
that we do not need to know the rank of L or the elements that were corrupted. All we
need is that the low rank matrix L is not sparse and that the sparse matrix R is not low
rank. We leave the proof as an exercise.

An example where low rank matrices that have been corrupted might occur is aerial
photographs of an intersection. Given a long sequence of such photographs, they will be
the same except for cars and people. If each photo is converted to a vector and the vector
used to make a column of a matrix, then the matrix will be low rank corrupted by the
traffic. Finding the original low rank matrix will separate the cars and people from the
back ground.

334

10.5 Gradient

The gradient of a function f(x) of d variables, x = (x1, z3,...,x4), at a point xg is de-

noted 7 f(xg). It is a d-dimensional vector with components aa—afl(xo), %(Xo), . g—i(xo),
af

where 5a; are partial derivatives. Without explicitly stating we assume that the deriva-
tives referred to exist. The rate of increase of the function f as we move from xg in
a direction u is easily seen to be v/ f(x0) - u. So the direction of steepest descent is
—v/f(X0); this is a natural direction to move in if we wish to minimize f. But by how
much should we move? A large move may overshoot the minimum. [See figure (10.7).]
A simple fix is to minimize f on the line from xo in the direction of steepest descent by
solving a one dimensional minimization problem. This gets us the next iterate x; and
we may repeat. Here, we will not discuss the issue of step-size any further. Instead, we
focus on “infinitesimal” gradient descent, where, the algorithm makes infinitesimal moves
in the —<7 f(x0) direction. Whenever /f is not the zero vector, we strictly decrease the
function in the direction —</f, so the current point is not a minimum of the function
f. Conversely, a point x where s7/f = 0 is called a first-order local optimum of f. In
general, local minima do not have to be global minima (see (10.7)) and gradient descent
may converge to a local minimum which is not a global minimum. In the special case
when the function f is convex, this is not the case. A function f of a single variable x is
said to be convex if for any two points = and y, the line joining f(z) and f(y) is above the
curve f(-). A function of many variables is convex if on any line segment in its domain,
it acts as a convex function of one variable on the line segment.

Definition 10.1 A function f over a convexr domain is a convex function if for any two
points X,y in the domain, and any X in [0, 1] we have

fOX+ (1 =Ny) <Af(x)+ (1= f(y)
The function is concave if the inequality is satisfied with > instead of <.

Theorem 10.9 Suppose f is a convez, differentiable, function defined on a closed bounded
convex domain. Then any first-order local minimum is also a global minimum. Thus, in-
finitesimal gradient descent always reaches the global minimum.

Proof: We will prove that if at a point x, is a local minimum, then it must be a global
minimum. If not, consider a global minimum point y # x. But on the line joining x
and y, the function must not go above the line joining f(x) and f(y). This means for an
infinitesimal € > 0 , if we move distance € from x towards y, the function must decrease,
so we cannot have y7f(x) = 0, contradicting the assumption that x is a local minimum.

|
The second derivatives %;m form a matrix, called the Hessian, denoted H(f(x)).
10T
The Hessian of f at x is a symmetric d X d matrix with (¢,j) th entry 01 -(x). The

0x;0x;

335

second derivative of f at x in the direction u is the rate of change of the first derivative
as we move along u from x. It is easy to see that it equals

u' H(f(x))u

To see this, note that the second derivative of f along u is

Z“Ja (Vi Z“JZa (8:51)
_Z i Za 8961 ().

Theorem 10.10 Suppose f is a function from a closed convex domain D in R? to the
reals and the Hessian of f exists everywhere in D. Then f is convex (concave) on D if
and only if the Hessian of f is positive (negative) semi-definite everywhere on D.

Gradient descent requires the gradient to exist. But, even if the gradient is not always
defined, one can minimize a convex function over a convex domain efficiently, i.e., in
polynomial time. Here, the quote is added because of the lack of rigor in the statement,
one can only find an approximate minimum and the time really depends on the error
parameter as well as the presentation of the convex set. We do not go into these details
here. But, in principle we can minimize a convex function over a convex domain. We can
also maximize a concave function over a convex domain. However, in general, we do not
have efficient procedures to maximize a convex function over a convex set. It is easy to
see that at a first-order local minimum of a possibly non-convex function, the gradient
vanishes. But second-order local decrease of the function may be possible. The steepest
second-order decrease is in the direction of +v, where, v is the eigenvector of the Hessian
corresponding to the largest absolute valued eigenvalue.

10.6 Linear Programming

An optimization problem which has been carefully studied and is immensely useful
is linear programming. We consider linear programming problem in the following form
where A is an m X n matrix of rank m , cis 1 xn, bism x 1 and xisn x 1) :

maxc- X : Ax=Db ; x> 0.

Inequality constraints can be converted to this form by adding slack variables. Also, we
can do Gaussian elimination on A and if it does not have rank m, we either find that
the system of equations has no solution, whence we may stop or we can find and discard
redundant equations. After this preprocessing, we may assume that A ’s rows are inde-
pendent.

The simplex algorithm is a classical method to solve linear programming problems. It
is a vast subject and is well discussed in many texts. Here, we will discuss the ellipsoid
algorithm which is in a sense based more on continuous mathematics and is closer to the
spirit of this book.

336

Figure 10.7

337

10.6.1 The Ellipsoid Algorithm

The first polynomial time algorithm for Linear Programming was developed by Khachian
based on work of Tudin, Nemirovsky and Shor and is called the ellipsoid algorithm. The
algorithm is best stated for the seemingly simpler problem of determining whether there
is a solution to Ax < b and if so finding one. The ellipsoid algorithm starts with a large
ball in d-space which is guaranteed to contain the polyhedron Ax < b. Even though we do
not yet know if the polyhedron is empty or non-empty, such a ball can be found. It checks
if the center of the ball is in the polyhedron, if it is, we have achieved our objective. If
not, we know from convex geometry (in particular, the Separating Hyperplane Theorem)
that there is a hyperplane called the separating hyperplane through the center of the ball
such that the whole polytope lies in one half space.

We then find an ellipsoid which contains the ball intersected with this half-space See
Figure (10.8. The ellipsoid is guaranteed to contain Ax < b as was the ball earlier. We
now check if the center of the ellipsoid satisfies the inequalities. If not, there is a separating
hyper plane again and we may repeat the process. After a suitable number of steps, either
we find a solution to the original Ax < b or, we end up with a very small ellipsoid. Now if
the original A and b had integer entries, one can ensure that the set Ax < b, after a slight
perturbation which preserves its emptiness/non-emptiness, has a volume of at least some
e > 0 and if our ellipsoid has shrunk to a volume of less than this ¢, then we know there
is no solution and we can stop. Clearly this must happen within log, Vp/e = O((Vod)/e),
where 1} is an upper bound on the initial volume and p is the factor by which the volume
shrinks in each step. We do not go into details of how to get a value for V[here, but the
important points are that (i) V5 only occurs under the logarithm and (ii) the dependence
on d is linear. These features ensure a polynomial time algorithm.

The main difficulty in proving fast convergence is to show that the volume of the
ellipsoid shrinks by a certain factor in each step. Thus, the question can be phrased as
suppose E' is an ellipsoid with center x¢ and consider the half-ellipsoid E’ defined by

E'={x:x€eFE;a (x—xq) >0},

where, a is some unit length vector. Let E be the smallest volume ellipsoid containing
E’. Show that

A

Vol(E)
Vol(E)

for some p > 0. A sequence of geometric reductions transforms this into a simple prob-
lem. First, observe that we can translate the entire picture and assume that xo = 0.
Next, rotate the coordinate axes so that a is replaced by (1,0,0,...,0). Finally, make a
nonsingular linear transformation 7 so that 7E = B = {x : |x| = 1}, the unit sphere.
The important point is that a nonsingular linear transformation 7 multiplies the volumes

Vol(E) __ Vol(7(F))
of all.sets l?y |det(7)], so that Vol(B) = Vel(r(B)-
question raised.

<1-p

Now, the following lemma answers the

338

Ellipsoid containing half-
sphere

polytope

Separating hyperplane

Figure 10.8: Ellipsoid Algorithm

Lemma 10.11 Consider the half-sphere B = {x : x; > 0 ; [x| < 1}. The following
ellipsoid E contains B’:

A d+1\° 1\ (-1
E:{x <T) (xl—ﬁ) +(7) (x§+x§+...+xfl)§1 .

Further,
Vol(E) (d N o1
Vol(B) \d+1)\d>—1 - 4d

Proof: See Exercise (10.3).

10.7 Integer Optimization

The problem of maximizing a linear function subject to linear inequality constraints,
but with the variables constrained to be integers is called integer programming;:

Max ¢ - x subject to Ax < b z; integers .

This problem is NP-hard. One way to handle the hardness is to relax the integer con-
straints, solve the linear program in polynomial time and round the fractional values to
integers. The simplest rounding, round each variable which is 1/2 or more to 1, the rest
to 0, yields sensible results in some cases. The vertex cover problem is one of them. The

339

problem is to choose a subset of vertices so that each edge is covered, at least one of its
end points is in the subset. The integer program is:

MinZaf;i subject to z; +x; > 1V edges (4, j) ;z; integers .
Solve the Linear program. At least one variable for each edge must be at least 1/2 and
the simple rounding rounds it up to 1. So the integer solution we get is still feasible. It
clearly at most doubles the objective function from the Linear Programming solution and
since the LP solution value is at most the optimal integer programming solution value,
we get within a factor of 2 of the optimal.

10.8 Semi-Definite Programming

Semi-definite programs are special cases of convex programs. Recall that a n x n
matrix A is positive semi-definite if and only if (i) A is symmetric and (ii) for all x € R",
xTAx > 0. There are many equivalent characterizations of positive semi-definite matri-
ces. We mention one. A symmetric matrix A is positive semi-definite if and only if it can
be expressed as A = BB for a possibly rectangular matrix B5.

An semi-definite program (SDP) is the problem of minimizing a linear function ¢’x
subject to a constraint that F' = Fy + Fixy + Foxg + - - - + Fyxy is positive semi-definite.
Here Fy, Fi, ..., Fy are given symmetric matrices.

This is a convex program since the set of x satisfying the constraint is a convex
set: To see this, just note that if F(x) = Fy + Fiaxy + Foxg + -+ + Fyxg and F(y) =
Fo + Fiyy + Foys + - - - + Fyyg are positive semi-definite, then so is F(ax + (1 — a)y) for
all @ € [0,1]. So SDP’s can be solved in polynomial time in principle. It turns out that
there are more efficient algorithms for SDP’s than general convex programs and also that
many interesting problems can be formulated as SDP’s. We discuss the latter aspect here.

First note that linear programs are special cases of SDP’s. For any vector v, let
diag(v) denote a diagonal matrix with the components of v on the diagonal. Then it is
easy to see that the constraints v > 0 are equivalent to the constraint diag(v) is positive
semi-definite. Consider now the linear rogram:

Minimize ¢Tx subject to Ax = b;x > 0. Rewrite Ax =bas Ax—b>0; b—Ax >0
and use the idea of diagonal matrices above to formulate this as an SDP.

A second interesting example is that of quadratic programs of the form:

CTX 2
Minimize (de) subject to Ax +b > 0.

CTX 2
First, this is equivalent to : Minimize t subject to Ax +b > 0 and ¢t > <de). Now this
is in turn equivalent to the SDP:

340

Minimize t subject to the following matrix being positive semi-definite:

diag(Ax+b) 0 0
0 t c''x
0 cI'x dTx

An exciting area of application of SDP is to solve some integer problems. The central
idea is best illustrated by its early application in a breakthrough due to Goemans and
Williamson ([?]) for the maximum cut problem which given a graph G(V, E) asks for the
cut S, S maximizing the number of edges going across the cut from S to S. For each
1 € V, let x; be an integer variable assuming values +1 depending on whether ¢ € S or
i € S respectively. Then the max-cut problem can be posed as

Maximize »; ;o p(1 — 2;2;) subject to the constraints x; € {—1,+1}.

The integrality constraint on the x; makes the problem NP-hard. Instead replace the
integer constraints by allowing the x; to be unit length vectors. This enlarges the set of
feasible solutions since +1 are just 1-dimensional vectors of length 1. The relaxed problem
is an SDP and can be solved in polynomial time. To see that it is an SDP, consider x; as
the rows of a matrix X. The variables of our SDP are not X, but actually Y = X X7,
which is a positive definite matrix. The SDP is

Maximize }; (1 — yij) subject to Y positive semi definte.

This can be solved in polynomial time. From the solution Y, find X satisfying ¥ =
X XT. Now, instead of a £1 label on each vertex, we have vector labels, namely the rows
of X. We need to round the vectors to 1 to get an S. One natural way to do this is to
pick a random vector v and if for vertex i, x; - v is positive, put 7 in .S, otherwise put it in
S. Goemans and Wiiliamson showed that this method produces a cut guaranteed to be
at least 0.878 times the maximum. The .878 factor is a big improvement on the previous

best factor of 0.5 which is easy to get by putting each vertex into S with probability 1/2.

Exercise 10.1

1. Suppose for a univariate convex function f and a finite interval D, |f"(x)| < 6| f'(z)|
for every x. Then, what is a good step size to choose for gradient descent? Derive a
bound on the number of steps needed to get an approximate minimum of f in terms
of as few parameters as possible.

2. Generalize the statement and proof to convex functions of d variables.

Exercise 10.2 Prove that the mazimum of a convex function over a polytope is attained
at one of its vertices.

Exercise 10.3 Prove Lemma 10.11.

341

10.9 Exercises

Exercise 10.4 Select a method that you believe is good for combining individual rankings
into a global ranking. Consider a set of rankings where each individual ranks b last. One
by one move b from the bottom to the top leaving the other rankings in place. Does there
exist a vy, as in Theorem 10.1 where vy, is the ranking that causes b to move from the
bottom to the top in the global ranking. If not, does your method of combing individual
rankings satisfy the axioms of unanimity and independence of irrelevant alternatives.

Exercise 10.5 Show that the three axioms: non dictator, unanimity, and independence
of irrelevant alternatives are independent.

Exercise 10.6 Does the aziom of independence of irrelevant alternatives make sense?
What if there were three rankings of five items. In the first two rankings, A is number one
and B is number two. In the third ranking, B is number one and A is number five. One
might compute an average score where a low score is good. A gets a score of 1+1+5="7
and B gets a score of 2+2+1=5 and B is ranked number one in the global raking. Now if
the third ranker moves A up to the second position, A’s score becomes 1+1+2=/ and the
global ranking of A and B changes even though no individual ranking of A and B changed.
Is there some alternative axiom to replace independence of irrelevant alternatives? Write
a paragraph on your thoughts on this issue.

Exercise 10.7 Prove that the global ranking agrees with column v, even if b is moved
down through the column.

Exercise 10.8 Create a random 100 by 100 orthonormal matrix A and a sparse 100-
dimensional vector x. Compute Ax = b. Randomly select a few coordinates of b and
reconstruct x from the samples of b using the minimization of 1-norm technique of Section
10.3.1. Did you get x back?

Exercise 10.9 Let A be a low rank n X m matriz. Let r be the rank of A. Let Abe A
corrupted by Gaussian noise. Prove that the rank r SVD approzimation to A minimizes

)A—A

2
F'

Exercise 10.10 Prove that minimizing ||z||o subject to Az = b is NP-complete.

Exercise 10.11 Let A be a Gaussian matriz where each element is a random Gauussian
variable with zero mean and variance one. Prove that A has the restricted isometry

property.

Exercise 10.12 Generate 100 x 100 matrices of rank 20, 40, 60 80, and 100. In each
matrix randomly delete 50, 100, 200, or 400 entries. In each case try to recover the
original matriz. How well do you do?

342

Exercise 10.13 Repeat the previous exercise but instead of deleting elements, corrupt the
elements by adding a reasonable size corruption to the randomly selected matriz entires.

Exercise 10.14 Compute the Fourier transform of the sequence 1000010000.
Exercise 10.15 What is the Fourier transform of a cyclic shift?

Exercise 10.16 Let S(i,j) be the sequence of i blocks each of length j where each block
of symbols is a 1 followed by i — 1 0’s. The number n=6 is factorable but not a perfect
square. What is Fourier transform of S (2,3)= 1001007

Exercise 10.17 Let Z be the n root of unity. Prove that {z"|0 <i <n} = {z'|0 <i < n}
provide that b does not divide n.

1 1 1
a b c
a’? b? c?
at b c

Show that if the elements in the second row of the Vandermonde matrix are distinct, then
the Vandermonde matrix is nonsingular by using the fact that specifying the value of an
n* degree polynomial at n + 1 points uniquely determines the polynomial.

Exercise 10.18 Many problems can be formulated as finding x satisfying Ax = b +r
where r is some residual error. Discuss the advantages and disadvantages of each of the
following three versions of the problem.

1. Set r=0 and find x= argmin ||x||, satisfying Ax =b
2. Lasso: find x= argmin (||x|, + o ||rH§) satisfying Ax = b
3. find z=argmin||x||, such that ||r||, < e

Exercise 10.19 Create a graph of overlapping communities as follows. Let n=1,000.
Partition the integers into ten blocks each of size 100. The first block is {1,2,...,100}.
The second is {100, 101,...,200}, and so on. Add edges to the graph so that the vertices
in each block form a clique. Now randomly permute the indices and partition the sequence
into ten blocks of 100 vertices each. Again add edges so that these new blocks are cliques.
Randomly permute the indices a second time and repeat the process of adding edges. The
result is a graph in which each vertex is in three cliques. Ezplain how to find the cliques
given the graph.

Exercise 10.20 Repeat the above exercise but instead of adding edges to form cliques,
use each block to form a G(100,p) graph. For how small a p can you recover the blocks?
What if you add G(1,000,q) to the graph for some small value of q.

343

Exercise 10.21 Construct an n x m matriz A where each of the m columns is a 0-1
indicator vector with approzimately 1/4 entries being 1. Then B = AAT is a symmetric
matriz that can be viewed as the adjacency matriz of an n vertexr graph. Some edges will
have weight greater than one. The graph consists of a number of possibly over lapping
cliques. Your task given B is to find the cliques by the following technique of finding a
0-1 vector in the column space of B by the following linear program for finding b and x.

b = argmin||b||;

subject to

Then subtract bb* from B and repeat.

Exercise 10.22 Construct an example of a matrix A satisfying the following conditions

1. The columns of A are 0-1 vectors where the support of no two columns overlap by
50% or more.

2. No column’s support is totally within the support of another column.
3. The minimum 1-norm vector in the column space of A is not a 0-1 vector.

Exercise 10.23 Let M = L+ R where L is a low rank matriz corrupted by a sparse noise
matrix R. Why can we not recover L from M if R is low rank or if L is sparse?

11 Wavelets

Given a vector space of functions, one would like an orthonormal set of basis functions
that span the space. The Fourier transform provides a set of basis functions based on
sines and cosines. Often we are dealing with functions that have finite support in which
case we would like the basis vectors to have finite support. Also we would like to have
an efficient algorithm for computing the coefficients of the expansion of a function in the
basis.

11.1 Dilation

We begin our development of wavelets by first introducing dilation. A dilation is a
mapping that scales all distances by the same factor.

AN

344

A dilation equation is an equation where a function is defined in terms of a linear
combination of scaled, shifted versions of itself. For example,

flx) =) afQr—k).

An example is f(z) = f(22)+ f(2x — 1) which has a solution f(x) equal one for 0 < z < 1
and is zero elsewhere. The equation is illustrated in the figure below. The solid rectangle
is f(x) and the dotted rectangles are f(2x) and f(2z — 1).

Another example is f(z) = $f(2z) + f(2z — 1) + 3 (22 — 2). A solution is illustrated
in the figure below. The function f(z) is indicated by solid lines. The functions 1 f(2z),
f(2z +1), and 3 f(2z — 2) are indicated by dotted lines.

Lemma 11.1 If a dilation equation in which all the dilations are a factor of two reduction
has a solution, then either the coefficients on the right hand side of the equation sum to
two or the integral ffooo f(x)dx of the solution is zero.

Proof: Integrate both sides of the dilation equation from —oo to 4oc0.

o oo d—1 d—1 o
/ flz)dx = / Z cef(2z — k)dr = ch f(2z — k)dx
- T k=0 k=0 o
d—1 . = o
= ch /OO f(2x)dx = 5 ch - f(z)dz
k=0 k=0
0 d—1
If ffooo f(x)dx # 0, then dividing both sides by f f(z)dx gives > ¢ =2 B
e k=0

345

The above proof interchanged the order of the summation and the integral. This is valid
provided the 1-norm of the function is finite. Also note that there are nonzero solutions to
dilation equations in which all dilations are a factor of two reduction where the coefficients
do not sum to two such as

flx)=f2x)+ f2x — 1)+ f(2z — 2) + f(2x — 3)
flx)=fQx)+2f(2x — 1)+ 2f(2x — 2) + 2f(2x — 3) + f(2x — 4).

In these examples f(z) takes on both positive and negative values and ffooo f(x)dx = 0.

11.2 The Haar Wavelet

Let ¢(z) be a solution to the dilation equation f(z) = f(2x)+ f(2z—1). The function
¢ is called a scale function or scale vector and is used to generate the two dimensional
family of functions, ¢;x = ¢(2/z — k). Other authors scale ¢;; = ¢(27z — k) by 22 so
that the 2-norm, ffooo qﬁ?k(t)dt, is 1. However, for educational purposes, simplifying the
notation for ease of understanding was preferred.

For a given value of j, the shifted versions, {¢;z|k > 0}, span a space V;. The spaces
Vo, Vi, Vo, ... are larger and larger spaces and allow better and better approximations to
a function. The fact that ¢(x) is the solution of a dilation equation implies that for for
fixed j ¢;i is a linear combination of the {¢;41 x|k > 0} and this ensures that V; C Vj;.
It is for this reason that it is desirable in designing a wavelet system for the scale function
to satisfy a dilation equation. For a given value of j, the shifted ¢;; are orthogonal in the

sense that [¢j.(x)¢ji(z)dx = 0 for k # L.

Note that for each j, the set of functions ¢, k =0,1,2..., form a basis for a vector
space V; and are orthogonal. The set of basis vectors ¢, for all j and k, form an over
complete basis and for different values of j are not orthogonal. Since ¢ji, ¢j41.2k, and
®jt1,2k+1 are linearly dependent, for each value of j delete ¢, for odd values of k to
get a linearly independent set of basis vectors. To get an orthogonal set of basis vectors,
define

2k 2k+1

k k
() = ¢ -1 HH <o < 22

0 otherwise

and replace ¢; o1 With 1,1 5. Basically, replace the three functions

1 T -

2 3 1 2 3 1 2 3 1 3
d10(z) = d(22) du(r) = d(22 — 1) d12(x) = ¢(22 —2) P13(x) = ¢(22 — 3)
i gl all 2l
1 2 3 1 2 3 1 2 3 1 2 3
do0(z) = P(4z) P (x) = p(dr — 1) Px(x) = p(dx — 2) ¢o3(z) = (4 — 3)

Figure 11.1: Set of scale functions associated with the Haar wavelet.

by the two functions

1 1
1
1
¢(x) Y ()
The basis set becomes
oo Yo
oy P22

¢30 ¢32 ¢34 Qﬁ?}G
7vZJ40 11142 @044 ¢46 ¢48 1/14,10 77/}4712 77/}4714

To find a basis for a function that has only finite support, select a scale vector ¢(z)
whose scale is that of the support of the function to be represented. Next approximate
the function by the set of scale functions ¢(2’x — k), k =0,1,. .., for some fixed value of
j. The value of j is determined by the desired accuracy of the approximation. Basically
the z axis has been divided into intervals of size 277 and in each interval the function is
approximated by a fixed value. It is this approximation of the function that is expressed
as a linear combination of the basis functions.

Once the value of j has been selected, the function is sampled at 27 points, one in
each interval of width 277. Let the sample values be s, s1, The approximation to the

347

The Haar Wavelet
X ¢(x)
1 0<z<1
¢(x) =
0 otherwise 1 x
X ()
1 0<z<i
1 1
Y(r)=4 -1 5<z<1 x
0 otherwise .
function is Zi]:_ol spp(2z — k) and is represented by the vector (sg,s;...,82_1). The

problem now is to represent the approximation to the function using the basis vectors
rather than the non orthogonal set of scale functions ¢;x(z). This is illustrated in the
following example.

To represent the function corresponding to a vectorsuchas (3 1 4 8 3 5 7 9),
one needs to find the ¢; such that

3 1 1 1 0 1 0 0 0 e
1 1 1 1 0 -1 0 0 0 ¢
4 1 1 -1 0 0 1 0 0 ¢
s [1 1 -1 0 0-1 0 o0 Cy
31711 -1 0o 1 0o 0o 1 0 cs
5 1 -1 0 1 0 0 -1 0 Co
7 1 -1 0-1 0 0 0 1 cr
9 1 -1 0-1 0 0 0 —1 cs

The first column represents the scale function ¢(z) and subsequent columns the ’s.
The tree in Figure 11.2 illustrates an efficient way to find the coefficients representing
the vector (3 1 4 8 3 5 7 9) in the basis. Each vertex in the tree contains the
average of the quantities of its two children. The root gives the average of the elements in
the vector, which is 5 in this example. This average is the coefficient of the basis vector
in the first column of the above matrix. The second basis vector converts the average
of the eight elements into the average of the first four elements, which is 4, and the last
four elements, which is 6, with a coefficient of -1. Working up the tree determines the

348

coefficients for each basis vector.

vy
| -
i

Figure 11.2: Tree of function averages

3 1 1 1 0 1 0 0
1 1 1 1 0 ~1 0 0
4 1 1 1 0 0 1 0
8 1 1 1 0 0 1 0
N O A R A e
5 1 1 0 1 0 0 1
7 1 1 0 1 0 0 0
9 1 1 0 1 0 0 0

11.3 Wavelet Systems

So far we have explained wavelets using the simple to understand Haar wavelet. We
now consider general wavelet systems. A wavelet system is built from a basic scaling
function ¢(x), which comes from a dilation equation. Scaling and shifting of the basic
scaling function gives a two dimensional set of scaling functions ¢;, where

din(z) = (2w — k).

For a fixed value of j, the ¢;; span a space V. If ¢(x) satisfies a dilation equation

o) = 3 exd(2e — k),

then ¢;y, is a linear combination of the ¢;, ;s and this implies that 1, CV; C Vo, C Vs .-+ .

349

—_—_0 O O o oo

11.4 Solving the Dilation Equation

Consider solving a dilation equation

p(r) = cd(2x — k)

to obtain the scale function for a wavelet system. Perhaps the easiest way is to assume
a solution and then calculate the scale function by successive approximation as in the
following program for

d(a) = H20(22) + 286 (2r — 1) + 389(20 — 2) + 1536(2x - 3),

a Daubechies scale function. The solution will actually be samples of ¢(x) at some desired
resolution.

Set the initial approximation to ¢(x) by generating a vector whose components
approximate the samples of ¢(z) at equally spaced values of x.

Calculate the coefficients of the dilation equation.

_ 14+v3 _ 3+V3
=" =73 4

_ 3—/3 _ 13
=2 €4 = 3

Execute the following loop until the values for ¢(x) converge.

begin

Calculate ¢(2x) by averaging successive values of ¢(x) together.
Then fill out the remaining half of the vector representing ¢(2z)
with zeros.

Calculate ¢p(22—1), ¢(22—2), and ¢(2x —3) by shifting the contents
of ¢(2z) the appropriate distance, discard the zeros that move off
the right end and add zeros at the left end.

Calculate the new approximation for ¢(x) using the above values
for p(2x — 1), ¢(2z — 2), and ¢(2x — 3) in the dilation equation for

¢(22).

end

The convergence of the iterative procedure for computing is fast if the eigenvectors of
a certain matrix are unity.

Another approach to solving the dilation equation

350

o W‘EI Z‘EI SIEI 4‘EI E‘EI EIEI 7‘EI E‘EI BIEI 100] '\;:I Z‘EI 3‘EI A‘EI E‘EI E‘EI 7‘EI E‘EI BIEI 100
Figure 11.3: Daubechies scale function and associated wavelet

Consider the dilation equation ¢(z) = 1 f(2z) + f(2z — 1) + 5 f(2z — 2) and consider
continuous solutions with support in 0 < z < 2.

$(0) = 50(0) + ¢(—1) + ¢(—=2) = 56(0) + 040 ¢(0) =0
$(2) = 56(4) + ¢(3) + #(2) = 50(2) + 040 ¢(2) =0
P(1) = 20(2) + d(1) + ¢(0) =0+ (1) + 0 $(1) arbitrary

Set ¢(1) = 1. Then

Etc.

11.5 Conditions on the Dilation Equation

We would like a basis for a vector space of functions where each basis vector has
finite support and the basis vectors are orthogonal. This is achieved by a wavelet system
consisting of a shifted version of a scale function that satisfies a dilation equation along
with a set of wavelets of various scales and shifts. For the scale function to have a nonzero
integral, Lemma 11.1 requires that the coefficients of the dilation equation sum to two.
Although the scale function ¢(x) for the Haar system has the property that ¢(x) and
¢(x — k), k > 0, are orthogonal, this is not true for the scale function for the dilation
equation ¢(z) = 1¢(2z) + ¢(2z — 1) + 3¢(2z — 2). The conditions that integer shifts of the
scale function be orthogonal and that the scale function has finite support puts additional
conditions on the coefficients of the dilation equation. These conditions are developed in

the next two lemmas.

Lemma 11.2 Let

If ¢(x) and ¢(x — k) are orthogonal for k # 0 and ¢(x) has been normalized so that
J° d(2)d(x — k)dw = 5(k), then Y04 cicioar, = 20(k).

Proof: Assume ¢(z) has been normalized so that [¢(z)¢(z — k)dz = §(k). Then

S 00 d—1 d—1
/ o(z)p(x — k)dx = Z cip(2x — 1) Z cjo(2x — 2k — j)dx
T=—00 T=—20 ;—0 7=0
d—1 d—1 .
= Cicj / d(2x —i)p(2x — 2k — j)d
=0 j=0 —o0
Since
> : : L[> : :
| oter—ietee—2m—jde = [oly— ity 2k)iy
I . .
—5 | owely+i— 2y
~ skt -9),
2
00 d—1 d—1 1 d—1
T cic;j=0(2k +j—1i) = = CiCi_ap. Since ¢(x) was nor-
| et =) = 5 3 i Since 942
malized so that o
/ o(z)p(x — k)dx = §(k), it follows that Z CiCi—or = 20(k). N
- i=0

Lemma 11.2 provides a necessary but not sufficient condition on the coefficients of
the dilation equation for shifts of the scale function to be orthogonal. One should note
that the conditions of Lemma 11.2 are not true for the triangular or piecewise quadratic
solutions to

1 1
8(r) = 36(2x) + (22 — 1) + J6(2r ~2)
and
— L o0n) + 2620 — 1)+ (20 — 2) + 2(20 — 3)
which overlap and are not orthogonal.

For ¢(z) to have finite support the dilation equation can have only a finite number of
terms. This is proved in the following lemma.

Lemma 11.3 If 0 < = < d is the support of ¢(x), and the set of integer shifts, {d(x —
k)|k > 0}, are linearly independent, then ¢, = 0 unless 0 < k < d — 1.

352

o(x) = S0y cxd(2 — k)

Scale and wavelet coeflicients equations

b(z) = Zgzbkw k)

| o(@x)o(x — k)dr = 5(k) [o@)p(z—k)=0
d—1 0
Yo =2 [¥(x)dz =0
j:0 T=—00
d—1 00
=0 T=—00
d—1
c,=0unless 0 <k <d-1 Z(_l)kbibi—% = 26(k)
i=0
d—1
d even z ¢by_o = 0
d—1 d—1 (];2
];) €2 = 2, Cain X b =0
j=

b, = (—1)*cy_1_y

One designs wavelet systems so the above conditions are satisfied.

Proof: If the support of ¢(z) is 0 < x < d, then the support of ¢(2z) is 0 < x < g. If

the support of both sides of the equation must be the same. Since the ¢(x— k) are linearly
independent the limits of the summation are actually £k =0 to d — 1 and

o) =) ao(2x — k).
It follows that ¢ = 0 unless 0 < k < d — 1.
The condition that the integer shifts are linearly independent is essential to the proof

and the lemma is not true without this condition. B

d—1
One should also note that > ¢;¢;_or = 0 for k # 0 implies that d is even since for d odd
i=0

andk:%

d—1 d—1
E CiCi—2k = g CiCi—d+1 = C4—1Cp-
=0 =0

353

For c4_1¢o to be zero either c4_1 or ¢g must be zero. Since either ¢ = 0 or ¢4_1 = 0, there
are only d — 1 nonzero coefficients. From here on we assume that d is even. If the dilation
equation has d terms and the coefficients satisfy the linear equation ZZ;& cr = 2 and the

4 quadratic equations Z?:_()l CiCi—o, = 20(k) for 1 <k < &L then for d > 2 there are $ —1
coefficients that can be used to design the wavelet system to achieve desired properties.

11.6 Derivation of the Wavelets from the Scaling Function

In a wavelet system one develops a mother wavelet as a linear combination of integer
shifts of a scaled version of the scale function ¢(x). Let the mother wavelet ¢ (z) be given

-1
by ¥(x) = > bpp(2x — k). One wants integer shifts of the mother wavelet ¥(z — k) to
k=0

be orthogongl and also for integer shifts of the mother wavelet to be orthogonal to the
scaling function ¢(z). These conditions place restrictions on the coefficients by, which are
the subject matter of the next two lemmas.

Lemma 11.4 (Orthogonality of ¥ (x) and ¥ (x — k)) Let ¢(x) = Zi;bkqﬁ(Zx — k). If ¥(x)

and (x—Fk) are orthogonal for k # 0 and 1 (x) has been normalized so that [*_(z)¢(z—
k)dx = §(k), then

ISH
—

(=1)*bib;_op = 25(E).

Il
=)

%

Proof: Analogous to Lemma 11.2. B
d—1
Lemma 11.5 (Orthogonality of ¢(x) and ¥(x — k)) Let ¢(x) = Y cxdp(2x — k) and
k=0
d—1 o0 00
Y(x) =Y e —k). If [é(x)p(x —k)de =6(k) and [¢(a)(x —k)dz =0 for
k=0 T=—00 T=—00
d—1
all k, then > ¢;ibi_or, = 0 for all k.
i=0
Proof:

/00 o(x)(x — k)dr = /:0 i cip(2x — 1) ijgb(Qa: — 2k — j)dz = 0.

=T i=0

Interchanging the order of integration and summation

cibj / ¢(2x — i)p(2x — 2k — j)dz =0

354

Substituting y = 2z — ¢ yields

| &Lt 0
32y [ooty 2k j+ iy =0
=0 j=0 y=—00
Thus,
d—1 d—1
cibjd(2k+j—1)=0
i=0 j=0
Summing over j gives
d—1
Z cibi—or, = 0
i=0

Lemma 11.5 gave a condition on the coefficients in the equations for ¢(z) and (z) if
integer shifts of the mother wavelet are to be orthogonal to the scale function. In addition,
for integer shifts of the mother wavelet to be orthogonal to the scale function requires
that bk = (—1)kcd_1_k.

-1
Lemma 11.6 Let the scale function ¢(x) equal >, cpp(2x—k) and let the wavelet function
k=0

d—1
W(x) equal > bpp(2x — k). If the scale functions are orthogonal
k=0

[ﬁ¢@ww—kMx=&m

and the wavelet functions are orthogonal with the scale function

o0

/ d(x)(x — k)dx =0
for all k, then by = (—1)*cy_1_4.
d—1 d—1
Proof: By Lemma 11.5, > ¢;b;_o = 0 for all k. Separating > ¢;b;_o; = 0 into odd and
§=0 j=0
even indices gives
41 41
Z CijQj_Qk + Z 02j+1b2j+1—2k =0 (111)
§=0 §=0
for all k.
Cob0+02b2+04b4+"'+01b1—|—Cgb3+05b5+"':0 k=0
CQbQ+C4b2—|—"' +Cgb1+05b3+"'20 =1
C4b0+"' —|—C5b1+"':0 k=2

355

d-1 d—1
By Lemmas 11.2 and 11.4,)" c¢jcj_or = 26(k) and > bjbj_or = 20(k) and for all k.
j=0 Jj=0

Separating odd and even terms,

d_q d_q
2 2
Z C25C25—2k + Z C2j4+1C2j4+1—2k = 26(147) (112)
7=0 7=0
and
41 41
> bajbojok + > (=1Vbyjiaboj 1ok = 20(k) (11.3)
=0 i=0
for all k.
C060+CQCQ+C4C4+"'+0101+0303+C5C5+"':2 k’:O
CQCQ+C4CQ+"' +0361+C503+"‘:0 k=1
CqCo + - - +C5Cl+"':O k=2
bobo+b2b2+b4b4+"'—|—blbl—b3b3+b5b5—"':2 k:O
bobo+babs + - - - —bsby +bsbg —--- =0 k=1
babo + - - - Fbsby— =0 k=2

Let C. = (co,Ca,...,¢q-2), C, = (c1,¢3,...,¢q-1), Be = (bo,b2,...,b4_2), and B, =
(b1,b3,...,b4-1). Equations 12.1, 12.2, and 11.3 can be expressed as convolutions?’ of
these sequences. Equation 12.11is C.* BE+C,* BE =0, 12.21is C.x CE+ C,x CF = §(k),
and 11.3 is B, * BE + B, x B = §(k), where the superscript R stands for reversal of the
sequence. These equations can be written in matrix format as

Cc G\, (CF BEN _ (25 0
B. B, CE BR)T\ 0 2§

Taking the Fourier or z-transform yields

(ke vt) (ric) i)= (5 2)

where F' denotes the transform. Taking the determinant yields
(F(COF(B,) = F(BF(C,)) (F(COF(B,) = F(C,)F(B,)) =4
Thus F(C.)F(B,) — F(C,)F(B.) = 2 and the inverse transform yields
C, % B, — C, x B, = 28(k).

2TThe convolution of (ag, ai,...,aqs_1) and (bg,by,...,bg_1) denoted
(ag,a1,...,aq-1) * (bo,b1,...,bq—1) is the sequence
(aoba—1,a0ba—2 + arba—1,a0bs—3 + arbg—2 +azbg—1...,aq—1bo).

356

Convolution by CI yields

CE%xC,x B, —C"x B, C, = C"x25(k)

d—1
Now >~ ¢jbj_or, = 0so —CEx B, = CFx B,. Thus
=0

CE % C,x By + C%x B, Cy =208 % §(k)
(CExC.+CHxC,) * B, =2CE % 5(k)
20(k) * B, = 2CF x §(k)

C.= Bf

Thus, ¢; = 2bg_1_; for even 4. By a similar argument, convolution by C{* yields
CExC,x By — ClxCy* B, = 2CE5(k)
Since Cf* x By = —C¢' * B,
~CExCEx B, — Cf % Cyx B, = 2C85(k)
—(C. x CE 4+ CE % Cy) * B, = 2085(k)

—28(k)B. = 2CE6s(k)
~B.=CE

Thus, ¢; = —2bg_;_; for all odd i and hence ¢; = (—1)%2bs_;_; for all 4. B

11.7 Sufficient Conditions for the Wavelets to be Orthogonal

Section 11.6 gave necessary conditions on the b, and ¢, in the definitions of the scale
function and wavelets for certain orthogonality properties. In this section we show that
these conditions are also sufficient for certain orthogonality conditions. One would like a
wavelet system to satisfy certain conditions.

1. Wavelets, 1;(272 — k), at all scales and shifts to be orthogonal to the scale function
¢(x).

2. All wavelets to be orthogonal. That is
| et = (2 - myde = 6 - 060k - m)

3. ¢(x) and 91, j <l and all k, to span V;, the space spanned by ¢(2'x — k) for all k.

357

These items are proved in the following lemmas. The first lemma gives sufficient conditions
on the wavelet coefficients by, in the definition

v) =Y bp(2r —k
k

for the mother wavelet so that the wavelets will be orthogonal to the scale function. That
is, if the wavelet coefficients equal the scale coefficients in reverse order with alternating
negative signs, then the wavelets will be orthogonal to the scale function.

Lemma 11.7 If by = (—1)Fcq_1_y, then [*°_d(x)¢(27x — l)dx = 0 for all j and I.

Proof: Assume that by = (—1)*cq_;_;. We first show that ¢(x) and ¢(z — k) are orthog-
onal for all values of k. Then we modify the proof to show that ¢(x) and ¥ (2/x — k) are
orthogonal for all 5 and k.

Assume b, = (—1)¥cy_1_. Then

/ Z o)l —

o d—1
chcﬁ x—1 ijcﬁ 2x — 2k — j)dx

1

= ci(=1)ca 1 / o2z —i)p(2x — 2k — j)dx

\

T
—
a
|

s
Il
- o

Q.
Il
- o

T

(—1)jCiCd,1,j6(?: — 2k — j)

g

=0 5=0

d—1
= (—1)]02k+j0d717j

j=0
= CopCd—1 — Cok+1C4—2 + *+ + Cqg—2Cok—1 — C4—1Cok
=0

The last step requires that d be even which we have assumed for all scale functions.

For the case where the wavelet is 1)(27 — [), first express ¢(x) as a linear combination
of ¢(27~x — n). Now for each these terms

/OO ¢ r —m)p(Px — k)dr =0

To see this, substitute y = 2/~'z. Then

/ b2z — m)p(@z — k)dz = / Gy — m)b(2y — k)dy

21

which by the previous argument is zero.]

358

The next lemma gives conditions on the coefficients b, that are sufficient for the
wavelets to be orthogonal.

Lemma 11.8 If b, = (—1)*c4_1_4, then

/ (@~ K (s~ m)de = 8(~ ok — m).

Proof: The first level wavelets are orthogonal.

oo d—1

/¢() x—k dx—/ szgb :L’—Zijgb (22 — 2k — j)dx
—dibib/ o2z — i)p(2x — 2k — j)dx

d—1 d—1

=3 bibd(i — 2k — j)

i=0 j=0

= Z(—1)i0d717i(—1)i72k0d7171+2k

= Z(_1>2i_2kcd—1—icd—1—i+2k

=0

Substituting j for d — 1 — ¢ yields

d—1
> ciciion = 20(k)
=0

Example of orthogonality when wavelets are of different scale.

. 0o d—1
/ W(2z)(x — k)da = / szgb (4 — i) ijqb (22 — 2k — j)dx
d—1 d—1 o
— Z bibj/ (4 — i)p(2x — 2k — j)d
i=0 i=0 o

359

d—1
Since ¢p(2x — 2k — j) = > qo(de — 4k — 25 — 1)

=0

d—1 d—1 d—-1

/_OO ¢(2$W)($—k)d$:ZZbe cl/ Y(dx —i)p(dr — 4k — 25 — l)dx

i:Oj:OlO
—1d-1d-1

::EIE:E:@@q&i—4k—2j—U

i—Oj—OlO
—1d-1

:Zzbbcz 4k—2j5

=0 75=0
d—1 d—1
Since Z Cjbj,Qk = 0, Z bicif4k72j = 5(] — 2]€) Thus
7=0 =0

d—1

/mw@@¢@—kﬂx:§:@ﬂj—%ﬁzu

=0

Orthogonality of scale function with wavelet of different scale.

/(;5 (2x — k d:c—/ ZC] 2r — (2 — k)dx

If) was of scale 2, ¢ would be expanded as a linear combination of ¢ of scale 2/ all of
which would be orthogonal to .]

11.8 Expressing a Function in Terms of Wavelets

Given a wavelet system with scale function ¢ and mother wavelet ¢ we wish to express
a function f(z) in terms of an orthonormal basis of the wavelet system. First we will ex-
press f(z) in terms of scale functions ¢;x(z) = ¢(2/2 — k). To do this we will build a tree
similar to that in Figure 11.2 for the Haar system only computing the coefficients will be
much more complex. Recall that the coefficients at a level in the tree are the coefficients
to represent f(z) using scale functions with the precision of the level.

360

Let f(z) = >y and;(x — k) where the a;;, are the coefficients in the expansion of
f(x) using level j scale functions. Since the ¢;(x — k) are orthogonal

we= [1@ - k.
Expanding ¢; in terms of ¢, yields

00 d—1

f(x) Z Cm®Pj+1 (20 — 2k —m)dx

m=0

?\
3

Qi =

J (@)1 (22 — 2k — m)da

Il
< e}

3
N
|‘| Q
8

CmQj4+1,2k+m

Let n = 2k +m. Now m = n — 2k. Then

d—1
Qi = Z Cn—2kQj+1n (114)

n=2k

In construction the tree similar to that in Figure 11.2, the values at the leaves are
the values of the function sampled in the intervals of size 277. Equation 11.4 is used to
compute values as one moves up the tree. The coefficients in the tree could be used if we
wanted to represent f(x) using scale functions. However, we want to represent f(z) using
one scale function whose scale is the support of f(x) along with wavelets which gives us
an orthogonal set of basis functions. To do this we need to calculate the coefficients for
the wavelets.. The value at the root of the tree is the coefficient for the scale function.
We then move down the tree calculating the coefficients for the wavelets.

Finish by calculating wavelet coefficients
maybe add material on jpeg

Example: Add example using Djy.
Maybe example using sinc

11.9 Designing a Wavelet System

In designing a wavelet system there are a number of parameters in the dilation equa-
tion. If one uses d terms in the dilation equation, one degree of freedom can be used to
satisfy

ﬂ QU
ST
D
I
[\]

361

which insures the existence of a solution with a nonzero mean. Another ¢ degrees of

2
freedom are used to satisfy
d—1

(]

CiCi_9oL — 5(]{3)

i=0
which insures the orthogonal properties. The remaining g — 1 degrees of freedom can be
used to obtain some desirable properties such as smoothness. Smoothness appears to be
related to vanishing moments of the scaling function. Material on the design of systems
is beyond the scope of this book and can be found in the literature.

362

Exercises

Exercise 11.1 What is the solution to the dilation equation f(zx) = f(2z) + f(2x — k)
for k an integer?

Exercise 11.2 Are there solutions to f(z) = f(2z) + f(2x — 1) other than a constant

multiple of
1 0<z<1
— - ?
f(z) { 0 otherwise

Exercise 11.3 Is there a solution to f(z) = $f(2z) + f(2z — 1) + /(22 — 2) with
f(0) = f(1) =1 and f(2) =07

Exercise 11.4 What is the solution to the dilation equation
flx)=f2x)+ f2x — 1)+ f(2z — 2) + f(2z — 3).
Exercise 11.5 Consider the dilation equation
flx)=f2x) +2f(2x — 1)+ 2f(2x —2) +2f(2x — 3) + f(2z — 4)
1. What is the solution to the dilation equation?

2. What is the value of [~ f(x)dx?

Exercise 11.6 What are the solutions to the following families of dilation equations.

1.
f(z) =f(2z) + f(2z — 1)
fle) =5 f(20) + /(20— 1)+ 3 (22 —2) + (22— 3)
Fla) = F(20) + 3 Qx— 1)+ 2 —2) + (2 —3) + /(20— 4) + 1722 ~5)
b (2 = 6)+ 1 f(2r)
f() = fQ2) + 2 f(@22) + -+ 3 f(22)
2.
Fle) =3 F(20) 4 2 f(20 — 1) + 2 fQx —2) + 5 (2)
Fla) =3 F(20)+ 5 F(2r — 1) 4+ 2 f(2x —2) + 1 7(2r)
Fle) =g £2) + £ FQr — 1)+ £ f(20 —2) + L [(27 ~ 3
fla) = f(20) + S p2n 1)+ o par - 2) + 2 (2 - 3)

363

(@) :%f(Qa:) + %f(2x S+ %f(?x _ o)+ %f(Qx _3)

Fle) =2 f(20) — 3 f(20 — 1) + 2 f(20 —2) — L f(2x —3)
Fle) =2 f(20) — 2 fQw — 1)+ 2f(22 —2) ~ 5 [(22 ~3)
fla) =2 o) - 2 pon 1)+ 2 por -2 - P par -
/.
Fle) =5 F20) + 2 f(2r — 1) + 2 f2r —2) + 3 f(2r 3
Fle) =5 (22) — 2 fQw — 1)+ 2 (20— 2) — = (22 ~ 3
Fle) =2 f(22) — 3 f(20 — 1) + 2 f(20 — 2) — {2~ 3)
flo) =22 p0n) - 22 po0 1)+ 2R par - 9) - Lo 00 - 9)
Exercise 11.7
Solution:]

Exercise 11.8

1. What is the solution to the dilation equation f(z) = 1f(2z) + 2f(2z — 1)? Hint:
Write a program to see what the solution looks like.

2. How does the solution change when the equation is changed to f(x) = 3f(2x) +
2f(2x —1)?

3. How does the solution change if the coefficients no longer sum to two as in f(x) =
f(2x) +3f(2x —1)7

Exercise 11.9 If f(x) is frequency limited by 27, prove that

w sin(m(x — k))

k=0

Hint: Use the Nyquist sampling theorem which states that a function frequency limited by
2m is completely determined by samples spaced one unit apart. Note that this result means

that - ')
s = [~ o=

364

Exercise 11.10 Compute an approximation to the scaling function that comes from the
dilation equation

oa) = 000 + BB g0 1y 1 3B 00y 4 I35,)

Exercise 11.11 Consider f(z) to consist of the semi circle (v — 3)? +y* =1 and y > 0
for 0 < x <1 and 0 otherwise.

1. Using precision j = 4 find the coefficients for the scale functions and the wavelets
for Dy defined by the dilation equation

L +4\/§¢(2x) 43 +4\/§¢(2x Syl _4\/§¢(2x —9) 4 1\/§¢(2x _3)

4
2. Graph the approzimation to the semi circle for precision j = 4.

¢(r) =

Exercise 11.12 What s the set of all solutions to the dilation equation

1++vV3 3+V3 3—vV3 1v3
oa) =) 4 50 1)+ BB 0y) W5,y
Exercise 11.13 Prove that if scale functions defined by a dilation equation are orthogo-
nal, then the sum of the even coefficients must equal the sum of the odd coefficients in the
dilation equation. That is, > Cor, = Y Copt1-

k %

function = wavelets

acc=32; ‘accuracy of computation
phit=[1:acc zeros(1,3*acc)];

c1=(1+370.5)/4; c2=(3+3"0.5)/4; c3=(3-370.5)/4; c4=(1-370.5)/4;
for i=1:10
temp=(phit(1:2:4*acc)+phit(2:2:4%*acc))/2;
phi2t=[temp zeros(1l,3*acc)];
phi2tshifti=[zeros(l,acc) temp zeros(l,2*acc)];
phi2tshift2=[zeros(1l,2*acc) temp zeros(l,acc)];
phi2tshift3=[zeros(1,3*acc) temp J];
phit=clxphi2t+c2*phi2tshiftl+c3*phi2tshift2+c4*phi2tshift3;
plot(phit)
figure(gcf)

pause

end plot(phit) figure(gcf) end

365

12 Appendix

12.1 Asymptotic Notation

We introduce the big O notation here. The motivating example is the analysis of the
running time of an algorithm. The running time may be a complicated function of the
input length n such as 5n®+25n2 Inn — 6n 4 22. Asymptotic analysis is concerned with the
behavior as n — oo where the higher order term 5n3 dominates. Further, the coefficient
5 of 5n3 is not of interest since its value varies depending on the machine model. So we
say that the function is O(n®). The big O notation applies to functions on the positive
integers taking on positive real values.

Definition 12.1 For functions f and g from the natural numbers to the positive reals,
f(n) is O(g(n)) if there exists a constant ¢ >0 such that for all n, f(n) < cg(n). B

Thus, f(n) = 5n®+25n?Inn — 6n + 22 is O(n?®). The upper bound need not be tight.
Not only is f(n), O(n?), it is also O(n?). Note g(n) must be strictly greater than 0 for all n.

To say that the function f(n) grows at least as fast as g(n), one uses a notation called
omega of n. For positive real valued f and g, f(n) is 2(g(n)) if there exists a constant
¢ > 0 such that for all n, f(n) > cg(n). If f(n) is both O(g(n)) and Q(g(n)), then f(n) is
©(g(n)). Theta of n is used when the two functions have the same asymptotic growth rate.

Many times one wishes to bound the low order terms. To do this, a notation called

little o of n is used. We say f(n) is o(g(n)) if lim % = 0. Note that f(n) being
n—r00

O(g(n)) means that asymptotically f(n) does not grow faster than g(n), whereas f(n)
being o(g(n)) means that asymptotically f(n)/g(n) goes to zero. If f(n) = 2n++/n, then

asymptotic upper bound
f(n) is O(g(n)) if for all n, f(n) < cg(n) for some constant ¢ > 0.

IN

asymptotic lower bound
f(n)is Q(g(n)) if for all n, f(n) > cg(n) for some constant ¢ > 0.

v

asymptotic equality
f(n) is ©(g(n)) if it is both O(g(n)) and Q(g(n)). =

366

f(n) is O(n) but in bounding the lower order term, we write f(n) = 2n + o(n). Finally,

we write f(n) ~ g(n) if lim % = 1 and say f(n) is w(g(n)) if lim % = 0o0. The
n—oo n—oo
difference between f(n) being ©(g(n)) and f(n) ~ g(n) is that in the first case f(n) and

g(n) may differ by a multiplicative constant factor.

12.2 Useful relations

Summations

n) n+1
Zaz:1+a+a2+...:
i=0

= i 2 1
Za =l+a+a"+---=——, |a/ <1
P 1—a

S 2 3. _
;za =a+2a"+3a”--- = A= a)p’

o0

2 i 2 3 _a
ZZG,—CL+4(I +9(L—m,
1=0

" nn+1
ZZZ(;)

N, nmr+1D@2n+1
St = e en)

1

(2

@le
I
o3

=1

We prove one equality.

Ziai:a+2a2+3a3~~: 5> provided |a| < 1.

P (1—a)

Write S = Y ia’.

=0 [e.e] [ee]
aS = Zia”l = Z(z —1a'
1=0 =1

Thus,

s . s . .. a
S—aS=%id =N (i-1)d =Y d = ,
from which the equality follows. The sum Y i?a’ can also be done by an extension of this

method (left to the reader). Using generating functions, we will see another proof of both

367

these equalities by derivatives.

o0

1
Z{:1+%+(%+%>+(%+%+%+§)+"'21+%+%+"' and thus diverges.
=1

The summation Y- 1 grows as Inn since). 1 ~ [1 dz. In fact, lim (Z - ln(n)) =
- = i=1

=1 i=1 1—00

v where v = 0.5772 is Euler’s constant. Thus, > % >~ In(n) + ~ for large n.
i=1
Truncated Taylor series

If all the derivatives of a function f(z) exist, then we can write

x2

fl@) = F(O0) + /() + £(0) 7 + -+

The series can be truncated. In fact, there exists some y between 0 and x such that

f(@) = f(0) + f'(y)z.
Also, there exists some z between 0 and z such that
2
x

1@) = FO)+ [0 + ()

and so on for higher derivatives. This can be used to derive inequalities. For example, if
f(z) = In(1 + z), then its derivatives are
1 1 2
f(x)

:H—x; f”(ff):_<1+$)2 ; () :'(1+x)3‘

For any z, f”(z) < 0 and thus for any x, f(x) < f(0)+ f’(0)z hence, In(1+2) < z, which
also follows from the inequality 1 + z < e®. Also using

3

x? x
flz) = fO0) + f(O)z + f1(0)5 + ["(2)5;

for z > —1, f"(2) > 0, and so for z > —1,

2

In(1 +x) >x—%.
Exponentials and logs
alogb — bloga
2?28
ex:1+x+§+§+-~~ e=2.7182 520.3679

Setting x = 1 in the equation e* = 1+x+§+§—?+~~ yields e = 211—,
i=0

368

lim (1 + %)n = ¢

n—o0
1 1 1
ln(1+x):x—§x2+§x3—zx4--- lz| < 1

The above expression with —z substituted for x gives rise to the approximations

In(l —2) < —x
which also follows from 1 — 2z < e™*, since In(1 — x) is a monotone function for z € (0, 1).
For 0 < x < 0.69, In(1 — z) > —x — 22.

Trigonometric identities

I
o
o

s(z) + isin(z)
ezx + efz:v)
5 eir _ e—iz)
) = sin(z) cos(y) =+ cos(z) sin(y)
) = cos(x) cos(y) F sin(x) sin(y)

TN N

369

Gaussian and related integrals

2 1
e dr = —e”
2a
oo

1 _ 1 -1z 1 _ T
/mdl’ =3 tan o thus / PRl dr = a

T 22 o [e
/e‘?dx— 7Tthms a /6_2dI—1
a \ 2T
T 1 T

2 —ax?
der = —4/—
/SL’ e €T R

T e 1-3-5---(2n—1 2n)! /ay2ntl
/[L‘Qne_anlL':\/% (n)GQH_IZﬁ(n) <2>
2n+1 n! 2

ot n! oo
x4 tle 2da:— —a*"t
0 2

o0

/ e dy = NZs

—00

To verify [e **drz = \/m, consider <f e‘dex> f f (242 dxdy Let v =

—00 —00

[e.e]
rcosf and y = rsinf. The Jacobian of this transformation of variables is

oxr Ox :
esgpord 6 —rsinf
J(r,0)=1| 8 8 ‘: o8 ‘:r
8—37{8—39’ sin 0 rcosf
Thus,
oo 27
/ // s d:cdy //erJredrdG
o oo —c0 0 0
/e rdr/
0
2 o0
=27 [6] =7
0

Thus, [e *dx = /7.

370

Miscellaneous integrals

' 2211 — 0V ldr — L(a)T'(B)
[e =

For definition of the gamma function see Section 12.3 Binomial coefficients

The binomial coefficient (Z) = (n+k'),k, is the number of ways of choosing k items from n.
The number of ways of choosing d + 1 items from n + 1 items equals the number of ways
of choosing the d + 1 items from the first n items plus the number of ways of choosing d

of the items from the first n items with the other item being the last of the n + 1 items.

n + n _(n+1
d d+1) \d+1)
The observation that the number of ways of choosing k items from 2n equals the

number of ways of choosing ¢ items from the first n and choosing k — ¢ items from the
second n summed over all 2, 0 < i < k yields the identity

(006 (7)

Setting £ = n in the above formula and observing that (?) = (nﬁl) yields

> () -(3)

k
More generally > (7) (k”_zl) = (”J];m) by a similar derivation.
i=0

12.3 Useful Inequalities

14z < e® for all real z.

One often establishes an inequality such as 1 + z < e* by showing that the dif-
ference of the two sides, namely e — (1 + z), is always positive. This can be done
by taking derivatives. The first and second derivatives are e — 1 and e*. Since e”
is always positive, e* — 1 is monotonic and e¢” — (1 +) is convex. Since e* — 1 is
monotonic, it can be zero only once and is zero at x = 0. Thus, e” — (1 + x) takes
on its minimum at x = 0 where it is zero establishing the inequality.

(I—z)*>1—nzxfor0<zx<1

371

14+ 2z <e® for all real z
l—x)">1—nxfor0<zx<1

(v +y)* < 22% +2y°

Triangle Inequality x+y| <|x|+ |yl
Cauchy-Schwartz Inequality x|ly| > xTy

Young’s Inequality For positive real numbers p and ¢ where % + % = 1 and
positive reals x and y,

1 1
ry < —af + -yt
p q
Holder’s inequalityHolder’s inequality For positive real numbers p and ¢ with 110 +

121’
q
/a

n n 1/P n 1
Z |z < (Z |$z‘|p> (Z |yi|q> :
i=1 i—1 i=1

Jensen’s inequality For a convex function f,

f (Z aﬂi) < Zaif (i),

Let g(z) = (1 —)" — (1 — nx). We establish g(z) > 0 for = in [0,1] by taking
the derivative.

Jg@)=-n(l—o)" '+n=n(l-1-2)""") >0
for 0 < x < 1. Thus, g takes on its minimum for z in [0, 1] at x = 0 where g(0) =0
proving the inequality.
(r+y)? < 222 + 22

The inequality follows from (z + y)? + (x — y)? = 222 + 29>

Lemma 12.1 For any nonnegative reals a,as, .. .,a, and any p € [0,1], (Z?:l ai)p <

Z?:l ay.

372

Proof: We will see that we can reduce the proof of the lemma to the case when only one
of the a; is nonzero and the rest are zero. To this end, suppose a; and ay are both positive
and without loss of generality, assume a; > ao. Add an infinitesimal positive amount e
to a; and subtract the same amount from ay. This does not alter the left hand side. We
claim it does not increase the right hand side. To see this, note that
(a1 +€)* + (a3 — €) —af —af = p(af™" — a5)e + O(&),

and since p — 1 < 0, we have a’ffl — agfl < 0, proving the claim. Now by repeating this
process, we can make a; = 0 (at that time a; will equal the sum of the original a; and
az). Now repeating on all pairs of a;, we can make all but one of them zero and in the
process, we have left the left hand side the same, but have not increased the right hand
side. So it suffices to prove the inequality at the end which clearly holds. This method of
proof is called the variational method.]

The Triangle Inequality
For any two vectors x and y, |x +y| < |x| + |y|. Since x -y < |x]|y],

x+yl = x+y)" - (xty) = [xP 4y 2xT -y < [xP o+ JyP e 20x]ly] = (x]+ [y])P
The inequality follows by taking square roots.
Stirling approximation

n\" 2n 1
n| = (—> 2mn () > 9
e n /TN
n" n" 1
V2rn— <nl <V2mn— |1+
en en 12n — 1

We prove the inequalities, except for constant factors. Namely, we prove that

1.4 <g)n\/ﬁ <n!l<e (g)n\/ﬁ

Write In(n!) =Inl1+1In2+--- 4+ Inn. This sum is approximately fj:l Inz dx. The
indefinite integral [Inz dx = (xlnx — x) gives an approximation, but without the
Vv/n term. To get the /n, differentiate twice and note that In x is a concave function.
This means that for any positive z,

In Xo + ln(xo + 1) < /zo-H
2 ~Ja

since for « € [xg, xo + 1], the curve Inz is always above the spline joining (zg, In z¢)
and (zo + 1,In(z + 1)). Thus,
ln1+ln1—|—ln2+ln2—|—ln3+ +ln(n—1)+lnn+lnn
2 2 2 2 2
Inn

" |
§/ lnxdx%—ﬂ:[xlnx—x]?—l——
=1 2 2

Inz dx,

In(n!) =

|
:nlnn—n—l—l—i—%.

373

Thus, n! < n"e ™y/ne. For the lower bound on n!, start with the fact that for any
xo > 1/2 and any real p

1 ro+.5
Inxzy > §(ln(ﬂf0 +p) +1n(zg — p)) implies Inzy > / Inz dx.
r=x0—0.5
Thus,
n+.5
ln(n!):ln2+ln3+---+lnn2/ Inz dz,
z=1.5

from which one can derive a lower bound with a calculation.

Stirling approximation for the binomial coefficient
n en\k
<(7)
(1) =3
Using the Stirling approximation for k!,

n n! n* en*
Ly
k (n—k)E! = k! k
The gamma function

For a > 0

[e o]

['(a) = /x“_le_mdx

r(3)=vm, I'()=T(@2)=1,andforn>2 TI'(n)=(n-1CHn-1).

The last statement is proved by induction on n. It is easy to see that I'(1) = 1. For n > 2,
we use integration by parts.

/f(x)g’(x)da::f(x)g(w)—/f’(w)g(x)dw

Write ['(n) = [f(z)g'(x) da, where, f(z) = 2" ! and ¢'(z) = ¢ . Thus,

o0

D(n) = [f(@)g(@)l 0 + / (n— 12" 2 dr = (n —)T(n — 1),

=0

as claimed.

Cauchy-Schwartz Inequality

(£) (520) 2 (5)

374

In vector form, |x||y| > xTy, the inequality states that the dot product of two vectors
is at most the product of their lengths. The Cauchy-Schwartz inequality is a special case
of Holder’s inequality with p = q = 2.

Young’s inequality

For positive real numbers p and ¢ where % + % = 1 and positive reals x and y,

1 1
—xP + _yq Z xy.
p q

The left hand side of Young’s inequality,]ljxp + %yq, is a convex combination of xP and y4
since %} and é sum to 1. In(x) is a concave function for z > 0 and so the In of the convex
combination of the two elements is greater than or equal to the convex combination of

the In of the two elements

1 1 1 1
In(—=2? + —9?) > — In(2?) + — In(y?) = In(xy).
(p .) ; (2”) . (y) = In(zy)

Since for z > 0, Inz is a monotone increasing function, %xp + %yq > zy..
Holder’s inequalityHolder’s inequality

For positive real numbers p and ¢ with zlz + é =1,
/q

n n 1/p n 1
Z lziyi| < <Z |$i|p> (Z ‘?Ji|q> -
i=1 i=1 i=1

Let 2 = 2; / (X0, |:fP)P and o = y; / (320, |wi]9)"?. Replacing ; by z} and y; by
y; does not change the inequality. Now > " | [}[P = >"" | |yi|?9 = 1, so it suffices to prove
Yoy |2yl < 1. Apply Young’s inequality to get |2y} < @ + %. Summing over 4, the
right hand side sums to % + % = 1 finishing the proof.

For ay,as, ..., a, real and k a positive integer,
(a1 +as + -+ an)k < nk_1(|a1\k +]a2|k + -+ |CLn|k>
Using Holder’s inequality with p =k and ¢ = k/(k — 1),

|a1+a2++an‘§’a11|+|a21’++’an1|

n 1/k
S(ZW"“) (L1) E0E,

=1

375

from which the current inequality follows.
Arithmetic and geometric means

The arithmetic mean of a set of nonnegative reals is at least their geometric mean.

For ay,as,...,a, >0,
n
1
— g a; > Vaijag - Q.
n <
=1

Assume that a; > as > ... > a,. We reduce the proof to the case when all the a;
are equal using the variational method; in this case the inequality holds with equality.
Suppose a1 > as. Let € be a positive infinitesimal. Add € to as and subtract € from a; to
get closer to the case when they are equal. The left hand side % > i, a; does not change.

(ay —e)(ag +€)asay - -~ a, = aras - - - a, + e(a; — az)asay - - - a, + 0(62)

> a1Q9 Ay
for small enough € > 0. Thus, the change has increased /aias---a,. So if the inequality
holds after the change, it must hold before. By continuing this process, one can make all
the a; equal.

Approximating sums by integrals

For monotonic decreasing f(x),

and hence 2 —

n
1 1 1
2 n+1§,27§2_5'

Jensen’s Inequality

For a convex function f,

f (% (z1 + $2))

I
N | —

(f (1) + f (72)).

376

m—1 m n n+1

Figure 12.1: Approximating sums by integrals

More generally for any convex function f,

n

where 0 < o; < 1 and > a; = 1. From this, it follows that for any convex function f and
i=1

random variable x,

E(f(2) > f(E(x)).
We prove this for a discrete random variable x taking on values ay, as, ... with Prob(z =
a;) = a;:

E(f(z)) = Zaif (a;) > f (Z Oziai> = f(E(x)).

Figure 12.2: For a convex function f, f (2322) < £ (f (z1) + f (22)) .

377

Example: Let f(x) = 2% for k an even positive integer. Then, f”(z) = k(k — 1)z*2
which since k — 2 is even is nonnegative for all implying that f is convex. Thus,

E(x) < VE(z*),

since ¥ is a monotone function of t, t > 0. It is easy to see that this inequality does not
necessarily hold when k is odd; indeed for odd k, z* is not a convex function.]

Tails of Gaussian

For bounding the tails of Gaussian densities, the following inequality is useful. The
proof uses a technique useful in many contexts. For ¢ > 0,

o 2 67t2
/ e dr < —.
=t 2t

In proof, first write: [, e dx < =, %e‘IQ dx, using the fact that > ¢ in the range of
. . - . S . . 2 2
integration. The latter expression is integrable in closed form since d(e ") = (—2z)e™™

yielding the claimed bound.

A similar technique yields an upper bound on

1
/ (1 — 2*)* du,
z=4

for 8 €[0,1] and a > 0. Just use (1 — z%)* < 51— 2?)® over the range and integrate in
closed form the last expression.

1

1 X . 4)
/x:B(l —2%)%dx < /IZB B(l — 23 %r = m(l — g2+ »
_ 0=
- 2B(a+1)

12.4 Probability

Consider an experiment such as flipping a coin whose outcome is determined by chance.
To talk about the outcome of a particular experiment, we introduce the notion of a ran-
dom variable whose value is the outcome of the experiment. The set of possible outcomes
is called the sample space. If the sample space is finite, we can assign a probability of
occurrence to each outcome. In some situations where the sample space is infinite, we can
assign a probability of occurrence. The probability p (i) = %%2 for ¢ an integer greater
than or equal to one is such an example. The function assigning the probabilities is called

378

a probability distribution function.

In many situations, a probability distribution function does not exist. For example,
for the uniform probability on the interval [0,1], the probability of any specific value is
zero. What we can do is define a probability density function p(x) such that

b
Prob(a < x <b) = /p(x)dx

If x is a continuous random variable for which a density function exists, then the cumu-
lative distribution function f(a) is defined by

fa) = [playis

—0o0

which gives the probability that x < a.

12.4.1 Sample Space, Events, Independence

There may be more than one relevant random variable in a situation. For example, if
one tosses n coins, there are n random variables, x1,xs, ..., x,, taking on values 0 and 1,
a 1 for heads and a 0 for tails. The set of possible outcomes, the sample space, is {0, 1}".
An event is a subset of the sample space. The event of an odd number of heads, consists
of all elements of {0,1}" with an odd number of 1’s.

Let A and B be two events. The joint occurrence of the two events is denoted by
(AN B). The conditional probability of event A given that event B has occurred is denoted
by Prob(A|B)and is given by
Prob(A A B)

Prob(A|B) = Prob(B)

Events A and B are independent if the occurrence of one event has no influence on the
probability of the other. That is, Prob(A|B) = Prob(A) or equivalently, Prob(A A B) =
Prob(A)Prob(B). Two random variables = and y are independent if for every possible set
A of values for x and every possible set B of values for y, the events x in A and y in B
are independent.

A collection of n random variables xi,xs,...,x, is mutually independent if for all
possible sets Ay, Ao, ..., A, of values of xy, o, ..., 2,,

Prob(zy € Ay, 20 € Ay, ...z, € A,) = Prob(z; € A;)Prob(zs € Ay)--- Prob(z, € A,).

If the random variables are discrete, it would suffice to say that for any real numbers
Ay, Az, ...,0n

Prob(x; = a1, 29 = ag, ..., z, = a,) = Prob(z; = a;)Prob(zs = ay) - - - Prob(z,, = a,).

379

Random variables w1, s, ...,%, are pairwise independent if for any a; and a;, i # j,
Prob(z; = a;,z; = a;) = Prob(z; = a;)Prob(z; = a;). Mutual independence is much
stronger than requiring that the variables are pairwise independent. Consider the exam-
ple of 2-universal hash functions discussed in Chapter ?7?.

x y
\/x2+y27 \/x2+y2)
the coordinates are no longer independent since knowing the value of one coordinate
uniquely determines the value of the other.

If (z,y) is a random vector and one normalizes it to a unit vector (

12.4.2 Linearity of Expectation

An important concept is that of the expectation of a random variable. The expected
value, E(x), of a random variable z is E(x) =) ap(z) in the discrete case and E(z) =

[e.e]

[ap(z)dz in the continuous case. The expectation of a sum of random variables is equal
—o0

to the sum of their expectations. The linearity of expectation follows directly from the
definition and does not require independence.

12.4.3 TUnion Bound

Let Ay, Ay, ..., A, be events. The actual probability of the union of events is given
by Boole’s formula.

Prob(AjUA; U+ A,) = Y Prob(A;) = Y Prob(A; AA;) + Y Prob(A; AA; A A) —- -
i=1 ij ijk

Often we only need an upper bound on the probability of the union and use
Prob(A; U A, U---A,) < Z Prob(A;)
i=1

This upper bound is called the union bound.

12.4.4 Indicator Variables

A useful tool is that of an indicator variable that takes on value 0 or 1 to indicate
whether some quantity is present or not. The indicator variable is useful in determining
the expected size of a subset. Given a random subset of the integers {1,2,...,n}, the
expected size of the subset is the expected value of 1 + x5 + - -+ + x,, where x; is the
indicator variable that takes on value 1 if 7 is in the subset.

Example: Consider a random permutation of n integers. Define the indicator function
x; = 1 if the i"* integer in the permutation is i. The expected number of fixed points is
given by

380

E (sz> = ZE(%) = n% =1

Note that the x; are not independent. But, linearity of expectation still applies.]

Example: Consider the expected number of vertices of degree d in a random graph
G(n,p). The number of vertices of degree d is the sum of n indicator random variables, one
for each vertex, with value one if the vertex has degree d. The expectation is the sum of the
expectations of the n indicator random variables and this is just n times the expectation
of one of them. Thus, the expected number of degree d vertices is n()p*(1 —p)"™%. g
12.4.5 Variance

In addition to the expected value of a random variable, another important parameter
is the variance. The variance of a random variable z, denoted var(z) or often o?(x) is
E (z — E (x))* and measures how close to the expected value the random variable is likely
to be. The standard deviation o is the square root of the variance. The units of ¢ are the
same as those of z.

By linearity of expectation

0 =FE(x—FE(x)) = E? —2E(x)E(z) + E*(z) = E (2?) — E* (2).

12.4.6 Variance of the Sum of Independent Random Variables

In general, the variance of the sum is not equal to the sum of the variances. However,
if x and y are independent, then E (zy) = E (z) E (y) and

var(z +y) = var (z) + var (y) .
To see this

var(z +y) = E ((x +y)*) — E*(z +y)
= E(a®) + 2E(zy) + E(y°) — E*(x) — 2E(2) E(y) — E*(y).

From independence, 2E(zy) — 2E(z)E(y) = 0 and

var(z +y) = E(z?) — E*(z) + E(y*) — E*(y)
= var(z) + var(y).

More generally, if x1, 2, ..., x, are pairwise independent random variables, then
var(zy + xa + - - +) = var(xy) + var(xs) + - - - + var(zy,).

For the variance of the sum to be the sum of the variances only requires pairwise inde-
pendence not full independence.

381

12.4.7 Median

One often calculates the average value of a random variable to get a feeling for the
magnitude of the variable. This is reasonable when the probability distribution of the
variable is Gaussian, or has a small variance. However, if there are outliers, then the
average may be distorted by outliers. An alternative to calculating the expected value is
to calculate the median, the value for which half of the probability is above and half is
below.

12.4.8 The Central Limit Theorem

Let s=x1+ 25+ -+ x, be a sum of n independent random variables where each x;
has probability distribution

8

I
—N
— O
DO [0 [=

The expected value of s is n/2 and since the variables are independent, the variance of
the sum is the sum of the variances and hence is n/4. How concentrated s is around its
mean depends on the standard deviation of s which is ‘/TE For n equal 100 the expected
value of s is 50 with a standard deviation of 5 which is 10% of the mean. For n = 10, 000
the expected value of s is 5,000 with a standard deviation of 50 which is 1% of the
mean. Note that as n increases, the standard deviation increases, but the ratio of the
standard deviation to the mean goes to zero. More generally, if x; are independent and
identically distributed, each with standard deviation o, then the standard deviation of
Ty + Ty + -+ 2, is v/no. So, % has standard deviation o. The central limit
theorem makes a stronger assertion that in fact W has Gaussian distribution
with standard deviation o.

Theorem 12.2 Suppose x1,xs,...,x, s a sequence of identically distributed independent

random wvariables, each with mean p and variance o*. The distribution of the random

variable .
— (r1 + 2o+ 2 —)

N

converges to the distribution of the Gaussian with mean 0 and variance o>.

12.4.9 Probability Distributions

The Gaussian or normal distribution

382

The normal distribution is])
(z—m)

2mo

where m is the mean and o2 is the variance. The coefficient ﬁ makes the integral of
the distribution be one. If we measure distance in units of the standard deviation o from
the mean, then

Ofr) = —=e ¥

Standard tables give values of the integral

/tqb(x)dx

and from these values one can compute probability integrals for a normal distribution
with mean m and variance o?.

General Gaussians

So far we have seen spherical Gaussian densities in R?. The word spherical indicates
that the level curves of the density are spheres. If a random vector y in R? has a spherical
Gaussian density with zero mean, then y; and y;, ¢ # j, are independent. However, in
many situations the variables are correlated. To model these Gaussians, level curves that
are ellipsoids rather than spheres are used.

For a random vector x, the covariance of z; and z; is E((x; — p;)(x; — p5)). We list
the covariances in a matrix called the covariance matriz, denoted 3.2 Since x and p are
column vectors, (x — p)(x — p)7 is a d x d matrix. Expectation of a matrix or vector
means componentwise expectation.

Y =E((x—-p)x—-pT).
The general Gaussian density with mean g and positive definite covariance matrix X is
1 1

0 = e (<5 s).

To compute the covariance matrix of the Gaussian, substitute y = ¥7%/2(x — u). Noting
that a positive definite symmetric matrix has a square root:

E((x — p)(x — p)" = E(Syy s
=2 (E(yy")) 2?2 =x.

28y is the standard notation for the covariance matrix. We will use it sparingly so as not to confuse
with the summation sign.

383

The density of y is the unit variance, zero mean Gaussian, thus E(yy?) = I.
Bernoulli trials and the binomial distribution

A Bernoulli trial has two possible outcomes, called success or failure, with probabilities
p and 1 — p, respectively. If there are n independent Bernoulli trials, the probability of
exactly k successes is given by the binomial distribution

B(n,p) = (Z)p’“(l —p)"

The mean and variance of the binomial distribution B(n,p) are np and np(1 — p), respec-
tively. The mean of the binomial distribution is np, by linearity of expectations. The
variance is np(1 — p) since the variance of a sum of independent random variables is the
sum of their variances.

Let 27 be the number of successes in n; trials and let x5 be the number of successes

in ngy trials. The probability distribution of the sum of the successes, 1 + x5, is the same
as the distribution of xy + x5 successes in ny + ny trials. Thus, B (ny,p) + B (n2,p) =
B (ny + ns, p).
When p is a constant, the expected degree of vertices in G (n,p) increases with n. For
example, in G (n, %), the expected degree of a vertex is n/2. In many real applications,
we will be concerned with G (n,p) where p = d/n, for d a constant; i.e., graphs whose
expected degree is a constant d independent of n. Holding d = np constant as n goes to
infinity, the binomial distribution

prob ()= ())o# (19"

approaches the Poisson distribution

Prob(k) =] o

TL)NTL

To see this, assume k = o(n) and use the approximations n — k = n, (,g

(1 — 1)nfk >~ ¢! to approximate the binomial distribution by

k k k
. N\ ke o\n—k _ TV é _Qn_d__d
Jg?o(k>p =P =7 (n) =2 =me™

Note that for p = %, where d is a constant independent of n, the probability of the bi-
nomial distribution falls off rapidly for & > d, and is essentially zero for all but some
finite number of values of k. This justifies the k = o(n) assumption. Thus, the Poisson
distribution is a good approximation.

384

Poisson distribution

The Poisson distribution describes the probability of k events happening in a unit of
time when the average rate per unit of time is A. Divide the unit of time into n segments.
When n is large enough, each segment is sufficiently small so that the probability of two
events happening in the same segment is negligible. The Poisson distribution gives the
probability of k£ events happening in a unit of time and can be derived from the binomial
distribution by taking the limit as n — oo.

Let p = % Then

o () (AN oA
Prob(k successes in a unit of time) = lim — 1——

n—oo \ k n n
k n —k
:hmn(n—l)---(n—k—i-l) A 1_5 1_&
A
= e

In the limit as n goes to infinity the binomial distribution p (k) = (})p* (1 — p)" " be-
comes the Poisson distribution p (k) = e"\’\k—lf. The mean and the variance of the Poisson
distribution have value A. If z and y are both Poisson random variables from distributions
with means A\; and Ay respectively, then z + y is Poisson with mean my + ms. For large

n and small p the binomial distribution can be approximated with the Poisson distribution.

The binomial distribution with mean np and variance np(1 — p) can be approximated
by the normal distribution with mean np and variance np(1—p). The central limit theorem
tells us that there is such an approximation in the limit. The approximation is good if
both np and n(1 — p) are greater than 10 provided £ is not extreme. Thus,

n\ (1* /1\"" 1 mzek?
_ —_ >~ e 2n .
LG G =7

This approximation is excellent provided & is ©(n). The Poisson approximation

(Z)pk (1-p'= e‘”ﬂmﬁ)k

is off for central values and tail values even for p = 1/2. The approximation

n ek 1 _@nk?
(3)ra-prte e

TN

is good for p = 1/2 but is off for other values of p.

385

Generation of random numbers according to a given probability distribution

Suppose one wanted to generate a random variable with probability density p(z) where
p(x) is continuous. Let P(x) be the cumulative distribution function for x and let u be
a random variable with uniform probability density over the interval [0,1]. Then the ran-
dom variable x = P~! (u) has probability density p(z).

Example: For a Cauchy density function the cumulative distribution function is

T

1 1 1 1
P = — dt = = + —tan™!)
(z) / w1+ t? 2 * T an”" (z)

t=—o0

Setting u = P(x) and solving for z yields z = tan (7r (u — %)) Thus, to generate a
random number z > 0 using the Cauchy distribution, generate u, 0 < u < 1, uniformly
and calculate z = tan (ﬂ' (u — %)) . The value of x varies from —oo to co with x = 0 for

u=1/2.]

12.4.10 Bayes Rule and Estimators

Bayes rule

Bayes rule relates the conditional probability of A given B to the conditional proba-
bility of B given A.
Prob (B|A) Prob (A)

Prob (B)

Suppose one knows the probability of A and wants to know how this probability changes
if we know that B has occurred. Prob(A) is called the prior probability. The conditional
probability Prob(A|B) is called the posterior probability because it is the probability of
A after we know that B has occurred.

Prob (A|B) =

The example below illustrates that if a situation is rare, a highly accurate test will
often give the wrong answer.

Example: Let A be the event that a product is defective and let B be the event that a
test says a product is defective. Let Prob(B|A) be the probability that the test says a
product is defective assuming the product is defective and let Prob (B|f_1) be the proba-
bility that the test says a product is defective if it is not actually defective.

What is the probability Prob(A|B) that the product is defective if the test say it is
defective? Suppose Prob(A) = 0.001, Prob(B|A4) = 0.99, and Prob (B|A) = 0.02. Then

Prob (B) = Prob (B|A) Prob (A) + Prob (B|A) Prob (A)
=0.99 x 0.001 + 0.02 x 0.999
= 0.02087

386

and
Prob (B|A) Prob (4) 0.99 x 0.001

Prob (B) T 0.0210
Even though the test fails to detect a defective product only 1% of the time when it
is defective and claims that it is defective when it is not only 2% of the time, the test
is correct only 4.7% of the time when it says a product is defective. This comes about
because of the low frequencies of defective products.]

= 0.0471

Prob (A|B) =

The words prior, a posteriori, and likelihood come from Bayes theorem.

likelihood x prior

a posteriori = —
normalizing constant

Prob (B|A) Prob (A)

Prob (B)
The a posteriori probability is the conditional probability of A given B. The likelihood
is the conditional probability Prob(B|A).

Prob (A|B) =

Unbiased Estimators

Consider n samples x1, xs, . . ., x, from a Gaussian distribution of mean p and variance

futretedos jg an unbiased estimator of y, which means

o?. For this distribution, m =

n
that E(m) = p and = 3 (z; — 1)? is an unbiased estimator of o2. However, if y is not
i=1

known and is approximated by m, then ﬁ (x; — m)2 is an unbiased estimator of o2

n
=1

Maximum Likelihood Estimation MLE

Suppose the probability distribution of a random variable x depends on a parameter
r. With slight abuse of notation, since r is a parameter rather than a random variable, we
denote the probability distribution of x as p (z|r) . This is the likelihood of observing x if
r was in fact the parameter value. The job of the maximum likelihood estimator, MLE,
is to find the best r after observing values of the random variable x. The likelihood of r
being the parameter value given that we have observed z is denoted L(r|z). This is again
not a probability since r is a parameter, not a random variable. However, if we were to
apply Bayes’ rule as if this was a conditional probability, we get

Lirl) = Probéﬁggz;)b(r)

Now, assume Prob(r) is the same for all . The denominator Prob(z) is the absolute
probability of observing = and is independent of r. So to maximize L(r|z), we just maxi-
mize Prob(z|r). In some situations, one has a prior guess as to the distribution Prob(r).
This is then called the “prior” and in that case, we call Prob(z|r) the posterior which we
try to maximize.

387

Example: Consider flipping a coin 100 times. Suppose 62 heads and 38 tails occur.
What is the most likely value of the probability of the coin to come down heads when the
coin is flipped? In this case, it is r = 0.62. The probability that we get 62 heads if the
unknown probability of heads in one trial is r is

1
Prob (62 heads|r) = (6020> r2(1 —)3,

This quantity is maximized when r = 0.62. To see this take the logarithm, which as a
function of r is In (i) +62In7 +381In(1 —). The derivative with respect to 7 is zero at
r = 0.62 and the second derivative is negative indicating a maximum. Thus, r = 0.62 is
the maximum likelihood estimator of the probability of heads in a trial.]

12.4.11 Tail Bounds and Chernoff inequalities

Markov’s inequality bounds the probability that a nonnegative random variable exceeds
a value a.

plz >a) < EEL@

p(z>aB(z)) < 2

If one also knows the variance, o2, then using Chebyshev’s inequality one can bound the
probability that a random variable differs from its expected value by more than a standard
deviations.

1
plle = m| = a0) < -

If a random variable s is the sum of n independent random variables x1, xo, ..., z, of
finite variance, then better bounds are possible. For any ¢ > 0,

)

Prob(s > (1 +0)m) < [m}

and for 0 <y <1,

e o
Prob (8 < (1 — 'y)m) < [m} <e 2

Chernoff inequalities

Chebyshev’s inequality bounds the probability that a random variable will deviate
from its mean by more than a given amount. Chebyshev’s inequality holds for any proba-
bility distribution. For some distributions we can get much tighter bounds. For example,
the probability that a Gaussian random variable deviates from its mean falls off exponen-
tially with the distance from the mean. Here we shall be concerned with the situation
where we have a random variable that is the sum of n independent random variables. This

388

is another situation in which we can derive a tighter bound than that given by the Cheby-
shev inequality. We consider the case where the n independent variables are binomial but
similar results can be shown for independent random variables from any distribution that
has a finite variance.

Let 1,29, ..., 2, be independent random variables where
. 0 Prob1l-—p
‘11 Prob p

Consider the sum s =) x;. Here the expected value of each z; is p and by linearity of

=1
expectation, the expected value of the sum is m=np. Theorem 2.9 bounds the probability
that the sum s exceeds (14 §) m.

Theorem 12.3 For any § > 0, Prob (s > (14 (5)m) < <(1+5€)%>

Proof: For any A > 0, the function e’ is monotone. Thus,

Prob (s > (1 +6)m) = Prob (e > !+0m) .

e is nonnegative for all z, so we can apply Markov’s inequality to get
Prob (6>\s > 6)\(1+5)m) < 6—/\(1+5)mE (ez\s))

Since the z; are independent,

Using the inequality 1+ 2z < e with z = p(e* — 1) yields

E (e’\s) < H ep(e=1).
i=1

Thus, for all A >0

Prob (s > (1+ 5)m) < Prob (6)\8 > 6/\(1+§)m)

e—)\(1+6)mE (6)\5)

n
< e T erle-D,
=1

IN

389

Setting A = In(1 + 0)

Prob (s > (14 5)m) < (e‘ln(Hé))(lH)m P+ =1)
1

1 (14+6)m n_ 5
- 4
<1 +5) I

i=1

1 (1+8)m)
< np
= <<1+6)) ‘

66 "
= (1464]

To simplify the bound of Theorem 12.3, observe that

IN

(1+5)1ﬂ(1+5)=5+%2—%3+f_;_..._
Therefore
(140)1H) = St —+h—
and hence

Thus, the bound simplifies to
2 3
Prob (s < (1+49) m) < e~ T mHEme
For small ¢ the probability drops exponentially with 6.

When § is large another simplification is possible. First

) m e (146)m
Prob (s > (14 6)m) < QT)(HJ) < (1——1-5>

If § > 2e — 1, substituting 2e — 1 for ¢ in the denominator yields
Prob(s > (1 +§)m) < 2-1+om,

Theorem 12.3 gives a bound on the probability of the sum being greater than the
mean. We now bound the probability that the sum will be less than its mean.

390

Theorem 12.4 Let 0 <y <1, then Prob (s < (1 —~)m) < (Mﬁ) <e T,

Proof: For any A > 0
Prob (s < (1 —v)m) = Prob (—s > —(1—~)m) = Prob (e ** > e MImm)
Applying Markov’s inequality

Now

Thus,

Prob(s < (1 —y)m) < =

e~ A1=7)m
Since 1 +x < e
enp(e**—l)
Prob (3 <(1- ’V)m) < e A1—y)m
Setting A = In ﬁ
enp(l—y—=1)
Prob (s < (1 —7)m) < (1 —~)m

2
But for 0 < v <1, (1 =)= > 77" To see this note that

L-m-9)=0-)(--F-T-)

2 3

It then follows that

e 7 T m?
Prob (s < (1 —y)m) < (—17)) <e 2.

391

12.5 Bounds on Tail Probability

We now prove the tail inequality 2.9 used to prove the Gaussian Annulus Theorem.

Proof (Theorem 2.9): We first prove an upper bound on E(z") for any even positive
integer r < s and then use Markov’s inequality as discussed earlier. Expand (x1 4+ x5 +
PN _|_ J;n)r’

,
(T + 224 +2,) = g ()x?x?z;"
T1,79,...,Tp

where the r; range over all nonnegative integers summing to r. By independence

rl

Ba) =) e Pl E@y) - By,

If in a term, any r; = 1, the term is zero since E(z;) = 0. Assume henceforth that
(r1,72,...,7,) runs over sets of nonzero r; summing to r where each nonzero r; is at least
two. Let

J={(rira...m) i1 €40,2,3,.. 3 > =7}
=1

Since |E(z])| < o?r,!,
E(JTT) < 7! Z 0_2(number of nonzero r; in set))
(T17T27"~7rn)6J
Collect terms of the summation with ¢ nonzero r; for t = 1,2,... ,r/2. Let
Jy ={(r1,79,...,7y) € J: number of non-zero r; = t}.

So,

r/2

E@") =r! Z | J|o?.
t=1

We now bound |.J;|. There are (Ttb) subsets of {1,2,...,n} of cardinality . Once a subset
is fixed as the set of t values of ¢ with nonzero r;, set each of the r; > 2. That is, allocate
two to each of the r; and then allocate the remaining r» — 2t to the t r; arbitrarily. The

number of such allocations is just (7"72:_?71) = (’?:1) So,

s ()

r/2

—+t—-1 2\t
<y () (7)o s e
t=1 ’

t

392

Let h(t) = 2 (no?) 9r—t=1 Tn the hypotheses of the theorem a < v/2 no? and s < -2 1z. Thus,
7 is at most n02 /2. For t < r/2, increasing t by one, increases h(t) by at least n02 /(2t),
which is at least two. This gives

r/2

1 1
—erh <rlh(r/2)(1+ 5+ 5 +-0) <

2r/2(no_2)r/2'

r!
(r/2)!

Applying Markov inequality,

! 2\r/297/2 Ino? r/2
Probi(e] > o) = Prob(l” > a") < T LEL < (;202)

The bound applies for any r < s. Take r to be the largest even integer less than or
equal to a?/(6no?). [By Calculus, we see that the function f(x) = (cx)*/? is minimized
at x = 1/ec (just differentiate In(f(z))). So, r = a®/(2enc?) minimizes the upper bound.
Our choice here replaces 2e by 6.] The tail probability is at most e~"/2, which is at most
e em0?/(12n0%) < 3. o=a*/(12n0%) roving the theorem. m

12.6 Eigenvalues and Eigenvectors
12.6.1 Eigenvalues and Eigenvectors

Let A be an n xn real matrix. The scalar A is called an eigenvalue of A if there exists a
nonzero vector x satisfying the equation Ax = Ax. The vector x is called the eigenvector
of A associated with A. The set of all eigenvectors associated with a given eigenvalue form
a subspace as seen from the fact that if Ax = Ax and Ay = Ay, then for any scalers c
and d, A(cx + dy) = A(cx + dy). The equation Ax = Ax has a nontrivial solution only if
det(A — AI) = 0. The equation det(A — AI) = 0 is called the characteristic equation and
has n not necessarily distinct roots.

Matrices A and B are similar if there is an invertible matrix P such that A = P~'BP.
Theorem 12.5 If A and B are similar, then they have the same eigenvalues.

Proof: Let A and B be similar matrices. Then there exists an invertible matrix P
such that A = P7'!BP. For an eigenvector x of A with eigenvalue A\, Ax = A\x, which
implies P~'BPx = Ax or B(Px) = A\(Px). So, Px is an eigenvector of B with the same
eigenvalue \. Since the reverse also holds, the theorem follows.]

Even though two similar matrices, A and B, have the same eigenvalues, their eigen-
vectors are in general different.

The matrix A is diagonalizable if A is similar to a diagonal matrix.

Theorem 12.6 A is diagonalizable if and only if A has n linearly independent eigenvec-
tors.

393

Proof:

(only if) Assume A is diagonalizable. Then there exists an invertible matrix P
and a diagonal matrix D such that D = P~'AP. Thus, PD = AP. Let the diago-
nal elements of D be A, Ag,..., A\, and let p1,p2,...,Pn be the columns of P. Then
AP = [Ap1, Apa, ..., Apyn] and PD = [A1p1, AoP2, .- ., A\uPn) - Hence Ap; = A\;p;. That
is, the \; are the eigenvalues of A and the p; are the corresponding eigenvectors. Since P
is invertible, the p; are linearly independent.

(if) Assume that A has n linearly independent eigenvectors pi, pa, ..., Pn With cor-
responding eigenvalues A1, Aa, ..., A,. Then Ap; = \;p; and reversing the above steps

AP = [APLAsz cee 7Apn] = [)\1P17 AoP2, - ..)\npn] =PD.

Thus, AP = DP. Since the p; are linearly independent, P is invertible and hence A =
P7'DP. Thus, A is diagonalizable. B

It follows from the proof of the theorem that if A is diagonalizable and has eigenvalue
A with multiplicity £, then there are £ linearly independent eigenvectors associated with .

A matrix P is orthogonal if it is invertible and P~' = PT. A matrix A is orthogonally
diagonalizable if there exists an orthogonal matrix P such that P~'AP = D is diagonal.
If A is orthogonally diagonalizable, then A = PDPT and AP = PD. Thus, the columns
of P are the eigenvectors of A and the diagonal elements of D are the corresponding
eigenvalues.

If P is an orthogonal matrix, then P” AP and A are both representations of the same
linear transformation with respect to different bases. To see this, note that if e, ez, ..., e,
is the standard basis, then a;; is the component of Ae; along the direction e;, namely,
aij = €; Aej. Thus, A defines a linear transformation by specifying the image under the
transformation of each basis vector. Denote by p; the 5 column of P. It is easy to see that
(PTAP);; is the component of Ap; along the direction p;, namely, (PTAP);; = p;” Ap;.
Since P is orthogonal, the p; form a basis of the space and so PT AP represents the same
linear transformation as A, but in the basis py, ps, ..., pa.

Another remark is in order. Check that

n

A=PDP" =) dipipi".
i=1
Compare this with the singular value decomposition where
n
A= Z ouvi’,

i=1

the only difference being that u; and v; can be different and indeed if A is not square,
they will certainly be.

394

12.6.2 Symmetric Matrices

For an arbitrary matrix, some of the eigenvalues may be complex. However, for a
symmetric matrix with real entries, all eigenvalues are real. The number of eigenvalues
of a symmetric matrix, counting multiplicities, equals the dimension of the matrix. The
set of eigenvectors associated with a given eigenvalue form a vector space. For a non-
symmetric matrix, the dimension of this space may be less than the multiplicity of the
eigenvalue. Thus, a nonsymmetric matrix may not be diagonalizable. However, for a
symmetric matrix the eigenvectors associated with a given eigenvalue form a vector space
of dimension equal to the multiplicity of the eigenvalue. Thus, all symmetric matrices are
diagonalizable. The above facts for symmetric matrices are summarized in the following
theorem.

Theorem 12.7 (Real Spectral Theorem) Let A be a real symmetric matriz. Then

1. The eigenvalues, A1, A, ..., \,, are real, as are the components of the corresponding
etgenvectors, Vi, Vo, ..., Vy.

2. (Spectral Decomposition) A is orthogonally diagonalizable and indeed
A=VDV" =) Nvivi",
i=1

where V' is the matriz with columns vq,Va,...,Vy, |vi| = 1 and D is a diagonal
matriz with entries i, Aa, ..., Ap.

Proof: Av; = A\;v; and vi°Av; = \;vi°v;. Here the ¢ superscript means conjugate trans-
pose. Then
)\i = ViCAVi = (ViCAAVi)CC = (ViCACVi)C = (ViCAVi)C =)\ZC

and hence); is real.
Since J; is real, a nontrivial solution to (A — A\;I) x = 0 has real components.

Let P be a real symmetric matrix such that Pvy; = e; where e; = (1,0,0,... ,O)T and
P~ = PT. We will construct such a P shortly. Since Avy = \;v1,

PAPYe; = PAv, = A\Pv; = \e;.

A1 O
0o A
A’is n—1 by n — 1 and symmetric. By induction, A" is orthogonally diagonalizable. Let
@ be the orthogonal matrix with QA’QT = D', a diagonal matrix. Q is (n — 1) x (n — 1).
Augment @) to an n X n matrix by putting 1 in the (1, 1) position and 0 elsewhere in the
first row and column. Call the resulting matrix R. R is orthogonal too.

At 0 r_ (M0 rpr _ (M0
a(2) =(20) = o (30

The condition PAPTe; = \je; plus symmetry implies that PAPT = where

395

Since the product of two orthogonal matrices is orthogonal, this finishes the proof of (2)
except it remains to construct P. For this, take an orthonormal basis of space containing
v1. Suppose the basis is {vy, wa, w3, ...} and V is the matrix with these basis vectors as
its columns. Then P = V7 will do.]

Theorem 12.8 (The fundamental theorem of symmetric matrices) A real matriz
A is orthogonally diagonalizable if and only if A is symmetric.

Proof: (if) Assume A is orthogonally diagonalizable. Then there exists P such that
D = P 'AP. Since P~ = P we get

A=PDP ' =PDP"

which implies
AT = (PDP"Y' = PDPT = A
and hence A is symmetric.
(only if) Already roved. B

Note that a nonsymmetric matrix may not be diagonalizable, it may have eigenvalues
that are not real, and the number of linearly independent eigenvectors corresponding to
an eigenvalue may be less than its multiplicity. For example, the matrix

1 10
011
1 01

has eigenvalues 2, %4—2"/73, and %—z‘/?g The matrix ((1) 1

(1 — X\)? = 0 and thus has eigenvalue 1 with multiplicity 2 but has only one linearly

) has characteristic equation

. . : : : 1
independent eigenvector associated with the eigenvalue 1, namely x = c(0) c # 0.

Neither of these situations is possible for a symmetric matrix.

12.6.3 Relationship between SVD and Eigen Decomposition

The singular value decomposition exists for any n x d matrix whereas the eigenvalue
decomposition exists only for certain square matrices. For symmetric matrices the de-
compositions are essentially the same.

The singular values of a matrix are always positive since they are the sum of squares
of the projection of a row of a matrix onto a singular vector. Given a symmetric matrix,
the eigenvalues can be positive or negative. If A is a symmetric matrix with eigenvalue
decomposition A = VyDgVZ and singular value decomposition A = UsDgV{d, what is
the relationship between Dy and Dg, and between Vi and Vg, and between Ug and Vg7
Observe that if A can be expressed as QDQ? where is orthonormal and D is diagonal,

396

then AQ = @QD. That is, each column of () is an eigenvector and the elements of D
are the eigenvalues. Thus, if the eigenvalues of A are distinct, then () is unique up to
a permutation of columns. If an eigenvalue has multiplicity k, then the space spanned
the k£ columns is unique. In the following we will use the term essentially unique to
capture this situation. Now AAT = UgD3UZI and ATA = VgD%VZ. By an argument
similar to the one above, Ug and Vg are essentially unique and are the eigenvectors or
negatives of the eigenvectors of A and AT. The eigenvalues of AAT or AT A are the squares
of the eigenvalues of A. If A is not positive semi definite and has negative eigenvalues,
then in the singular value decomposition A = UgDgVs, some of the left singular vectors
are the negatives of the eigenvectors. Let S be a diagonal matrix with £1’s on the
diagonal depending on whether the corresponding eigenvalue is positive or negative. Then
A= (Uss)(SDs)VS where USS = VE and SDS = DE

12.6.4 Extremal Properties of Eigenvalues

In this section we derive a min max characterization of eigenvalues that implies that
the largest eigenvalue of a symmetric matrix A has a value equal to the maximum of
xT Ax over all vectors x of unit length. That is, the largest eigenvalue of A equals the
2-norm of A. If A is a real symmetric matrix there exists an orthogonal matrix P that
diagonalizes A. Thus

PTAP =D

where D is a diagonal matrix with the eigenvalues of A, Ay > Xy > --- > \,, on its
diagonal. Rather than working with A, it is easier to work with the diagonal matrix D.
This will be an important technique that will simplify many proofs.

Consider maximizing x? Ax subject to the conditions

-

Il
i

1. r? =1

(2
2.r7x=0, 1<i<s

where the 7; are any set of nonzero vectors. We ask over all possible sets {r;|]1 < i < s}
of s vectors, what is the minimum value assumed by this maximum.

Theorem 12.9 (Min max theorem) For a symmetric matriz A, min max(x'Ax) =
As11 where the minimum is over all sets {ri,ra,...,rs} of s nonzero vectors and the
mazimum 1s over all unit vectors x orthogonal to the s nonzero vectors.

Proof: A is orthogonally diagonalizable. Let P satisfy PTP = I and PTAP = D, D
diagonal. Let y = PTx. Then x = Py and

x'Ax =y"PTAPy = y"' Dy = Z Ailj;

=1

397

Since there is a one-to-one correspondence between unit vectors x and y, maximizing
n

xT Ax subject to Y x? = 1 is equivalent to maximizing > \;y? subject to > y? = 1. Since
i=1

M >N, 2<i<n,y=(1,0, ..., 0) maximizes > \y? at A\;. Then x = Py is the first
i=1
column of P and is the first eigenvector of A. Similarly), is the minimum value of x” Ax

subject to the same conditions.

Now consider maximizing x? Ax subject to the conditions
LY a?=1
2. rtix=0

where the r; are any set of nonzero vectors. We ask over all possible choices of s vectors
what is the minimum value assumed by this maximum.
. T
min max x' Ax

r1,...,rs X

T
r; x=0

As above, we may work with y. The conditions are
LY y?2=1

2. q/'y = 0 where, qf =r!'P

)

Consider any choice for the vectors ry,rs, ..., rs. This gives a corresponding set of ;. The
y; therefore satisfy s linear homogeneous equations. If we add ys12 = Y513 = -y, =0
we have n — 1 homogeneous equations in n unknowns ¥i,...,y,. There is at least one
solution that can be normalized so that Y y? = 1. With this choice of y

yTDy = Z Aiy@'z > Not1

since coefficients greater than or equal to s + 1 are zero. Thus, for any choice of r; there
will be a y such that

max (y' PTAPy) > Agy1

rlT)}IIZO
and hence

min max (y' PTAPy) > Mgyt
ri,ra,...r's Y
rlTy:O

However, there is a set of s constraints for which the minimum is less than or equal to
Ast1. Fix the relations to be y; = 0, 1 <17 < s. There are s equations in n unknowns

and for any y subject to these relations

YTDy = Z)\z‘y? < Ao

s+1

Combining the two inequalities, min maxy? Dy = A\ ;. m

398

The above theorem tells us that the maximum of x? Ax subject to the constraint that
x|> = 1is A;. Consider the problem of maximizing x” Ax subject to the additional re-
striction that x is orthogonal to the first eigenvector. This is equivalent to maximizing
y'P' APy subject to y being orthogonal to (1,0,...,0), i.e. the first component of y being
0. This maximum is clearly Ay and occurs for y = (0,1,0,...,0). The corresponding x is
the second column of P or the second eigenvector of A.

Similarly the maximum of x7Ax for p17x = pa’x = ---psfx = 0 is A1 and is
obtained for x = pgy1.

12.6.5 Eigenvalues of the Sum of Two Symmetric Matrices

The min max theorem is useful in proving many other results. The following theorem
shows how adding a matrix B to a matrix A changes the eigenvalues of A. The theorem
is useful for determining the effect of a small perturbation on the eigenvalues of A.

Theorem 12.10 Let A and B be n X n symmetric matrices. Let C=A+B. Let «;, (;,
and ~y; denote the eigenvalues of A, B, and C' respectively, where oy > g > ..., and
similarly for B;,v;. Then as+ 1 > Vs > as + Bn.

Proof: By the min max theorem we have

s = min max(x’ Ax).
rp,..,fs—1 x
riJ_x
Suppose rq,ra,...,rs_1 attain the minimum in the expression. Then using the min max

theorem on C,
75 < max (x'(A+ B)x)
xlry,ra,.rs_1

< max (x"Ax)+ max (x' Bx)
xlry,ro,.rs_1 xlry,re,..rs_1

< a, + max(x? Bx) < a, + fi.
Therefore, v, < a + .

An application of the result to A = C' + (—B), gives oy < 75 — f,. The eigenvalues
of -B are minus the eigenvalues of B and thus —/f, is the largest eigenvalue. Hence
vs > a5 + [, and combining inequalities yields a, + 81 > vs > ag + B B

Lemma 12.11 Let A and B be n x n symmetric matrices. Let C=A+B. Let oy, 5;,
and ; denote the eigenvalues of A, B, and C' respectively, where aqy > ag > ...y, and
similarly for B;,~v;. Then v,ys_1 < a, + fs.

399

Proof: There is a set of r—1 relations such that over all x satisfying the r—1 relationships
max(x’ Ax) = a,.
And a set of s — 1 relations such that over all x satisfying the s — 1 relationships
max(x’ Bx) = f,.
Consider x satisfying all these » + s — 2 relations. For any such x
xTOx = xT Ax + x! Bxz < a, + B,

and hence over all the x
max(x’ Cx) < a, + B,

Taking the minimum over all sets of r + s — 2 relations

Yris—1 = minmax(x? Cx) < a, + fq

|
12.6.6 Norms
A set of vectors {X1,...,Xn} is orthogonal if x;7x; = 0 for ¢ # j and is orthonormal if
in addition |x;| = 1 for all i. A matrix A is orthonormal if ATA = I. If A is a square

orthonormal matrix, then rows as well as columns are orthogonal. In other words, if A
is square orthonormal, then A” is also. In the case of matrices over the complexes, the
concept of an orthonormal matrix is replaced by that of a unitary matrix. A* is the con-
jugate transpose of A if aj; = aj; where a;; is the i7" entry of A* and a;; is the complex
conjugate of the ij*" element of A. A matrix A over the field of complex numbers is
unitary if AA* = 1.

Norms

A norm on R" is a function f : R™ — R satisfying the following three axioms:
L f(x) >0,
2. f(x+y) < f(x)+ f(y), and
3. flax) = [alf(x).
A norm on a vector space provides a distance function where
distance(x,y) = norm(x — y).
An important class of norms for vectors is the p-norms defined for p > 0 by

1
X[, = ([xa]” + -+ |xa|")7.

p

400

Important special cases are

|x|o the number of non zero entries
x|y = lza] + - - 4 [

[xly = Vw12 + -+ [zaf?

x|, = max|z;|.

Lemma 12.12 For any 1 <p < q, |x|, < |x],.

Proof:
X[=)],
i

Let a; = |x;] and p = p/q. Using Jensen’s inequality (see Section 12.3) that for any

nonnegative reals ay,as, ..., a, and any p € (0,1), we have (3_1 a;)” < Y7, a?, the

lemma is proved. B
There are two important matrix norms, the matrix p-norm

[1A[l, = max [l Ax],

Al = ‘/Za?j'
tj

Let a; be the i column of A. Then ||A|% = > a;"a; = tr (ATA). A similar argument

on the rows yields || A7 = tr (AAT). Thus, ||A||7 = tr (ATA) = tr (AAT).
If A is symmetric and rank k

and the Frobenius norm

1Al < [[All < KAl

12.6.7 Important Norms and Their Properties
Lemma 12.13 [|AB]}, < ||All, Bl

Proof: ||AB||, = {n‘ax |ABx|. Let y be the value of x that achieves the maximum and
x|=1

let z = By. Then

|AB]|, = |ABy| = |Az| = |AZ-

B
< max |4x| = [|A]l, and [2] < max|Bx| = |[B]l,- Thus [|AB]l, < [|A]l,||B].
|

4z

But ‘Aé

401

Let @ be an orthonormal matrix.
Lemma 12.14 For all x, |Qx|=|x].
Proof: Qx| =xTQTQx = xTx = |x[3. m
Lemma 12.15 ||QAl|, = ||4]],
Proof: For all x, |@x| = |x|. Replacing x by Ax, |QAx| = |Ax| and thus |r)1(1‘1>1< |QAx| =
max | Ax| N

2 2 2
Lemma 12.16 [|AB|[% < [|A|[%||B|[%

Proof: Let a; be the i"* column of A and let b; be the j™ column of B. By the
Cauchy-Schwartz inequality ||a;”b;|| < [lai [|b;]. Thus |AB|[5 = ZZ}ainj|2 <
i

S5 lasl® Ibsl* = 32 llasll* S Ibyl* = 11AlNZ 1 BI N
T] 7 J

Lemma 12.17 [|QA]|. = ||All-

Proof: ||QA|%Z = Tr(ATQTQA) = Tr(ATA) = ||A][2. |
Lemma 12.18 For real, symmetric matriz A with eigenvalues \y > Ay > ..., ||A||§ =

max(A\2, \2) and || Al = X2+ X3+ + A2

Proof: Suppose the spectral decomposition of A is PDPT, where P is an orthogo-
nal matrix and D is diagonal. We saw that |[PTA||; = ||A||s. Applying this again,
||PTAP|| = ||A]|]s. But, PTAP = D and clearly for a diagonal matrix D, ||D||, is the
largest absolute value diagonal entry from which the first equation follows. The proof of
the second is analogous.]

If A is real and symmetric and of rank k then ||A|[3 < [|A|[% < k[|A|3
Theorem 12.19 [|A]|> < [|A]|% < k||Al|}

Proof: It is obvious for diagonal matrices that ||D||2 < ||D|[% < k||D||3. Let D =
Q'AQ where (@ is orthonormal. The result follows immediately since for) orthonormal,

1QAlly = [|Ally and [|QA][z = [[Al -]

Real and symmetric are necessary for some of these theorems. This condition was
needed to express ¥ = QT AQ. For example, in Theorem 12.19 suppose A is the n x n
matrix

11
11
A= .. 0
11
|A]l, = 2 and ||A|| = v2n. But A is rank 2 and ||A||. > 2||A4||, for n > 8.

402

Lemma 12.20 Let A be a symmetric matriz. Then ||A||, = Tn‘ax |x" Ax|.
x|=1
Proof: By definition, the 2-norm of A is ||Al|, = |m|a>1< |Ax|. Thus,

| 4], = max |Ax| = max VxTATAx = \/A\? = A\ = max ‘XTAX‘
Ix|=1 Ix|=1 |x|=1
|

The two norm of a matrix A is greater than or equal to the 2-norm of any of its
columns. Let a, be a column of A.

Lemma 12.21 |a,| < |4,

Proof: Let e, be the unit vector with a 1 in position u and all other entries zero. Note

A= Tnlax |Az|. Let x = e, where a, is row u. Then |a,| = |Ae,| < maX|Ax| = B
z|=1 x|=1

12.6.8 Linear Algebra
Lemma 12.22 Let A be an n x n symmetric matriz. Then det(A) = AAg- - \,.

Proof: The det (A — A\I) is a polynomial in A of degree n. The coefficient of * will be £1
depending on whether n is odd or even. Let the roots of this polynomial be Ay, Ao, ..., \,.

Then det(A — AT) = (—1)" [[(A = A;). Thus

=1

det(A) = det(A - AI)[,_y = (-1)" [] (» = Mg Ay
1=1 A=0
n

The trace of a matrix is defined to be the sum of its diagonal elements. That is,
tr(A) :a11+a22—|—---—|—ann.

Lemma 12.23 tr(A) =X+ A+ -+ A,

Proof: Consider the coefficient of A»™! in det(A — AI) = (=1)" [T (A — \;). Write

=1

a;; — A Qo

A—)\ = Qa1 agy — A

Calculate det(A — AI) by expanding along the first row. Each term in the expansion
involves a determinant of size n — 1 which is a polynomial in A of deg n — 2 except for
the principal minor which is of deg n — 1. Thus the term of deg n — 1 comes from

(a11 — A) (aza = A) -+ (@nn — A)

403

and has coefficient (—1)”_1 (@11 + agg + + 4+ apy). Now

ED" IO =2) = (D" A= A) (A= Ag) - (A= An)

1

n

)

= (—-1)" (A”— (M +)\2+---+)\n))\"‘1+--->

Therefore equating coefficients A\; + Ao + -+ + A\, = agg + age + -+ - + apy, = tr(A)

Note that (tr(A))? # tr(A?). For example A = (1) g) has trace 3, A? = < é 2)

has trace 5 #9. However tr(A%) = A} + A3 + -+ + A2. To see this, observe that A% =
(VIDV)? = VI D?V. Thus, the eigenvalues of A% are the squares of the eigenvalues for
A .

Alternative proof that tr(A) = A+ Ao+ - -+ A,. Suppose the spectral decomposition
of Ais A= PDPT. We have

tr (A) = tr (PDPT) = tr (DPTP) =tr (D) = M + Ao+ -+ + An.

Lemma 12.24 [f A isn X m and B is a m X n matriz, then tr(AB)=tr(BA).

tI'(AB) = zn: Xn: aijbji = zn: zn: bjiaij = tr (BA)
i=1 j=1 j=1 i=1

Pseudo inverse

Let A be an n x m rank r matrix and let A = UXV7T be the singular value decompo-
sition of A. Let ¥/ = diag <Ui1, 0, ,O) where o1, ..., 0, are the nonzero singular

values of A. Then A’ = VX'UT is the pseudo inverse of A. It is the unique X that
minimizes [|[AX — I .
Second eigenvector

Suppose the eigenvalues of a matrix are Ay > Ay > ---. The second eigenvalue,

A2, plays an important role for matrices representing graphs. It may be the case that
[An] > [Aa].

Why is the second eigenvalue so important? Consider partitioning the vertices of a
regular degree d graph G = (V, E) into two blocks of equal size so as to minimize the
number of edges between the two blocks. Assign value +1 to the vertices in one block and
-1 to the vertices in the other block. Let x be the vector whose components are the +1
values assigned to the vertices. If two vertices, ¢ and j, are in the same block, then z; and
x; are both +1 or both —1 and (z; —x;)? = 0. If vertices 7 and j are in different blocks then
(2; —2;)* = 4. Thus, partitioning the vertices into two blocks so as to minimize the edges

404

between vertices in different blocks is equivalent to finding a vector x with coordinates
+1 of which half of its coordinates are +1 and half of which are —1 that minimizes

cut I §
(,J GE

Let A be the adjacency matrix of G. Then

xTAx =Y ajwix; =2 Y xiw;

edges

=2X 1
within components between components

oy (total number) 4 (number of edges)

ij
number of edges) 5 number of edges)

of edges between components

Maximizing x Ax over all x whose coordinates are £1 and half of whose coordinates are
+1 is equivalent to minimizing the number of edges between components.

Since finding such an x is computational difficult, replace the integer condition on the
components of x and the condition that half of the Components are positive and half of the

components are negative with the conditions Z r? =1 and Z x; = 0. Then finding the

optimal x gives us the second eigenvalue smce 1t is easy to see that the first eigenvector

Is along 1
x! Ax
A9 = MaxX ———

xlvy jg:.I

n
Actually we should use >_ x? = n not fo = 1. Thus nAy; must be greater than
i=1 i=1
total number \ e number of edges
of edges between components
a larger set of x. The fact that Ay gives us a bound on the minimum number of cross

edges is what makes it so important.

) since the maximum is taken over

12.6.9 Distance between subspaces

Suppose S7 and Sy are two subspaces. Choose a basis of S; and arrange the basis
vectors as the columns of a matrix X;; similarly choose a basis of Sy and arrange the
basis vectors as the columns of a matrix X;. Note that S; and Sy can have different
dimensions. Define the square of the distance between two subspaces by

dist*(S1, S9) = dist*(X1, Xo) = || X1 — XoXJ X%
Since X; — X2X2TX1 and XngXl are orthogonal

X% = || X1 — XXX |5 + || X7 X

I I

405

and hence)
dist® (X1, X2) = | X1| 7 — || X X7 Xq [-

Intuitively, the distance between X; and X, is the Frobenius norm of the component of
X4 not in the space spanned by the columns of Xj.

If X; and X, are 1-dimensional unit length vectors, dist? (X1, X5) is the sin squared
of the angle between the spaces.

Example: Consider two subspaces in four dimensions

7 0 10
I 0 1
Xl:L\f X2:00
S 00
e
Here
1 1 2
7501 L0 %01
e | A B F R (R B
2P 00 P
075 07§F
0 0 2
0 0 7
= 1 1 = -
V2 3 6
0 L
V3 / llp

In essence, we projected each column vector of X; onto X5 and computed the Frobenius
norm of X; minus the projection. The Frobenius norm of each column is the sin squared

of the angle between the original column of X; and the space spanned by the columns of
XQ. B

12.7 Generating Functions

oo
A sequence ag, ay, . . ., can be represented by a generating function g(x) = > a;x". The
i=0

advantage of the generating function is that it captures the entire sequence in a closed
form that can be manipulated as an entity. For example, if g(z) is the generating func-
tion for the sequence ag, aq, ..., then x%g(x) is the generating function for the sequence
0, a1, 2ay 3a,... and x?¢”(x) + xg'(z) is the generating function for the sequence for
0, ai, 4(1,2, 96L37 cee

Example: The generating function for the sequence 1,1,...1is Y.z’ = ﬁ The gener-
i=0

ating function for the sequence 0,1,2,3,... is

406

00) 00 d J 0o g1
le - Zxdccx L 3w ZQ? L 1—z (1—z)2-
=0 =0 1=0

|

Example: If A can be selected 0 or 1 times and B can be selected 0, 1, or 2 times and C
can be selected 0, 1, 2, or 3 times, in how many ways can five objects be selected. Consider
the generating function for the number of ways to select objects. The generating function
for the number of ways of selecting objects, selecting only A’s is 14z, only B’s is 1 +z +22,
and only C’s is 1+ x + 22 + 23. The generating function when selecting A’s, B’s, and C’s
is the product.

(1+2)14+z+2*)(1+2+2°+2°) =1+ 30 + 52 + 62° 4+ 52* + 32° + 2

The coefficient of ° is 3 and hence we can select five objects in three ways: ABBCC,

ABCCC, or BBCCC.]

The generating functions for the sum of random variables

Let f(z) = Y pix® be the generating function for an integer valued random variable
i=0
where p; is the probability that the random variable takes on value i. Let g(z) = > g2
i=0

be the generating function of an independent integer valued random variable where g;
is the probability that the random variable takes on the value 7. The sum of these two
random variables has the generating function f(z)g(x). This is because the coefficient of
z' in the product f(z)g(x) is >, _, prgr—i and this is also the probability that the sum of
the random variables is i. Repeating this, the generating function of a sum of independent
nonnegative integer valued random variables is the product of their generating functions.

12.7.1 Generating Functions for Sequences Defined by Recurrence Relation-
ships

Consider the Fibonacci sequence
0,1,1,2, 3,5,8, 13, 21, 34, 55, 89, ...
defined by the recurrence relationship
fo=0 =1 fi=fia+fio 122

Multiply each side of the recurrence by z* and sum from 7 equals two to infinity.

Z fiz' = Z fioiz' + Z fi—aa'
=2 =2 i=2

f2$2+f3$3+"':f1$2—|—f2$3+"'+f0$2+f1$3+"'
=z (fix+ for® +--) + 27 (fo+ friz +) (12.1)

407

Let -
=> fur'. (12.2)
=0

Substituting (12.2) into (12.1) yields

F(@) = fo— fia =z (f(x) = fo) +2°f(2)
f(@) = v = 2f(x) + 2% f ()
f@)1-a-a%) =a

Thus, f(r) = {——— is the generating function for the Fibonacci sequence.

Note that generating functions are formal manipulations and do not necessarily con-
Verge outside some region of convergence. Consider the generating function f(x) =

Z fiz" = —=%— for the Fibonacci sequence. Using Z fix?,
=0

FO) = fot it ot =0

R
1—z—x2

and using f(x) =

Asymptotic behavior

To determine the asymptotic behavior of the Fibonacci sequence write

V5 _ 5

/(@) 1—x— 22 1—q51a:+1—¢2$

where ¢ = 1Y% and ¢, = 155

l—z—22=0.

are the reciprocals of the two roots of the quadratic

Then

Fry =

(1 + 1z + (¢12)° + - — (14 dox + (do2)? +...))'
Thus,

fo = (¢” ¢5) -

Since ¢ < 1 and ¢; > 1, for large n, f, = \/?gcﬁ’f. In fact, since f,, = \/?5 (¢} — ¢%) is an
integer and ¢9 < 1, it must be the case that f,, = L fn+ \/qung . Hence f,, = L*/?EQS{LJ for

all n.
Means and standard deviations of sequences

wh

408

Generating functions are useful for calculating the mean and standard deviation of a

sequence. Let z be an integral valued random variable where p; is the probability that
(o, ¢] o0

z equals i. The expected value of z is given by m = > ip;,. Let p(x) = . piz’ be the
i=0 i=0
generating function for the sequence py, ps, The generating function for the sequence

P1, 2p2, 3p3, . . . 1S
d <
r—p\x) = DT
dxp() ; p

Thus, the expected value of the random variable z is m = xp'(x)|,=1 = p/(1). If p was not
a probability function, its average value would be W) gince we would need to normalize

p(1)
the area under p to one.

The second moment of z, is F(z?) — E?(z) and can be obtained as follows.

)| =il D)
= Zi%ip(x) = Zixip(w)
_ B(=*) — B(2). .

Thus, 0% = E(:2) — E%(z) = (%) — E(2) + B(z) - EX(z) = (1) +p/(1) — (#(1))".
12.7.2 The Exponential Generating Function and the Moment Generating
Function

Besides the ordinary generating function there are a number of other types of gener-
ating functions. One of these is the exponential generating function. Given a sequence

i i
ag, a1, ... , the associated exponential generating function is g(x) = Y a;%.

i=0
Moment generating functions

The k™ moment of a random variable z around the point b is given by E((x — b)¥).
Usually the word moment is used to denote the moment around the value 0 or around
the mean. In the following, we use moment to mean the moment about the origin.

The moment generating function of a random variable z is defined by

[e.9]

U(t) = E(e") = / e p(x)dx

— 00

409

Replacing e'® by its power series expansion 1 + tx + (m) - gives

o0

U(t) = / (1 +tz + (t;?z + - > p(x)dx

—00

Thus, the k" moment of z about the origin is k! times the coefficient of t* in the power
series expansion of the moment generating function. Hence, the moment generating func-
tion is the exponential generating function for the sequence of moments about the origin.

The moment generating function transforms the probability distribution p(x) into a
function W (¢) of t. Note WU(0) = 1 and is the area or integral of p(x). The moment
generating function is closely related to the characteristic function which is obtained by
replacing e’ by e/® in the above integral where i = v/—1 and is related to the Fourier
transform which is obtained by replacing e® by e~#*.

U(t) is closely related to the Fourier transform and its properties are essentially the

same. In particular, p(x) can be uniquely recovered by an inverse transform from W(¢).

More specifically, if all the moments m; are finite and the sum %tl converges abso-
i=0

lutely in a region around the origin, then p(z) is uniquely determined.

The Gaussian probability distribution with zero mean and unit variance is given by

CL‘2
p(x) = vorlER Its moments are given by

1 / a2
U, = — [2" 2dx
27
—0o0
n!
" n even
= 22(3)
0 n odd
To derive the above, use integration by parts to get u, = (n — 1) u,_» and combine
this with uy = 1 and u; = 0. The steps are as follows. Let © = e~ = and v = 2"~ '. Then
:1:2
w'=—xze 2 and v' = (n— 1) 2" % Now wv = [w/v+ [wv' or

ezl = /m"e‘?dw—i—/(n —1)z" e 2 du.

2 1,2
fxe de— (n—1) fx” 2% dr —e T gn !

fxe 2d:17—n—1 fx _édx

From which

410

Thus, u, = (n — 1) u,_o.

The moment generating function is given by

2w, s" . nl os” 2, g2 * 1 /s2\" 52
s=3 "= Y == () =F
n=0 n=0 2 i=0 i=0

n even

For the general Gaussian, the moment generating function is

o2
g (S) — 63u+<7>32
Thus, given two independent Gaussians with mean u; and uy and variances o? and o2,
the product of their moment generating functions is

2, 2).2
es(u1+u2)+(al +O’2)8 7

the moment generating function for a Gaussian with mean u; + uy and variance o7 + o3.
Thus, the convolution of two Gaussians is a Gaussian and the sum of two random vari-
ables that are both Gaussian is a Gaussian random variable.

12.8 Miscellaneous
12.8.1 Lagrange multipliers

Lagrange multipliers are used to convert a constrained optimization problem into an un-
constrained optimization. Suppose we wished to maximize a function f(x) subject to a
constraint g(x) = c¢. The value of f(x) along the constraint g(x) = ¢ might increase for
a while and then start to decrease. At the point where f(x) stops increasing and starts
to decrease, the contour line for f(x) is tangent to the curve of the constraint g(x) = c.
Stated another way the gradient of f(x) and the gradient of g(x) are parallel.

By introducing a new variable A we can express the condition by Vxf = AV4g and
g = c. These two conditions hold if and only if

Voo (F () + A (g (30) =) = 0
The partial with respect to A establishes that g(x) = ¢. We have converted the constrained

optimization problem in z to an unconstrained problem with variables x and .
12.8.2 Finite Fields

For a prime p and integer n there is a unique finite field with p™ elements. In Section
4.6 we used the field GF(2™), which consists of polynomials of degree less than n with
coefficients over the field GF(2). In GF(2%)

4

(" +2°+2)+ (@ +2° +a)y=2"+20 =2t =2

411

Multiplication is modulo an irreducible polynomial. Thus

(2" +2°+)2+ 2% +2?) =P 4 2P e M 20+ 2 2T 42 AP
=2+ + 2"+ 2% + 27 + 2% + 2P

=28t + 22+ 2 mod 28 + 2t + 28+ + 1

Division of '3 + 22 4+ 219 4+ 2° + 27 4+ 2% + 25 by 2% + 2* + 23 + 2?2 is illustrated below.

.7713 +$12 _|_$10 —{—1’9 —|—$7 +(E6 —i—.’13'5
—?(B 4ttt + 1) = +2% 48 28 +a2°
w4zl a5 +af
—t (P4t at+ 1) = x1? +a8 4a” +a® 42t
Y +2°
—A (P4t at+ 1) = 210 % +4ad 3 a?
8 +at 42® +a?

12.8.3 Hash Functions

Universal Hash Families
ADD PARAGRAPH ON MOTIVATION integrate material with Chapter

Let M ={1,2,...,m}and N = {1,2,...,n} where m > n. A family of hash functions
H = {h|h: M — N} is said to be 2-universal if for all x and y, = # y, and for h chosen
uniformly at random from H,

1
n

Prob[h (z) = h (y)] <

Note that if H is the set of all possible mappings from M to N, then H is 2-universal. In
fact Prob[h(x) = h(y)] = £. The difficulty in letting H consist of all possible functions
is that a random h from H has no short representation. What we want is a small set H
where each h € H has a short representation and is easy to compute.

Note that for a 2-universal H, for any two elements = and y, h(z) and h(y) behave as
independent random variables. For a random f and any set X the set {f (z) |z € X} is
a set of independent random variables.

12.8.4 Application of Mean Value Theorem

The mean value theorem states that if f(x) is continuous and differentiable on the

interval [a, b], then there exists ¢, a < ¢ < b such that f/(c) = Mi(‘” That is, at some

b
point between a and b the derivative of f equals the slope of the line from f(a) to f(b).

See Figure 12.8.4.

412

a c b

Figure 12.3: Tllustration of the mean value theorem.

One application of the mean value theorem is with the Taylor expansion of a function.

The Taylor expansion about the origin of f(x) is
1 1
f@) = £(0) + f/(0)z + 5 f"(0)a + = f7(0)2" + -

By the mean value theorem there exists ¢, 0 < ¢ < z, such that f'(c¢) =

f(z) — f(0) = zf'(c). Thus
! / Lo 2 L.,
zf'(c) =f(0)x+§f OF =) (0)a® + - --

and

f(@) = f(0)+=zf'(c).

One could apply the mean value theorem to f’'(z) in

F@) = F1(0) + FO)r + o f"(0)2 4+

Then there exists d, 0 < d < x such that

ef(d) = F(0)x + o P (O0) + -+

Integrating
1

SO0 i 0)" 4+

1
§x2f"(d) =
Substituting into Eq(12.3)

£(x) = F(0) + F(O)x + 3o f"(d).

413

f(=2)—£(0)

T

(12.3)

or

12.8.5 Sperner’s Lemma

Consider a triangulation of a 2-dimensional simplex. Let the vertices of the simplex
be colored R, B, and G. If the vertices on each edge of the simplex are colored only with
the two colors at the endpoints then the triangulation must have a triangle whose ver-
tices are three different colors. In fact, it must have an odd number of such vertices. A
generalization of the lemma to higher dimensions also holds.

Create a graph whose vertices correspond to the triangles of the triangulation plus an
additional vertex corresponding to the outside region. Connect two vertices of the graph
by an edge if the triangles corresponding to the two vertices share a common edge that
is color R and B. The edge of the original simplex must have an odd number of such
triangular edges. Thus, the outside vertex of the graph must be of odd degree. The graph
must have an even number of odd degree vertices. Each odd vertex is of degree 0, 1, or 2.
The vertices of odd degree, i.e. degree one, correspond to triangles which have all three
colors.

12.8.6 Priifer

Here we prove that the number of labeled trees with n vertices is n"~2. By a labeled
tree we mean a tree with n vertices and n distinct labels, each label assigned to one vertex.

Theorem 12.25 The number of labeled trees with n vertices is n" 2.

Proof: (Priifer sequence) There is a one-to-one correspondence between labeled trees
and sequences of length n — 2 of integers between 1 and n. An integer may repeat in the
sequence. The number of such sequences is clearly n”~2. Although each vertex of the tree
has a unique integer label the corresponding sequence has repeating labels. The reason for
this is that the labels in the sequence refer to interior vertices of the tree and the number
of times the integer corresponding to an interior vertex occurs in the sequence is related
to the degree of the vertex. Integers corresponding to leaves do not appear in the sequence.

To see the one-to-one correspondence, first convert a tree to a sequence by deleting
the lowest numbered leaf. If the lowest numbered leaf is ¢ and its parent is 7, append j to
the tail of the sequence. Repeating the process until only two vertices remain yields the
sequence. Clearly a labeled tree gives rise to only one sequence.

It remains to show how to construct a unique tree from a sequence. The proof is
by induction on n. For n = 1 or 2 the induction hypothesis is trivially true. Assume
the induction hypothesis true for n — 1. Certain numbers from 1 to n do not appear
in the sequence and these numbers correspond to vertices that are leaves. Let ¢ be
the lowest number not appearing in the sequence and let j be the first integer in the
sequence. Then i corresponds to a leaf connected to vertex j. Delete the integer j from
the sequence. By the induction hypothesis there is a unique labeled tree with integer
labels 1,...,7 — 1,7+ 1,...,n. Add the leaf ¢ by connecting the leaf to vertex j. We

414

need to argue that no other sequence can give rise to the same tree. Suppose some other
sequence did. Then the i*" integer in the sequence must be j. By the induction hypothesis
the sequence with j removed is unique.

Algorithm
Create leaf list - the list of labels not appearing in the Priifer sequence. n is the
length of the Priifer list plus two.
while Priifer sequence is non empty do
begin
p =first integer in Priifer sequence
e =smallest label in leaf list
Add edge (p,e)
Delete e from leaf list
Delete p from Priifer sequence
If p no longer appears in Priifer sequence add p to leaf list
end
There are two vertices e and f on leaf list, add edge (e, f)

12.9 Exercises

Exercise 12.1 What is the difference between saying f(n) is O (n®) and f(n) is o (n?)?
Exercise 12.2 If f (n) ~ g (n) what can we say about f(n)+ g(n) and f(n) — g(n)?
Exercise 12.3 What is the difference between ~ and © 7

Exercise 12.4 If f (n) is O (g (n)) does this imply that g (n) is Q(f (n))?

Exercise 12.5 What is klglolo (%)kd.

Exercise 12.6 Select a, b, and ¢ uniformly at random from [0,1]. The probability that
b < a is Y. The probability that c<a is '/». However, the probability that both b and c are
less than a is % not Yy, Why is this? Note that the siz possible permutations abe, ac,
bac, cab, bea, and cba, are all equally likely. Assume that a, b, and ¢ are drawn from the
interval (0,1]. Given that b < a, what is the probability that ¢ < a?

Exercise 12.7 Let Ay, A, ..., A, be events. Prove that Prob(A;UAsU- -+ A,,) < > Prob(A;)
i—1

Exercise 12.8 Give an example of three random variables that are pairwise independent
but not fully independent.

Exercise 12.9 Give examples of nonnegative valued random variables with median >>
mean. Can we have median << mean?

415

Exercise 12.10 Consider n samples x1,xs, ..., x, from a Gaussian distribution of mean

i oand variance o. For this distribution m = W% is an unbiased estimator of

p. If pis known then =3 (x; — 1)’ is an unbiased estimator of 0. Prove that if we
i=1

approzimate p by m, then ﬁ (x; — m)2 is an unbiased estimator of o>.

n
=1

x

2
Exercise 12.11 Given the distribution ﬁeié(ﬂ what is the probability that © >17
$2
Exercise 12.12 e 2 hasvalue 1 at x = 0 and drops off very fast as x increases. Suppose
12
we wished to approximate e~ 2 by a function f(x) where
1 Jz|<a
f(x)—{ 0 |z|>a -

22

What value of a should we use? What is the integral of the error between f(x) and e” 2 ¢

Exercise 12.13 Given two sets of red and black balls with the number of red and black
balls in each set shown in the table below.

red | black
Set 1 40 | 60
Set 2 50 | 50

Randomly draw a ball from one of the sets. Suppose that it turns out to be red. What is
the probability that it was drawn from Set 17

Exercise 12.14 Why cannot one prove an analogous type of theorem that states p (v < a) <

E) o

Exercise 12.15 Compare the Markov and Chebyshev bounds for the following probability
distributions

1 z=1
L p(w) = { 0 otherwise
1/2 0<z<2
2 plx) = { 0 otherwise
Exercise 12.16 Let s be the sum of n independent random variables x1, xo, ..., x, where

for each i
_J 0 Prob p
P71 Prob 1-— D

416

1. How large must & be if we wish to have Prob (s < (1 —48)m) < e?

2. If we wish to have Prob (s> (1+8)m) <e?

Exercise 12.17 What is the expected number of flips of a coin until a head is reached?
Assume p is probability of a head on an individual flip. What is value if p=1/2?

Exercise 12.18 Given the joint probability

P(AB) | A=0 A=1
B=0 1/16 1/8
B=1 1/4 9/16

1. What is the marginal probability of A? of B?
2. What is the conditional probability of B given A?

Exercise 12.19 Consider independent random variables x1, xo, and x3, each equal to
zero with probability 3. Let S = x1 + x5 + x3 and let F be event that S € {1,2}. Condi-
tioning on F', the variables x1, xo, and x3 are still each zero with probability Ql Are they
still independent?

Exercise 12.20 Consider rolling two dice A and B. What is the probability that the sum
S will add to nine? What is the probability that the sum will be 9 if the roll of A is 37

Exercise 12.21 Write the generating function for the number of ways of producing chains
using only pennies, nickels, and dines. In how many ways can you produce 23 cents?

Exercise 12.22 A dice has six faces, each face of the dice having one of the numbers 1
though 6. The result of a role of the dice is the integer on the top face. Consider two roles
of the dice. In how many ways can an integer be the sum of two roles of the dice.

Exercise 12.23 If a(z) is the generating function for the sequence ag,ay, as, . . ., for what
sequence 1s a(z)(1-z) the generating function.

Exercise 12.24 How many ways can one draw n a's and b's with an even number of a's.

Exercise 12.25 Find the generating function for the recurrence a; = 2a;_1 + i where
apg = 1.

Exercise 12.26 Find a closed form for the generating function for the infinite sequence
of prefect squares 1, 4, 9, 16, 25, ...

417

Exercise 12.27 Given that ﬁ is the generating function for the sequence 1,1,..., for
what sequence 18 ﬁ the generating function?

Exercise 12.28 Find a closed form for the exponential generating function for the infinite
sequence of prefect squares 1, 4, 9, 16, 25, ...

Exercise 12.29 Prove that the Ly norm of (a1, as, ..., ay,) is less than or equal to the Ly
norm of (ay,ag, ..., a,).

Exercise 12.30 Prove that there exists a y, 0 <y < x, such that f(x) = f(0) + f'(y)x.

Exercise 12.31 Show that the eigenvectors of a matriz A are not a continuous function
of changes to the matriz.

Exercise 12.32 What are the eigenvalues of the two graphs shown below? What does
this say about using eigenvalues to determine if two graphs are isomorphic.

:
L[] A

Exercise 12.33 Let A be the adjacency matriz of an undirected graph G. Prove that
eigenvalue N\ of A is at least the average degree of G.

Exercise 12.34 Show that if A is a symmetric matrix and Ay and Xy are distinct eigen-
values then their corresponding eigenvectors x1 and xo are orthogonal.
Hint:

Exercise 12.35 Show that a matriz is rank k if and only if it has k nonzero eigenvalues
and eigenvalue 0 of rank n-k.

Exercise 12.36 Prove that mazimizing “”::T’?f is equivalent to mazimizing x7 Az subject
to the condition that x be of unit length.

Exercise 12.37 Let A be a symmetric matriz with smallest eigenvalue Aynin. Give a
bound on the largest element of A7L.

Exercise 12.38 Let A be the adjacency matrix of an n vertex clique with no self loops.
Thus, each row of A is all ones except for the diagonal entry which is zero. What is the

spectrum of A.

Exercise 12.39 Let A be the adjacency matriz of an undirect graph G. Prove that the
eigenvalue N\ of A is at least the average degree of G.

418

Exercise 12.40 We are given the probability distribution for two random vectors x and
y and we wish to stretch space to maximize the expected distance between them. Thus,

we will multiply each coordinate by some quantity a;. We restrict Z a; =d. Thus, if we
=1
increase some coordinate by a; > 1, some other coordinate must shrmk Given random

vectors © = (1,2, ...,24) and y = (y1,Y2, - -, Ya) how should we select a; to mazximize
E(Jz - y|2) ? The a; stretch different coordinates. Assume

&

|
—N
)
N[00 [=

Since E (22) = E (x;) we get . Thus, weighting the coordinates has no effect assuming
d
S a? =1. Why is this? Since E (y;) = 5
i=1
E (|$ — y|2) 15 independent of the value of x; hence its distribution.
3

What if yi = 1 { and E(y;) = ;. Then
1
2 d d
E(lv—yl") = X afE (¢ = 2viyi + y7) = 3 @l E (2 — 325 + §)
=1 i=1
= af (3 (=) +3)

To mazimize put all weight on the coordinate of x with highest probability of one. What
if we used 1-norm instead of the two norm?

E(lz —yl) Ezazlwz yz!—zazElxz yzl—za”

d
where b; = E (z; — y;). If > a? = 1, then to mazimize let a; = %. Taking the dot product

=1
of a and b is maximized when both are in the same direction.
Exercise 12.41 Mazimize z+y subject to the constraint that x> + y? = 1.

Exercise 12.42 Draw a tree with 10 vertices and label each vertex with a unique integer
from 1 to 10. Construct the Prfer sequence for the tree. Given the Prfer sequence recreate
the tree.

419

Exercise 12.43 Construct the tree corresponding to the following Prfer sequences
1. 115663

2. 552835220

420

Index

2-universal, 232
4-way independence, 238

Affinity matrix, 273
Algorithm

greedy k-clustering, 262

k-means, 258

singular value decomposition, 47
Almost surely, 77
Anchor term, 291
Aperiodic, 137
Arithmetic mean, 376
Axioms

consistent, 280

for clustering, 280

rich, 280

scale invariant, 280

Bad pair, 80

Balanced k-means algorithm, 283

Bayes rule, 386

Bernoulli trials, 384

Best fit, 35

Bigoh, 366

Binomial distribution, 72
approximated by normal density, 72
approximated by Poisson, 74, 384

boosting, 210

Branching Process, 89

Branching process, 93

Breadth-first search, 86

Cartesian coordinates, 14
Cauchy-Schwartz inequality, 372, 374
Central Limit Theorem, 382
Characteristic equation, 393
Characteristic function, 410
Chebyshev’s inequality, 12
Chernoff inequalities, 388
Clustering, 255

k-center criterion, 262

axioms, 280

balanced k-means algorithm, 283

k-means, 258

Sparse Cuts, 273
CNF

CNF-sat, 105
Cohesion, 276
Combining expert advice, 214
Commute time, 162
Conditional probability, 379
Conductance, 155
Coordinates

Cartesian, 14

polar, 14
Coupon collector problem, 165
Cumulative distribution function, 379
Current

probabilistic interpretation, 158
Cycles, 100

emergence, 99

number of, 99

Data streams
counting frequent elements, 234
frequency moments, 230
frequent element, 235
majority element, 235
number of distinct elements, 230

number of occurrences of an element,

234

second moment, 236
Degree distribution, 72

power law, 73
Diagonalizable, 393
Diameter of a graph, 79, 102
Diameter two, 100
dilation, 344
Disappearance of isolated vertices, 100
Discovery time, 160
Distance

total variation, 142

421

Distribution
vertex degree, 70
Document ranking, 56

Effective resistance, 163
Eigenvalue, 393
Eigenvector, 50, 393
Electrical network, 155
Erdos Rényi, 69
Error correcting codes, 238
Escape probability, 159
Euler’s constant, 166
Event, 379
Expected degree

vertex, 69
Expected value, 380
Exponential generating function, 409
Extinct families

size, 97
Extinction probability, 93, 95

Finite fields, 411

First moment method, 77
Fourier transform, 330, 410
Frequency domain, 330

G(n,p), 69
Gamma function, 16
Gamma function , 374
Gaussian, 20, 382, 411

fitting to data, 26

tail, 378
Gaussians

sparating, 23
Generating function, 93

component size, 114

for sum of two variables, 93
Generating functions, 406
Generating points in the unit ball, 18
Geometric mean, 376
Giant component, 70, 77, 82, 85, 100
Gibbs sampling, 143
Graph

connecntivity, 99

resistance, 166
Graphical model, 298
Greedy
k-clustering, 262
Growth models, 110
nonuniform, 110
with preferential attachment, 119

without preferential attachment, 112

Haar wavelet, 346

Harmonic function, 155

Hash function, 412
universal, 232

Heavy tail, 72

Hidden Markov model, 293

Hitting time, 160, 172

Immortality probability, 95
Incoherent, 330
Increasing property, 77, 103
unsatisfiability, 106
Independence
limited way, 238
Independent, 379
Indicator random variable, 80
of triangle, 75
Indicator variable, 380
Isolated vertices, 82, 100
number of, 82
Isometry
restricted isometry property, 328

Jensen’s inequality, 376
Johnson-Lindenstrauss lemma, 22, 23

k-clustering, 262

k-means clustering algorithm, 258
Kernel methods, 272

Kirchhoft’s law, 157

Kleinberg, 121

Lagrange, 411

Law of large numbers, 11, 13
Learning, 185

Linearity of expectation, 75, 380

422

Lloyd’s algorithm, 258
Local algorithm, 121
Long-term probabilities, 139

m-fold, 104
Markov chain, 137

state, 141
Markov Chain Monte Carlo, 138
Markov random field, 301
Markov’s inequality, 12
Matrix

multiplication

by sampling, 240

diagonalizable, 393

similar, 393
Maximum cut problem, 57
Maximum likelihood estimation, 387
Maximum likelihood estimator, 26
Maximum principle, 156
MCMC, 138
Mean value theorem, 412
Median, 382
Metropolis-Hastings algorithm, 143
Mixing time, 139
Model

random graph, 69
Molloy Reed, 111
Moment generating function, 409
Mutually independent, 379

Nearest neighbor problem, 23
NMF, 291

Nonnegative matrix factorization, 291

Normal distribution

standard deviation, 72
Normalized conductance, 139, 149
Number of triangles in G(n,p), 75

Ohm’s law, 157
Orthonormal, 400

Page rank, 170
personalized , 173

Persistent, 137

Phase transition, 77

CNF-sat, 105

nonfinite components, 116
Poisson distribution, 385
Polar coordinates, 14
Polynomial interpolation, 238
Power iteration, 56
Power law distribution, 73
Power method, 47
Power-law distribution, 110
Priifer, 414
Principle component analysis, 50
Probability density function, 379
Probability distribution function, 379
Psuedo random, 238
Pure-literal heuristic, 107

Queue, 107
arrival rate, 107

Radon, 205

Random graph, 69

Random projection, 22
theorem, 22

Random variable, 378

Random walk
Eucleadean space, 167
in three dimensions, 168
in two dimensions, 167
on lattice, 167
undirected graph, 159
web, 170

Rapid Mixing, 141

Real spectral theorem, 395

Recommendation system, 245

Replication, 104

Resistance, 155, 166
efffective, 159

Restart, 170
value, 171

Return time, 171

Sample space, 378
Sampling
length squared, 241

423

Satisfying assignments giant component plus isolated vertices,

expected number of, 106 101
Scale function, 346 Time domain, 330
Scale invariant, 280 Total variation distance, 142
Scale vector, 346 Trace, 403
Second moment method, 75, 79 Triangle inequality, 372
Sharp threshold, 77 Triangles, 75

Similar matrices, 393
Singular value decomposition, 35
Singular vector, 39

Union bound, 380
Unit-clause heuristic, 107

first, 39 Unitary matrix, 400
left, 41 Unsatisfiability, 106
right, 41 Variance, 381
) second, 40) variational method, 373
Six-degrees separation, 120 VCedimension. 200
Sketch '

' convex polygons, 204
matrix, 244 finite sets, 206

Sketches half spaces, 204
documents, 248 intervals, 204

Small world, 120 o pairs of intervals, 204
Smallest-clause heuristic, 106 rectangles, 204

Spam, 172) spheres, 205
Spectral clustering, 266 Viterbi algorithm, 295
Sperner’s lemma, 414 ’

Standard deviation
normal distribution, 72

Voltage
probabilistic interpretation, 157

Stanley Milgram, 120 Wavelet, 344

State, 141 World Wide Web, 170
Stationary distribution, 139

Stirling approximation, 373 Young’s inequality, 372, 375

Streaming model, 229
Subgradient, 326
Symmetric matrices, 395

Tail bounds, 388
Tail of Gaussian, 378
Taylor series, 368
Threshold, 77
CNF-sat, 105
diameter O(Inn), 103
disappearance of isolated vertices, 82
emergence of cycles, 99
emergence of diameter two, 79

424

References

[AK]

[Alo86]
[AMO5]

[ANT2]

[APO3]

[BA]

[BMPWOS]

[Bol01]

[BTS7]

[CFS6]

[CHK*]

[Chv92]

[DFK9]1]

[DGYY]

[DS84]

Sanjeev Arora and Ravindran Kannan. Learning mixtures of separated non-
spherical gaussians. Annals of Applied Probability, 15(1A):6992.

Noga Alon. Eigenvalues and expanders. Combinatorica, 6:83-96, 1986.

Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures
of distributions. In COLT, pages 458-469, 2005.

Krishna Athreya and P. E. Ney. Branching Processes, volume 107. Springer,
Berlin, 1972.

Dimitris Achlioptas and Yuval Peres. The threshold for random k-sat is ok
(In 2 - o(k)). In STOC, pages 223-231, 2003.

Albert-Lszl Barabsi and Rka Albert. Emergence of scaling in random net-
works. Science, 286(5439).

Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd. What
can you do with a web in your pocket? Data Engineering Bulletin, 21:37-47,
1998.

Béla Bollobas. Random Graphs. Cambridge University Press, 2001.

Béla Bollobds and Andrew Thomason. Threshold functions. Combinatorica,
7(1):35-38, 1987.

Ming-Te Chao and John V. Franco. Probabilistic analysis of two heuristics
for the 3-satisfiability problem. SIAM J. Comput., 15(4):1106-1118, 1986.

Duncan S. Callaway, John E. Hopcroft, Jon M. Kleinberg, M. E. J. Newman,
and Steven H. Strogatz. Are randomly grown graphs really random?

33rd Annual Symposium on Foundations of Computer Science, 24-27 October
1992, Pittsburgh, Pennsylvania, USA. IEEE, 1992.

Martin Dyer, Alan Frieze, and Ravindran Kannan. A random polynomial
time algorithm for approximating the volume of convex bodies. Journal of
the Association for Computing Machinary, 1991.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of the johnson-
lindenstrauss lemma. 99(006), 1999.

Peter G. Doyle and J. Laurie Snell. Random walks and electric networks,
volume 22 of Carus Mathematical Monographs. Mathematical Association of
America, Washington, DC, 1984.

425

[DSO07]

[ER60]

[FK99]

[Fri99]

[FS96]

[GvL96]

[Jer9sg]

[JKLP93]

[JLROO]

[Kan09]

[Kar90]

[K1e99)]

[K1e00]

[Liu01]
[MR95a]

[MRO5b]

Sanjoy Dasgupta and Leonard J. Schulman. A probabilistic analysis of em
for mixtures of separated, spherical gaussians. Journal of Machine Learning
Research, 8:203-226, 2007.

Paul Erdos and Alfred Rényi. On the evolution of random graphs. Publication
of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61,
1960.

Alan M. Frieze and Ravindan Kannan. Quick approximation to matrices and
applications. Combinatorica, 19(2):175-220, 1999.

Friedgut. Sharp thresholds of graph properties and the k-sat problem. Journal
of the American Math. Soc., 12, no 4:1017-1054, 1999.

Alan M. Frieze and Stephen Suen. Analysis of two simple heuristics on a
random instance of k-sat. J. Algorithms, 20(2):312-355, 1996.

Gene H. Golub and Charles F. van Loan. Matriz computations (3. ed.). Johns
Hopkins University Press, 1996.

Mark Jerrum. Mathematical foundations of the markov chain monte carlo
method. In Dorit Hochbaum, editor, Approximation Algorithms for NP-hard
Problems, 1998.

Svante Janson, Donald E. Knuth, Tomasz Luczak, and Boris Pittel. The birth
of the giant component. Random Struct. Algorithms, 4(3):233-359, 1993.

Svante Janson, Tomasz ﬁuczak, and Andrzej Ruciniski. Random Graphs. John
Wiley and Sons, Inc, 2000.

Ravindran Kannan. A new probability inequality using typical moments and
concentration results. In FOCS, pages 211-220, 2009.

Richard M. Karp. The transitive closure of a random digraph. Random
Structures and Algorithms, 1(1):73-94, 1990.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
JOURNAL OF THE ACM, 46(5):604-632, 1999.

Jon M. Kleinberg. The small-world phenomenon: an algorithm perspective.
In STOC, pages 163-170, 2000.

Jun Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

Michael Molloy and Bruce A. Reed. A critical point for random graphs with
a given degree sequence. Random Struct. Algorithms, 6(2/3):161-180, 1995.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

426

IMU05]

MV 10]

[Palgs5]

[Vem04]
[VW02]

[WSO8]

Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of
mixtures of gaussians. In FOCS, pages 93-102, 2010.

Edgar M. Palmer. Graphical evolution. Wiley-Interscience Series in Discrete
Mathematics. John Wiley & Sons Ltd., Chichester, 1985. An introduction to
the theory of random graphs, A Wiley-Interscience Publication.

Markov Chains and Mizing Times. American Mathematical Society, 2010.

Alistair Sinclair and Mark Jerrum. Approximate counting, uniform genera-
tion and rapidly mixing markov chains. Information and Computation.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18:613-620, November 1975.

Santosh Vempala. The Random Projection Method. DIMACS, 2004.

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixtures
of distributions. Journal of Computer and System Sciences, pages 113-123,
2002.

D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world’ networks.
Nature, 393 (6684), 1998.

427

