1 Probability theory

1.1 Basics
Consider a finite sample space )
Q= {wy,wa,...,wn}, M < oo.
Define a probability measure P on €) such that
P({w;}) = P(w;) = pi > 0, i=1,....,.M

M
Zpi =1
i=1
For every subset A of 2, A C €, we have that

P(A) = > P(w).

w;EA
A random variable X on §Q is a mapping

X:0—R.

The expectation of X is defined as

1.2 Sigma-algebras and information

It is important to know which information is available to investors. This is formalized using
o-algebras and filtrations.

Definition 1 A collection F of subsets of Q2 is called a o-algebra (or o-field ) if the following
hold.

1. 0 e F.
2. If A€ F then A¢ € F.

3. IfA, € F,n=12,... then | | € F

n=1
Remark 1 When working on a finite sample space €2 condition 3 will reduce to
3 IfAe F and B € F then AUB € F.
Example 1 The following are examples of o-algebras.

1. F =22 = {A]A C Q}, the power set of Q.
2. F ={0,Q}, the trivial o-algebra.
3. F={0,4,A,Q}.



Definition 2 A set P = {A1,..., A} of nonempty subsets of the sample space € is called a
(finite) partition of Q if

2. AinA; =0 fori#j.

The o-algebra consisting of all possible unions of the A;:s (including the empty set) is called
the o-algebra generated by P and is denoted by o(P).

Remark 2 On a finite sample space every o-algebra is generated by a partition.

When making decisions investors may only use the information available to them. This is
formalized by measurability requirements.

Definition 3 A function X : Q — {z1,..., 2k} is F-measurable if
X Yz) ={we QX (w) =z} €F forall z;
If X is F-measurable we write X € F.

Remark 3 Let F = o(P). Then a function X : Q@ — R is F-measurable if and only if X
is constant on each set A;, i =1,...,n.

This captures the idea that based on the available information we should be able to determine
the value of X.

Measurability is preserved under a lot of operations which is the content of the next propo-
sition.

Proposition 1 Assume that X and Y are F-measurable. Then the following hold:
1. For all real numbers o and B the functions
aX + BY, XY
are F-measurable.

2. If Y(w) # 0 for all w, then

==

is F-measurable.
3. If {X,}9%, is a (countable) sequence of measurable functions, then the functions

supX,, infX,, limsupX,, liminfX,,
n n n n

are F-measurable.

Definition 4 Let X be a function X : Q@ — R. Then F = o(X) is the smallest o-algebra
such that X is F-measurable.

If Xy,..., X, are functions such that X; : Q — R, then G = 0(X1,...,X,,) is the smallest
o-algebra such that X1,..., X, are G-measurable.



The next proposition formalizes the idea that if Z is measurable with respect to a certain
o-algebra, then “the value of Z is completely determined by the information in the o-algebra”.

Proposition 2 Let X1,..., X, be mappings such that X; : Q& — R. Assume that the map-
ping Z : Q — R is o(Xy,...,X,)-measurable. Then there exists a function f : R" — R
such that

Z(w) = f(Xl(w)v s 7Xn(w))'

We also need to know what is meant by independence. Recall that two events A and B on a
probability space (€2, F, P) are independent if

P(ANB)=P(A)-P(B).
For o-algebras and random variables on (2, 7, P) we have the following definition.

Definition 5 The o-algebras Fi,...,F, are independent if
P (ﬂ Ai> = HP(A,-) whenever A; € F;, i=1...,n.
i=1 i=1
Random variables X1, ..., X, are independent if o0(X1),...,0(X,) are independent.
1.3 Stochastic processes and filtrations
Let N={0,1,2,3,...}.
Definition 6 A stochastic process {S, }ney on the probability space (2, F,P) is a mapping

S:NxQ —R

such that for each n € N
Sp(): Q@ —R

s F-measurable.
Note that Sy, (w) = S(n,w). We have that for a fixed n
w— S(n,w)
is a random variable. For a fixed w
n — S(n,w)

is a deterministic function of time, called the realization or sample path of S for the outcome
w.

Remark 4 In this course we will mostly be looking at a fixed time horizon so the process
will only live up until time 7', that is we will be looking at processes {S, }Z_,.



A stochastic process generates information and as before this is formalized in terms of o-
algebras, only now there will be a time dimension as well.

Definition 7 Let {S,}:2, be random process on (0, F,P). The o-algebra generated by S
over [0,t] is defined by
FP=0{Su;n <t}

We interpret 7} as the information generated by observing S over the time interval [0, ).
More generally information developing over time is formalized by filtrations. They are families
of increasing o-algebras.

Definition 8 A filtration F = {F, }n>0 on (Q,F,P) is an indexed family of o-algebras on
Q such that

1. F, €F, n>0,
2. if m <n then F,, C F,.

Remark 5 As stated before, we will mostly be looking at a fixed time horizon in this
course so the filtration will only live up until time 7', that is we will be looking at filtrations
F=A{F n}g:O'

For stochastic process the following measurability conditions are relevant.

Definition 9 Given a filtration F and a random process S on (Q,F,P) we say that S is
adapted to F if
Sn € Fu for allmn >0,

and S is predictable with respect to F if

Sy € Fn_1 for allm > 1.

1.4 Conditional expectation

Let X be a random variable on (2, F, P) and G a o-algebra such that G C F. In this section
we aim to define the expectation of X given the information in G, or conditional on G, E[X|J].
We will do this in three steps.

1. First we will define the expectation of X given a set B € F, such that P(B) # 0, i.e.
E[X|B]. Recall that

M
E[X] =) X(wi)P(w) =Y X(w)P(Ww)
=1 we

Now it would seem natural (7) to use the normalized probabilities

P(B) on B.
We thus define
BIXIB] = 3 X)) = g 2 X@PG)

B



Example 2 Consider the finite sample space 2 = {w1, w2, w3} endowed with the power
o-algebra F = 2 and a probability measure P such that P(w;) = 1/3, i = 1,2,3.
Furthermore let By = {w, w2}, Bs = {ws}, P = {B1, Bz}, and G = o(P). Finally, let

1, if w=uw
0, otherwise.

X(w) = Iy (W) = {

Then we have that

BX] = 3 X(@)P() = 1-5+0 S0 =2
and that
E[X|B,] = P(}Bl) wgb;lX(w)P(w) _ ﬁ <1 - % 40 %) - %
e EX|By] = P(ng) S X(w)P(w) = % 0. é _o.

w€eBy
O

. Next we will define the expectation of X conditional on a partition P of €. Suppose
that P = {By,..., Bk} and that P(B;) # 0, i =1,..., K. Note that for any random
variable Y measurable with respect to o(P) we have that if w; € B;

since Y is constant on each B;. This means that

K
Y(w) =) BY|Bilp, (),
i=1

where Ip, denotes the indicator function of B;, i.e.

1, ifwe B;
Ip,(w) = { 0, otherwise.
We now define «
E[X|P)(w) = > E[X|Bi]Ip,(w).
i=1

Note that this means that E[X|P] is a random variable Z such that

1. Z € o(P) and that
2. for all B € o(P) we have that

Z Z(w)P(w) = Z X(w)P(w).

weB weB



Example 3 Continuing on Example 2 we can compute

2
BIXIP) = Y BIX|BilIi, () = 5 - T, () + 0+ I, ().
=1

3. Now we are ready to give the general definition of E[X|G].

Definition 10 Consider a random wvariable X on (2, F,P) and a o-algebra G such
that G C F. The conditional expectation of X given G denoted E[X|G] is any random
variable Z such that

1. Ze€g, and
2. for all A € G we have that

Z Z(w)P(w) = Z X(w)P(w).

w€EA weA
The proposition below states some properties of the conditional expectation.

Proposition 3 The conditional expectation has the following properties. Suppose that X and
Y are random variables on (0, F, P) and that o, 5 € R. Let G be a o-algebra such that G C F.
Then the following hold.

1. Linearity.
ElaX + BY|G] = aE[X|G] + BE[Y|G].

2. Monotonicity. If X <Y then
E[X|d] < E[Y|d].

E[E[X]G]] = E[X].

4. If H is o-algebra such that H C G C F then

(i) EIE[X[H]|G]
(ii) E[E[X|G][H]

E[X|H],
E[X|H].

Thus “the smallest o-algebra always wins”.

5. Jensen’s inequality. If ¢ is a convex function, then
p(E[X|G]) < E[p(X)[].

6. If X is independent of G then
E[X|G] = E[X].

7. Taking out what is known. If X € G then

E[XY|G] = X - E[Y|G).



