1 Probability theory

1.1 Basics

Consider a finite sample space Ω

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_M\}, \qquad M < \infty.$$

Define a probability measure P on Ω such that

$$P(\{\omega_i\}) = P(\omega_i) = p_i > 0, \qquad i = 1, ..., M$$

$$\sum_{i=1}^{M} p_i = 1.$$

For every subset A of Ω , $A \subseteq \Omega$, we have that

$$P(A) = \sum_{\omega_i \in A} P(\omega_i).$$

A random variable X on Ω is a mapping

$$X:\Omega\longrightarrow\mathbb{R}.$$

The expectation of X is defined as

$$E[X] = \sum_{i=1}^{M} X(\omega_i) P(\omega_i).$$

1.2 Sigma-algebras and information

It is important to know which information is available to investors. This is formalized using σ -algebras and filtrations.

Definition 1 A collection \mathcal{F} of subsets of Ω is called a σ -algebra (or σ -field) if the following hold.

- 1. $\emptyset \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.

3. If
$$A_n \in \mathcal{F}$$
, $n = 1, 2, \dots$ then $\bigcup_{n=1}^{\infty} \in \mathcal{F}$

Remark 1 When working on a finite sample space Ω condition 3 will reduce to

3.' If
$$A \in \mathcal{F}$$
 and $B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

Example 1 The following are examples of σ -algebras.

- 1. $\mathcal{F} = 2^{\Omega} = \{A | A \subseteq \Omega\}$, the power set of Ω .
- 2. $\mathcal{F} = \{\emptyset, \Omega\}$, the trivial σ -algebra.
- 3. $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}.$

Definition 2 A set $\mathcal{P} = \{A_1, \dots, A_n\}$ of nonempty subsets of the sample space Ω is called a (finite) partition of Ω if

1.
$$\bigcup_{i=1}^{n} A_i = \Omega,$$

2.
$$A_i \cap A_j = \emptyset$$
 for $i \neq j$.

The σ -algebra consisting of all possible unions of the A_i :s (including the empty set) is called the σ -algebra generated by \mathcal{P} and is denoted by $\sigma(\mathcal{P})$.

Remark 2 On a finite sample space every σ -algebra is generated by a partition.

When making decisions investors may only use the information available to them. This is formalized by measurability requirements.

Definition 3 A function $X: \Omega \longrightarrow \{x_1, \ldots, x_K\}$ is \mathcal{F} -measurable if

$$X^{-1}(x_i) = \{\omega \in \Omega | X(w) = x_i\} \in \mathcal{F} \text{ for all } x_i$$

If X is \mathcal{F} -measurable we write $X \in \mathcal{F}$.

Remark 3 Let $\mathcal{F} = \sigma(\mathcal{P})$. Then a function $X : \Omega \longrightarrow \mathbb{R}$ is \mathcal{F} -measurable if and only if X is constant on each set A_i , $i = 1, \ldots, n$.

This captures the idea that based on the available information we should be able to determine the value of X.

Measurability is preserved under a lot of operations which is the content of the next proposition.

Proposition 1 Assume that X and Y are \mathcal{F} -measurable. Then the following hold:

1. For all real numbers α and β the functions

$$\alpha X + \beta Y$$
, $X \cdot Y$

are \mathcal{F} -measurable.

2. If $Y(\omega) \neq 0$ for all ω , then

$$\frac{X}{Y}$$

is \mathcal{F} -measurable.

3. If $\{X_n\}_{n=1}^{\infty}$ is a (countable) sequence of measurable functions, then the functions

$$\sup_{n} X_{n}, \quad \inf_{n} X_{n}, \quad \limsup_{n} X_{n}, \quad \liminf_{n} X_{n},$$

are \mathcal{F} -measurable.

Definition 4 Let X be a function $X : \Omega \longrightarrow \mathbb{R}$. Then $\mathcal{F} = \sigma(X)$ is the smallest σ -algebra such that X is \mathcal{F} -measurable.

If X_1, \ldots, X_n are functions such that $X_i : \Omega \longrightarrow \mathbb{R}$, then $\mathcal{G} = \sigma(X_1, \ldots, X_n)$ is the smallest σ -algebra such that X_1, \ldots, X_n are \mathcal{G} -measurable.

The next proposition formalizes the idea that if Z is measurable with respect to a certain σ -algebra, then "the value of Z is completely determined by the information in the σ -algebra".

Proposition 2 Let X_1, \ldots, X_n be mappings such that $X_i : \Omega \longrightarrow \mathbb{R}$. Assume that the mapping $Z : \Omega \longrightarrow \mathbb{R}$ is $\sigma(X_1, \ldots, X_n)$ -measurable. Then there exists a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ such that

$$Z(\omega) = f(X_1(\omega), \dots, X_n(\omega)).$$

We also need to know what is meant by independence. Recall that two events A and B on a probability space (Ω, \mathcal{F}, P) are independent if

$$P(A \cap B) = P(A) \cdot P(B).$$

For σ -algebras and random variables on (Ω, \mathcal{F}, P) we have the following definition.

Definition 5 The σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i)$$
 whenever $A_i \in \mathcal{F}_i, i = 1..., n$.

Random variables X_1, \ldots, X_n are independent if $\sigma(X_1), \ldots, \sigma(X_n)$ are independent.

1.3 Stochastic processes and filtrations

Let $\mathbb{N} = \{0, 1, 2, 3, \dots\}.$

Definition 6 A stochastic process $\{S_n\}_{n=0}^{\infty}$ on the probability space (Ω, \mathcal{F}, P) is a mapping

$$S: \mathbb{N} \times \Omega \longrightarrow \mathbb{R}$$

such that for each $n \in \mathbb{N}$

$$S_n(\cdot):\Omega\longrightarrow\mathbb{R}$$

is \mathcal{F} -measurable.

Note that $S_n(\omega) = S(n, \omega)$. We have that for a fixed n

$$\omega \longrightarrow S(n,\omega)$$

is a random variable. For a fixed ω

$$n \longrightarrow S(n,\omega)$$

is a deterministic function of time, called the *realization* or *sample path* of S for the outcome ω .

Remark 4 In this course we will mostly be looking at a fixed time horizon so the process will only live up until time T, that is we will be looking at processes $\{S_n\}_{n=0}^T$.

A stochastic process generates information and as before this is formalized in terms of σ -algebras, only now there will be a time dimension as well.

Definition 7 Let $\{S_n\}_{n=0}^{\infty}$ be random process on (Ω, \mathcal{F}, P) . The σ -algebra generated by S over [0,t] is defined by

$$\mathcal{F}_t^S = \sigma\{S_n; n \le t\}.$$

We interpret \mathcal{F}_t^S as the information generated by observing S over the time interval [0,t]. More generally information developing over time is formalized by filtrations. They are families of increasing σ -algebras.

Definition 8 A filtration $\underline{\mathcal{F}} = \{\mathcal{F}_n\}_{n\geq 0}$ on (Ω, \mathcal{F}, P) is an indexed family of σ -algebras on Ω such that

- 1. $\mathcal{F}_n \subseteq \mathcal{F}, n \geq 0$
- 2. if $m \leq n$ then $\mathcal{F}_m \subseteq \mathcal{F}_n$.

Remark 5 As stated before, we will mostly be looking at a fixed time horizon in this course so the filtration will only live up until time T, that is we will be looking at filtrations $\underline{\mathcal{F}} = \{\mathcal{F}_n\}_{n=0}^T$.

For stochastic process the following measurability conditions are relevant.

Definition 9 Given a filtration $\underline{\mathcal{F}}$ and a random process S on (Ω, \mathcal{F}, P) we say that S is adapted to $\underline{\mathcal{F}}$ if

$$S_n \in \mathcal{F}_n$$
 for all $n \geq 0$,

and S is predictable with respect to \mathcal{F} if

$$S_n \in \mathcal{F}_{n-1}$$
 for all $n \ge 1$.

1.4 Conditional expectation

Let X be a random variable on (Ω, \mathcal{F}, P) and \mathcal{G} a σ -algebra such that $\mathcal{G} \subseteq \mathcal{F}$. In this section we aim to define the expectation of X given the information in \mathcal{G} , or conditional on \mathcal{G} , $E[X|\mathcal{G}]$. We will do this in three steps.

1. First we will define the expectation of X given a set $B \in \mathcal{F}$, such that $P(B) \neq 0$, i.e. E[X|B]. Recall that

$$E[X] = \sum_{i=1}^{M} X(\omega_i) P(\omega_i) = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Now it would seem natural (?) to use the normalized probabilities

$$\frac{P(\omega_i)}{P(B)}$$
 on B .

We thus define

$$E[X|B] = \sum_{\omega_i \in B} X(\omega_i) \frac{P(\omega_i)}{P(B)} = \frac{1}{P(B)} \sum_{\omega \in B} X(\omega) P(\omega)$$

Example 2 Consider the finite sample space $\Omega = \{\omega_1, \omega_2, \omega_3\}$ endowed with the power σ -algebra $\mathcal{F} = 2^{\Omega}$, and a probability measure P such that $P(\omega_i) = 1/3$, i = 1, 2, 3. Furthermore let $B_1 = \{\omega_1, \omega_2\}$, $B_2 = \{\omega_3\}$, $\mathcal{P} = \{B_1, B_2\}$, and $\mathcal{G} = \sigma(\mathcal{P})$. Finally, let

$$X(\omega) = I_{\{\omega_1\}}(\omega) = \begin{cases} 1, & \text{if } \omega = \omega_1 \\ 0, & \text{otherwise.} \end{cases}$$

Then we have that

$$E[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega) = 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} = \frac{1}{3}$$

and that

$$E[X|B_1] = \frac{1}{P(B_1)} \sum_{\omega \in B_1} X(\omega) P(\omega) = \frac{1}{1/3 + 1/3} \left(1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} \right) = \frac{1}{2},$$

whereas

$$E[X|B_2] = \frac{1}{P(B_2)} \sum_{\omega \in B_2} X(\omega) P(\omega) = \frac{1}{1/3} \cdot 0 \cdot \frac{1}{3} = 0.$$

2. Next we will define the expectation of X conditional on a partition \mathcal{P} of Ω . Suppose that $\mathcal{P} = \{B_1, \dots, B_K\}$ and that $P(B_i) \neq 0, i = 1, \dots, K$. Note that for any random variable Y measurable with respect to $\sigma(\mathcal{P})$ we have that if $\omega_i \in B_j$

$$Y(\omega_i) = E[Y|B_i]$$

since Y is constant on each B_i . This means that

$$Y(\omega) = \sum_{i=1}^{K} E[Y|B_i]I_{B_i}(\omega),$$

where I_{B_i} denotes the indicator function of B_i , i.e.

$$I_{B_i}(\omega) = \begin{cases} 1, & \text{if } \omega \in B_i \\ 0, & \text{otherwise.} \end{cases}$$

We now define

$$E[X|\mathcal{P}](\omega) = \sum_{i=1}^{K} E[X|B_i]I_{B_i}(\omega).$$

Note that this means that $E[X|\mathcal{P}]$ is a random variable Z such that

- 1. $Z \in \sigma(\mathcal{P})$ and that
- 2. for all $B \in \sigma(\mathcal{P})$ we have that

$$\sum_{\omega \in B} Z(\omega) P(\omega) = \sum_{\omega \in B} X(\omega) P(\omega).$$

Example 3 Continuing on Example 2 we can compute

$$E[X|\mathcal{P}] = \sum_{i=1}^{2} E[X|B_i]I_{B_i}(\omega) = \frac{1}{2} \cdot I_{B_1}(\omega) + 0 \cdot I_{B_2}(\omega).$$

3. Now we are ready to give the general definition of $E[X|\mathcal{G}]$.

Definition 10 Consider a random variable X on (Ω, \mathcal{F}, P) and a σ -algebra \mathcal{G} such that $\mathcal{G} \subseteq \mathcal{F}$. The conditional expectation of X given \mathcal{G} denoted $E[X|\mathcal{G}]$ is any random variable Z such that

- 1. $Z \in \mathcal{G}$, and
- 2. for all $A \in \mathcal{G}$ we have that

$$\sum_{\omega \in A} Z(\omega) P(\omega) = \sum_{\omega \in A} X(\omega) P(\omega).$$

The proposition below states some properties of the conditional expectation.

Proposition 3 The conditional expectation has the following properties. Suppose that X and Y are random variables on (Ω, \mathcal{F}, P) and that $\alpha, \beta \in \mathbb{R}$. Let \mathcal{G} be a σ -algebra such that $\mathcal{G} \subseteq \mathcal{F}$. Then the following hold.

1. Linearity.

$$E[\alpha X + \beta Y | \mathcal{G}] = \alpha E[X | \mathcal{G}] + \beta E[Y | \mathcal{G}].$$

2. Monotonicity. If $X \leq Y$ then

$$E[X|\mathcal{G}] \leq E[Y|\mathcal{G}].$$

3.

$$E[E[X|\mathcal{G}]] = E[X].$$

- 4. If \mathcal{H} is σ -algebra such that $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ then
 - (i) $E[E[X|\mathcal{H}]|\mathcal{G}] = E[X|\mathcal{H}],$
 - (ii) $E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}].$

Thus "the smallest σ -algebra always wins".

5. Jensen's inequality. If φ is a convex function, then

$$\varphi(E[X|\mathcal{G}]) \leq E[\varphi(X)|\mathcal{G}].$$

6. If X is independent of \mathcal{G} then

$$E[X|\mathcal{G}] = E[X].$$

7. Taking out what is known. If $X \in \mathcal{G}$ then

$$E[XY|\mathcal{G}] = X \cdot E[Y|\mathcal{G}].$$