1 Probability theory

1.1 Basics

Consider a finite sample space Ω

$$
\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{M}\right\}, \quad M<\infty .
$$

Define a probability measure P on Ω such that

$$
\begin{aligned}
& P\left(\left\{\omega_{i}\right\}\right)=P\left(\omega_{i}\right)=p_{i}>0, \quad i=1, \ldots, M \\
& \sum_{i=1}^{M} p_{i}=1 .
\end{aligned}
$$

For every subset A of $\Omega, A \subseteq \Omega$, we have that

$$
P(A)=\sum_{\omega_{i} \in A} P\left(\omega_{i}\right) .
$$

A random variable X on Ω is a mapping

$$
X: \Omega \longrightarrow \mathbb{R}
$$

The expectation of X is defined as

$$
E[X]=\sum_{i=1}^{M} X\left(\omega_{i}\right) P\left(\omega_{i}\right) .
$$

1.2 Sigma-algebras and information

It is important to know which information is available to investors. This is formalized using σ-algebras and filtrations.

Definition $1 A$ collection \mathcal{F} of subsets of Ω is called $a \sigma$-algebra (or σ-field) if the following hold.

1. $\emptyset \in \mathcal{F}$.
2. If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.
3. If $A_{n} \in \mathcal{F}, n=1,2, \ldots$ then $\bigcup_{n=1}^{\infty} \in \mathcal{F}$

Remark 1 When working on a finite sample space Ω condition 3 will reduce to
3.' If $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

Example 1 The following are examples of σ-algebras.

1. $\mathcal{F}=2^{\Omega}=\{A \mid A \subseteq \Omega\}$, the power set of Ω.
2. $\mathcal{F}=\{\emptyset, \Omega\}$, the trivial σ-algebra.
3. $\mathcal{F}=\left\{\emptyset, A, A^{c}, \Omega\right\}$.

Definition $2 A$ set $\mathcal{P}=\left\{A_{1}, \ldots, A_{n}\right\}$ of nonempty subsets of the sample space Ω is called a (finite) partition of Ω if

1. $\bigcup_{i=1}^{n} A_{i}=\Omega$,
2. $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.

The σ-algebra consisting of all possible unions of the A_{i} :s (including the empty set) is called the σ-algebra generated by \mathcal{P} and is denoted by $\sigma(\mathcal{P})$.

Remark 2 On a finite sample space every σ-algebra is generated by a partition.
When making decisions investors may only use the information available to them. This is formalized by measurability requirements.

Definition 3 A function $X: \Omega \longrightarrow\left\{x_{1}, \ldots, x_{K}\right\}$ is \mathcal{F}-measurable if

$$
X^{-1}\left(x_{i}\right)=\left\{\omega \in \Omega \mid X(w)=x_{i}\right\} \in \mathcal{F} \quad \text { for all } x_{i}
$$

If X is \mathcal{F}-measurable we write $X \in \mathcal{F}$.
Remark 3 Let $\mathcal{F}=\sigma(\mathcal{P})$. Then a function $X: \Omega \longrightarrow \mathbb{R}$ is \mathcal{F}-measurable if and only if X is constant on each set $A_{i}, i=1, \ldots, n$.

This captures the idea that based on the available information we should be able to determine the value of X.
Measurability is preserved under a lot of operations which is the content of the next proposition.

Proposition 1 Assume that X and Y are \mathcal{F}-measurable. Then the following hold:

1. For all real numbers α and β the functions

$$
\alpha X+\beta Y, \quad X \cdot Y
$$

are \mathcal{F}-measurable.
2. If $Y(\omega) \neq 0$ for all ω, then

$$
\frac{X}{Y}
$$

is \mathcal{F}-measurable.
3. If $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a (countable) sequence of measurable functions, then the functions

$$
\sup _{n} X_{n}, \quad \inf _{n} X_{n}, \quad \limsup _{n} X_{n}, \quad \liminf _{n} X_{n},
$$

are \mathcal{F}-measurable.
Definition 4 Let X be a function $X: \Omega \longrightarrow \mathbb{R}$. Then $\mathcal{F}=\sigma(X)$ is the smallest σ-algebra such that X is \mathcal{F}-measurable.
If X_{1}, \ldots, X_{n} are functions such that $X_{i}: \Omega \longrightarrow \mathbb{R}$, then $\mathcal{G}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ is the smallest σ-algebra such that X_{1}, \ldots, X_{n} are \mathcal{G}-measurable.

The next proposition formalizes the idea that if Z is measurable with respect to a certain σ-algebra, then "the value of Z is completely determined by the information in the σ-algebra".

Proposition 2 Let X_{1}, \ldots, X_{n} be mappings such that $X_{i}: \Omega \longrightarrow \mathbb{R}$. Assume that the mapping $Z: \Omega \longrightarrow \mathbb{R}$ is $\sigma\left(X_{1}, \ldots, X_{n}\right)$-measurable. Then there exists a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ such that

$$
Z(\omega)=f\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right) .
$$

We also need to know what is meant by independence. Recall that two events A and B on a probability space (Ω, \mathcal{F}, P) are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

For σ-algebras and random variables on (Ω, \mathcal{F}, P) we have the following definition.
Definition 5 The σ-algebras $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ are independent if

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right) \quad \text { whenever } A_{i} \in \mathcal{F}_{i}, i=1 \ldots, n .
$$

Random variables X_{1}, \ldots, X_{n} are independent if $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$ are independent.

1.3 Stochastic processes and filtrations

Let $\mathbb{N}=\{0,1,2,3, \ldots\}$.
Definition $6 A$ stochastic process $\left\{S_{n}\right\}_{n=0}^{\infty}$ on the probability space (Ω, \mathcal{F}, P) is a mapping

$$
S: \mathbb{N} \times \Omega \longrightarrow \mathbb{R}
$$

such that for each $n \in \mathbb{N}$

$$
S_{n}(\cdot): \Omega \longrightarrow \mathbb{R}
$$

is \mathcal{F}-measurable.
Note that $S_{n}(\omega)=S(n, \omega)$. We have that for a fixed n

$$
\omega \longrightarrow S(n, \omega)
$$

is a random variable. For a fixed ω

$$
n \longrightarrow S(n, \omega)
$$

is a deterministic function of time, called the realization or sample path of S for the outcome ω.

Remark 4 In this course we will mostly be looking at a fixed time horizon so the process will only live up until time T, that is we will be looking at processes $\left\{S_{n}\right\}_{n=0}^{T}$.

A stochastic process generates information and as before this is formalized in terms of σ algebras, only now there will be a time dimension as well.

Definition 7 Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be random process on (Ω, \mathcal{F}, P). The σ-algebra generated by S over $[0, t]$ is defined by

$$
\mathcal{F}_{t}^{S}=\sigma\left\{S_{n} ; n \leq t\right\} .
$$

We interpret \mathcal{F}_{t}^{S} as the information generated by observing S over the time interval $[0, t]$. More generally information developing over time is formalized by filtrations. They are families of increasing σ-algebras.

Definition $8 A$ filtration $\underline{\mathcal{F}}=\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ on (Ω, \mathcal{F}, P) is an indexed family of σ-algebras on Ω such that

$$
\text { 1. } \mathcal{F}_{n} \subseteq \mathcal{F}, \quad n \geq 0
$$

2. if $m \leq n$ then $\mathcal{F}_{m} \subseteq \mathcal{F}_{n}$.

Remark 5 As stated before, we will mostly be looking at a fixed time horizon in this course so the filtration will only live up until time T, that is we will be looking at filtrations $\underline{\mathcal{F}}=\left\{\mathcal{F}_{n}\right\}_{n=0}^{T}$.

For stochastic process the following measurability conditions are relevant.
Definition 9 Given a filtration $\underline{\mathcal{F}}$ and a random process S on (Ω, \mathcal{F}, P) we say that S is adapted to $\underline{\mathcal{F}}$ if

$$
S_{n} \in \mathcal{F}_{n} \quad \text { for all } n \geq 0
$$

and S is predictable with respect to $\underline{\mathcal{F}}$ if

$$
S_{n} \in \mathcal{F}_{n-1} \quad \text { for all } n \geq 1
$$

1.4 Conditional expectation

Let X be a random variable on (Ω, \mathcal{F}, P) and \mathcal{G} a σ-algebra such that $\mathcal{G} \subseteq \mathcal{F}$. In this section we aim to define the expectation of X given the information in \mathcal{G}, or conditional on $\mathcal{G}, E[X \mid \mathcal{G}]$. We will do this in three steps.

1. First we will define the expectation of X given a set $B \in \mathcal{F}$, such that $P(B) \neq 0$, i.e. $E[X \mid B]$. Recall that

$$
E[X]=\sum_{i=1}^{M} X\left(\omega_{i}\right) P\left(\omega_{i}\right)=\sum_{\omega \in \Omega} X(\omega) P(\omega)
$$

Now it would seem natural (?) to use the normalized probabilities

$$
\frac{P\left(\omega_{i}\right)}{P(B)} \quad \text { on } B
$$

We thus define

$$
E[X \mid B]=\sum_{\omega_{i} \in B} X\left(\omega_{i}\right) \frac{P\left(\omega_{i}\right)}{P(B)}=\frac{1}{P(B)} \sum_{\omega \in B} X(\omega) P(\omega)
$$

Example 2 Consider the finite sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ endowed with the power σ-algebra $\mathcal{F}=2^{\Omega}$, and a probability measure P such that $P\left(\omega_{i}\right)=1 / 3, i=1,2,3$. Furthermore let $B_{1}=\left\{\omega_{1}, \omega_{2}\right\}, B_{2}=\left\{\omega_{3}\right\}, \mathcal{P}=\left\{B_{1}, B_{2}\right\}$, and $\mathcal{G}=\sigma(\mathcal{P})$. Finally, let

$$
X(\omega)=I_{\left\{\omega_{1}\right\}}(\omega)= \begin{cases}1, & \text { if } \omega=\omega_{1} \\ 0, & \text { otherwise }\end{cases}
$$

Then we have that

$$
E[X]=\sum_{\omega \in \Omega} X(\omega) P(\omega)=1 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}=\frac{1}{3}
$$

and that

$$
E\left[X \mid B_{1}\right]=\frac{1}{P\left(B_{1}\right)} \sum_{\omega \in B_{1}} X(\omega) P(\omega)=\frac{1}{1 / 3+1 / 3}\left(1 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}\right)=\frac{1}{2}
$$

whereas

$$
E\left[X \mid B_{2}\right]=\frac{1}{P\left(B_{2}\right)} \sum_{\omega \in B_{2}} X(\omega) P(\omega)=\frac{1}{1 / 3} \cdot 0 \cdot \frac{1}{3}=0
$$

2. Next we will define the expectation of X conditional on a partition \mathcal{P} of Ω. Suppose that $\mathcal{P}=\left\{B_{1}, \ldots, B_{K}\right\}$ and that $P\left(B_{i}\right) \neq 0, i=1, \ldots, K$. Note that for any random variable Y measurable with respect to $\sigma(\mathcal{P})$ we have that if $\omega_{i} \in B_{j}$

$$
Y\left(\omega_{i}\right)=E\left[Y \mid B_{j}\right]
$$

since Y is constant on each B_{i}. This means that

$$
Y(\omega)=\sum_{i=1}^{K} E\left[Y \mid B_{i}\right] I_{B_{i}}(\omega)
$$

where $I_{B_{i}}$ denotes the indicator function of B_{i}, i.e.

$$
I_{B_{i}}(\omega)= \begin{cases}1, & \text { if } \omega \in B_{i} \\ 0, & \text { otherwise }\end{cases}
$$

We now define

$$
E[X \mid \mathcal{P}](\omega)=\sum_{i=1}^{K} E\left[X \mid B_{i}\right] I_{B_{i}}(\omega)
$$

Note that this means that $E[X \mid \mathcal{P}]$ is a random variable Z such that

1. $Z \in \sigma(\mathcal{P})$ and that
2. for all $B \in \sigma(\mathcal{P})$ we have that

$$
\sum_{\omega \in B} Z(\omega) P(\omega)=\sum_{\omega \in B} X(\omega) P(\omega) .
$$

Example 3 Continuing on Example 2 we can compute

$$
E[X \mid \mathcal{P}]=\sum_{i=1}^{2} E\left[X \mid B_{i}\right] I_{B_{i}}(\omega)=\frac{1}{2} \cdot I_{B_{1}}(\omega)+0 \cdot I_{B_{2}}(\omega) .
$$

3. Now we are ready to give the general definition of $E[X \mid \mathcal{G}]$.

Definition 10 Consider a random variable X on (Ω, \mathcal{F}, P) and a σ-algebra \mathcal{G} such that $\mathcal{G} \subseteq \mathcal{F}$. The conditional expectation of X given \mathcal{G} denoted $E[X \mid \mathcal{G}]$ is any random variable Z such that

1. $Z \in \mathcal{G}$, and
2. for all $A \in \mathcal{G}$ we have that

$$
\sum_{\omega \in A} Z(\omega) P(\omega)=\sum_{\omega \in A} X(\omega) P(\omega) .
$$

The proposition below states some properties of the conditional expectation.
Proposition 3 The conditional expectation has the following properties. Suppose that X and Y are random variables on (Ω, \mathcal{F}, P) and that $\alpha, \beta \in \mathbb{R}$. Let \mathcal{G} be a σ-algebra such that $\mathcal{G} \subseteq \mathcal{F}$. Then the following hold.

1. Linearity.

$$
E[\alpha X+\beta Y \mid \mathcal{G}]=\alpha E[X \mid \mathcal{G}]+\beta E[Y \mid \mathcal{G}] .
$$

2. Monotonicity. If $X \leq Y$ then

$$
E[X \mid \mathcal{G}] \leq E[Y \mid \mathcal{G}]
$$

3.

$$
E[E[X \mid \mathcal{G}]]=E[X] .
$$

4. If \mathcal{H} is σ-algebra such that $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ then
(i) $E[E[X \mid \mathcal{H}] \mid \mathcal{G}]=E[X \mid \mathcal{H}]$,
(ii) $E[E[X \mid \mathcal{G}] \mid \mathcal{H}]=E[X \mid \mathcal{H}]$.

Thus "the smallest σ-algebra always wins".
5. Jensen's inequality. If φ is a convex function, then

$$
\varphi(E[X \mid \mathcal{G}]) \leq E[\varphi(X) \mid \mathcal{G}] .
$$

6. If X is independent of \mathcal{G} then

$$
E[X \mid \mathcal{G}]=E[X] .
$$

7. Taking out what is known. If $X \in \mathcal{G}$ then

$$
E[X Y \mid \mathcal{G}]=X \cdot E[Y \mid \mathcal{G}] .
$$

