EXAMINATION IN SF2975 FINANCIAL DERIVATIVES

Date: 2015-03-17, 08:00-13:00

Suggested solutions

Problem 1

(a) We use Feynman-Kac. It follows that

$$
F(t, x)=E_{t, x}\left[e^{a(T-t)} X(T)\right]
$$

where X has dynamics

$$
d X(t)=b X(t) d W(t)
$$

and W is a 1-dimensional Wiener process. The solution to this SDE is

$$
X(T)=X(t) e^{-\frac{b^{2}}{2}(T-t)+b(W(T)-W(t))},
$$

and we get

$$
\begin{aligned}
F(t, x) & =e^{a(T-t)} E_{t, x}\left[x e^{-\frac{b^{2}}{2}(T-t)+b(W(T)-W(t))}\right] \\
& =e^{a(T-t)} x \underbrace{E\left[e^{-\frac{b^{2}}{2}(T-t)+b(W(T)-W(t))}\right]}_{=1} \\
& =e^{a(T-t)} x .
\end{aligned}
$$

Alternatively we realise that X is a martingale, from which it follows that

$$
F(t, x)=e^{a(T-t)} E_{t, x}[X(T)]=e^{a(T-t)} x
$$

(b) We know that if $f:[0, T] \rightarrow \mathbb{R}$ satisfies

$$
\int_{0}^{T} f^{2}(u) d u<\infty
$$

then

$$
\int_{0}^{T} f(u) d W(u) \sim N\left(0, \sqrt{\int_{0}^{T} f^{2}(u) d u}\right)
$$

In our case $f(u)=u^{2}$. Since

$$
\int_{0}^{T}\left(u^{2}\right)^{2} d u=\int_{0}^{T} u^{4} d u=\frac{T^{5}}{5}<\infty
$$

we get

$$
X=\int_{0}^{T} u^{2} d W(u) \sim N\left(0, \sqrt{\frac{T^{5}}{5}}\right)
$$

(c) See the book.

Problem 2

(a) The risk-neutral valuation formula yields

$$
\Pi(t ; X)=e^{-r(T-t)} E^{Q}\left[(\ln (S(T)))^{2} \mid \mathcal{F}_{t}\right]
$$

where under Q the dynamics of S are given by

$$
d S(t)=r S(t) d t+\sigma S(t) d W^{Q}(t)
$$

Since

$$
S(T)=S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma\left(W^{Q}(T)-W^{Q}(T)\right)}
$$

we get

$$
\ln S(T)=\ln S(t)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma\left(W^{Q}(T)-W^{Q}(T)\right)
$$

It follows that

$$
\ln S(T) \mid \mathcal{F}_{t} \sim N\left(\ln S(t)+\left(r-\sigma^{2} / 2\right)(T-t), \sigma \sqrt{T-t}\right)
$$

Now

$$
\begin{aligned}
E^{Q}\left[(\ln S(T))^{2} \mid \mathcal{F}_{t}\right] & =\operatorname{Var}^{Q}\left(\ln S(T) \mid \mathcal{F}_{t}\right)+\left(E^{Q}\left[\ln S(T) \mid \mathcal{F}_{t}\right]\right)^{2} \\
& =\sigma^{2}(T-t)+\left(\ln S(t)+\left(r-\sigma^{2} / 2\right)(T-t)\right)^{2}
\end{aligned}
$$

and for $t \in[0, T]$

$$
\Pi(t ; X)=e^{-r(T-t)}\left(\sigma^{2}(T-t)+\left(\ln S(t)+\left(r-\sigma^{2} / 2\right)(T-t)\right)^{2}\right)
$$

(b) We know that the hedging portfolio is given by

$$
h^{S}(t)=\frac{\partial F}{\partial s}(t, S(t))
$$

where

$$
\begin{aligned}
F(t, s) & =E_{t, s}^{Q}\left[(\ln S(T))^{2}\right] \\
& =e^{-r(T-t)}\left(\sigma^{2}(T-t)+\left(\ln s+\left(r-\sigma^{2} / 2\right)(T-t)\right)^{2}\right)
\end{aligned}
$$

and that

$$
h^{B}(t)=\frac{F(t, S(t))-S(t) \frac{\partial F}{\partial s}(t, S(t))}{B(t)}
$$

It follows that

$$
h^{S}(t)=\frac{2}{S(t)} e^{-r(T-t)}\left(\ln S(t)+\left(r-\sigma^{2} / 2\right)(T-t)\right)
$$

and
$h_{B}(t)=e^{-r T}\left[2\left(\sigma^{2}-r\right)(T-t)+\left(\ln S(t)+\left(r-\sigma^{2} / 2\right)(T-t)\right)^{2}-2 \ln S(t)\right]$.

Problem 3

(a) The Q-dynamics of $f(t, T)$ are given by

$$
d f(t, T)=\sigma(t, T) \int_{t}^{T} \sigma(t, u) d u d t+\sigma(t, T) d W^{Q}(t)
$$

where W^{Q} is a 1 -dimensional Q-Wiener process. With

$$
\sigma(t, T)=\frac{\sigma_{0}}{1+a(T-t)}
$$

we get the following drift under Q :

$$
\begin{aligned}
\sigma(t, T) \int_{t}^{T} \sigma(t, u) d u & =\frac{\sigma_{0}}{1+a(T-t)} \int_{t}^{T} \frac{\sigma_{0}}{1+a(u-t)} d u \\
& =\frac{\sigma_{0}}{1+a(T-t)}\left[\frac{\sigma_{0}}{a} \cdot \ln (1+a(u-t))\right]_{t}^{T} \\
& =\frac{\sigma_{0}^{2}}{a} \cdot \frac{\ln (1+a(T-t))}{1+a(T-t)}
\end{aligned}
$$

Hence

$$
d f(t, T)=\frac{\sigma_{0}^{2}}{a} \cdot \frac{\ln (1+a(T-t))}{1+a(T-t)} d t+\frac{\sigma_{0}}{1+a(T-t)} d W^{Q}(t)
$$

The initial value is the the same as under P :

$$
f(0, T)=f^{\star}(0, T)
$$

Under Q, the dynamics of $p(t, T)$ is given by

$$
d p(t, T)=r(t) p(t, T) d t+\left(-\int_{t}^{T} \sigma(t, u) d u\right) p(t, T) d W^{Q}(u)
$$

In our case

$$
-\int_{t}^{T} \sigma(t, u) d u=-\int_{t}^{T} \frac{\sigma_{0}}{1+a(u-t)} d u=-\frac{\sigma_{0}}{a} \ln (1+a(T-t))
$$

so we get Q-dynamics

$$
d p(t, T)=r(t) p(t, T) d t-\frac{\sigma_{0}}{a} \ln (1+a(T-t)) p(t, T) d W^{Q}(t)
$$

with initial values

$$
p(0, T)=e^{-\int_{0}^{T} f^{\star}(0, u) d u}
$$

(b) See the book.

Problem 4

(a) We know that for $t \in[0, T]$

$$
\Pi(t ; X)=p(t, T) E^{Q^{T}}\left[X \mid \mathcal{F}_{t}\right]
$$

where $p(t, T)$ is the price at time t of a ZCB maturing at T and Q^{T} is the T-forward measure. The model

$$
d r(t)=\sigma_{0} d W^{Q}(t)
$$

has an ATS with, in the language of the course book,

$$
\alpha(t)=\beta(t)=\gamma(t)=0 \text { and } \delta(t)=\sigma_{0}^{2} .
$$

Hence, the ZCB prices in this model are given by $p(t, T)=e^{A(t, T)-B(t, T) r(t)}$, where A and B solves the system of equations

$$
\left\{\begin{aligned}
\frac{\partial A(t, T)}{\partial t} & =-\frac{\sigma_{0}^{2}}{2} B^{2}(t, T) \\
A(T, T) & =0
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\frac{\partial B(t, T)}{\partial t} & =-1 \\
B(T, T) & =0
\end{aligned}\right.
$$

The solution to the last equation is given by

$$
B(t, T)=T-t
$$

and we then get

$$
A(T, T)-A(t, T)=-\int_{t}^{T} \frac{\sigma_{0}^{2}}{2}(T-u)^{2} d u=-\frac{\sigma_{0}^{2}}{2} \cdot \frac{(T-t)^{3}}{3}
$$

or

$$
A(t, T)=\frac{\sigma_{0}^{2}(T-t)^{3}}{6}
$$

Hence

$$
p(t, T)=e^{\frac{\sigma_{0}^{2}(T-t)^{3}}{6}-(T-t) r(t)}
$$

The forward rates are given by
$f(t, T)=-\frac{\partial \ln p(t, T)}{\partial T}=\frac{\partial}{\partial T}\left((T-t) r(t)-\frac{\sigma_{0}^{2}(T-t)^{3}}{6}\right)=r(t)-\frac{\sigma_{0}^{2}(T-t)^{2}}{2}$.
(b) In general

$$
\begin{aligned}
d r(t) & =\mu(t, r(t)) d t+\sigma(t, r(t)) d W(t) \\
& =\mu_{Q}(t, r(t)) d t+\sigma(t, r(t)) d W^{Q}(t)
\end{aligned}
$$

where W and W^{Q} is a Wiener process under P and Q respectively. We know that absence of arbitrage implies

$$
\mu_{Q}(t, r(t))=\mu(t, r(t))-\lambda(t, r(t)) \sigma(t, r(t))
$$

In our case we have

$$
\mu_{Q}(t, r(t))=0, \lambda(t, r(t))=\lambda_{0} \text { and } \sigma(t, r(t))=\sigma_{0}
$$

which implies

$$
\mu(t, r(t))=\lambda_{0} \sigma_{0}
$$

and

$$
d r(t)=\lambda_{0} \sigma_{0} d t+\sigma_{0} d W(t)
$$

Thus

$$
r(T)=r(0)+\lambda_{0} \sigma_{0} T+\sigma_{0} W(T) \sim N\left(r(0)+\lambda_{0} \sigma_{0} T, \sigma_{0} \sqrt{T}\right)
$$

and we get

$$
\begin{aligned}
P(r(T)<0) & =P(r(T) \leq 0) \\
& =P\left(\frac{r(T)-r(0)-\lambda_{0} \sigma_{0} T}{\sigma_{0} \sqrt{T}} \leq \frac{-r(0)-\lambda_{0} \sigma_{0} T}{\sigma_{0} \sqrt{T}}\right) \\
& =\Phi\left(-\frac{r(0)+\lambda_{0} \sigma_{0} T}{\sigma_{0} \sqrt{T}}\right)
\end{aligned}
$$

Problem 5

(a) We know that $S_{f}(t) X(t) / B_{d}(t)$ should be a Q^{d}-martingale. First of all

$$
\begin{aligned}
d\left(S_{f}(t) X(t)\right)= & S_{f}(t) d X(t)+X(t) d S_{f}(t)+d S_{f}(t) d X(t) \\
= & \alpha_{X} S_{f}(t) X(t) d t+\sigma_{X} S_{f}(t) X(t) d W(t)+\alpha_{f} S_{f}(t) X(t) d t \\
& +\sigma_{f} S_{f}(t) X(t) d W(t)+\sigma_{f} \sigma_{X} S_{f}(t) X(t) d t \\
= & \left(\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d t+\left(\sigma_{X}+\sigma_{f}\right) S_{f}(t) X(t) d W(t)
\end{aligned}
$$

We then get

$$
\begin{aligned}
d\left(\frac{S_{f}(t) X(t)}{B_{d}(t)}\right)= & d\left(e^{-r_{d} t}\left[S_{f}(t) X(t)\right]\right) \\
= & \left(\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d t \\
& +\left(\sigma_{X}+\sigma_{f}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d W(t) \\
= & \left(\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d t \\
& +\left(\sigma_{X}+\sigma_{f}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)}\left(d W^{d}(t)+\varphi(t) d t\right) \\
= & \left(\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}+\left(\sigma_{X}+\sigma_{f}\right) \varphi(t)\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d t \\
& +\left(\sigma_{X}+\sigma_{f}\right) \frac{S_{f}(t) X(t)}{B_{d}(t)} d W^{d}(t),
\end{aligned}
$$

where W^{d} is a Q^{d}-Wiener process. By choosing

$$
\varphi(t)=-\frac{\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}}{\sigma_{X}+\sigma_{f}}
$$

we see that the discounted price process is a Q^{d}-martingale. It follows that the dynamics of X under Q^{d} is

$$
\begin{aligned}
d X(t) & =\alpha_{X} X(t) d t+\sigma_{X} X(t)\left(d W^{d}(t)-\frac{\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}}{\sigma_{X}+\sigma_{f}}\right) \\
& =\left(\alpha_{X}-\sigma_{X} \frac{\alpha_{X}+\alpha_{f}+\sigma_{f} \sigma_{X}-r_{d}}{\sigma_{X}+\sigma_{f}}\right) X(t) d t+\sigma_{X} X(t) d W^{d}(t)
\end{aligned}
$$

(b) The price at $t \in[0, T]$ of the T-claim $Z=S_{f}(T) X(T)$ is given by

$$
\begin{aligned}
\Pi(t ; Z) & =e^{-r_{d}(T-t)} E^{Q^{d}}\left[S_{f}(T) X(T) \mid \mathcal{F}_{t}\right] \\
& =e^{r_{d} t} E^{Q^{d}}\left[e^{-r_{d} T} S_{f}(T) X(T) \mid \mathcal{F}_{t}\right] \\
& =\left\{e^{-r_{d} t} S_{f}(t) X(t) \text { is a } Q^{d} \text {-martingale }\right\} \\
& =e^{r_{d} t} e^{-r_{d} t} S_{f}(t) X(t) \\
& =S_{f}(t) X(t) .
\end{aligned}
$$

